

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	4224
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	115
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax250-2pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		Dev	ice Spe	cific Val	ue (in µW	/MHz)
Component	Definition	AX125	AX250	AX500	AX1000	AX2000
P1	Core tile HCLK power component	33	49	71	130	216
P2	R-cell power component	0.2	0.2	0.2	0.2	0.2
P3	HCLK signal power dissipation	4.5	4.5	9	13.5	18
P4	Core tile RCLK power component	33	49	71	130	216
P5	R-cell power component	0.3	0.3	0.3	0.3	0.3
P6	RCLK signal power dissipation	6.5	6.5	13	19.5	26
P7	Power dissipation due to the switching activity on the R-cell	1.6	1.6	1.6	1.6	1.6
P8	Power dissipation due to the switching activity on the C-cell	1.4	1.4	1.4	1.4	1.4
P9	Power component associated with the input voltage	10	10	10	10	10
P10	Power component associated with the output voltage	Ś	See table	e Per pin	contributi	on
P11	Power component associated with the read operation in the RAM block	25	25	25	25	25
P12	Power component associated with the write operation in the RAM block	30	30	30	30	30
P13	Core PLL power component	1.5	1.5	1.5	1.5	1.5

Table 2-5 • Different Components Contributing to the Total Power Consumption in Axcelerator Devices

Ptotal = Pdc + Pac

P_{dc} = ICCA * VCCA

P_{ac} = P_{HCLK} + P_{CLK} + P_{R-cells} + P_{C-cells} + P_{inputs} + P_{outputs} + P_{memory} + P_{PLL}

P_{HCLK} = (P1 + P2 * s + P3 * sqrt[s]) * Fs

- s = the number of R-cells clocked by this clock
- Fs = the clock frequency

PCLK = (P4 + P5 * s + P6 * sqrt[s]) * Fs

- s = the number of R-cells clocked by this clock
- Fs = the clock frequency

PR-cells = P7 * ms * Fs

- ms = the number of R-cells switching at each Fs cycle
- Fs = the clock frequency

PC-cells = P8 * mc * Fs

- mc = the number of C-cells switching at each Fs cycle
- Fs = the clock frequency

Pinputs = P9 * pi * Fpi

- pi = the number of inputs
- F_{pi} = the average input frequency

I/O Specifications

Pin Descriptions

Supply Pins

GND

VCCA

Ground

Low supply voltage.

Supply Voltage

Supply voltage for array (1.5V). See "Operating Conditions" on page 2-1 for more information.

VCCIBx Supply Voltage

Supply voltage for I/Os. Bx is the I/O Bank ID – 0 to 7. See "Operating Conditions" on page 2-1 for more information.

VCCDA Supply Voltage

Supply voltage for the I/O differential amplifier and JTAG and probe interfaces. See "Operating Conditions" on page 2-1 for more information. VCCDA should be tied to 3.3V.

VCCPLA/B/C/D/E/F/G/H Supply Voltage

PLL analog power supply (1.5V) for internal PLL. There are eight in each device. VCCPLA supports the PLL associated with global resource HCLKA, VCCPLB supports the PLL associated with global resource HCLKB, etc. The PLL analog power supply pins should be connected to 1.5V whether PLL is used or not.

VCOMPLA/B/C/D/E/F/G/H Supply Voltage

Compensation reference signals for internal PLL. There are eight in each device. **VCOMPLA** supports the PLL associated with global resource HCLKA, VCOMPLE supports the PLL associated with global resource CLKE, etc. (see Figure 2-2 on page 2-9 for correct external connection to the supply). The VCOMPLX pins should be left floating if PLL is not used.

VPUMP Supply Voltage (External Pump)

In the low power mode, VPUMP will be used to access an external charge pump (if the user desires to bypass the internal charge pump to further reduce power). The device starts using the external charge pump when the voltage level on VPUMP reaches VIH¹. In normal device operation, when using the internal charge pump, VPUMP should be tied to GND.

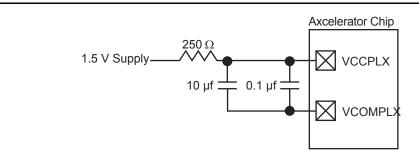


Figure 2-2 • VCCPLX and VCOMPLX Power Supply Connect

^{1.} When $V_{PUMP} = V_{IH}$, it shuts off the internal charge pump. See "Low Power Mode" on page 2-106.

Using the Differential I/O Standards

Differential I/O macros should be instantiated in the netlist. The settings for these I/O standards cannot be changed inside Designer. Note that there are no tristated or bidirectional I/O buffers for differential standards.

Using the Voltage-Referenced I/O Standards

Using these I/O standards is similar to that of single-ended I/O standards. Their settings can be changed in Designer.

Using DDR (Double Data Rate)

In Double Data Rate mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidth and signal integrity requirements, making it very efficient for implementing very high-speed systems.

To implement a DDR, users need to:

- 1. Instantiate an input buffer (with the required I/O standard)
- 2. Instantiate the DDR_REG macro (Figure 2-6)
- 3. Connect the output from the Input buffer to the input of the DDR macro

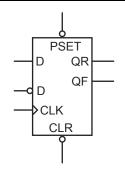


Figure 2-6 • DDR Register

Macros for Specific I/O Standards

There are different macro types for any I/O standard or feature that determine the required VCCI and VREF voltages for an I/O. The generic buffer macros require the LVTTL standard with slow slew rate and 24 mA-drive strength. LVTTL can support high slew rate but this should only be used for critical signals.

Most of the macro symbols represent variations of the six generic symbol types:

- CLKBUF: Clock Buffer
- HCLKBUF: Hardwired Clock Buffer
- INBUF: Input Buffer
- OUTBUF: Output Buffer
- TRIBUF: Tristate Buffer
- BIBUF: Bidirectional Buffer

Other macros include the following:

- Differential I/O standard macros: The LVDS and LVPECL macros either have a pair of differential inputs (e.g. INBUF_LVDS) or a pair of differential outputs (e.g. OUTBUF_LVPECL).
- Pull-up and pull-down variations of the INBUF, BIBUF, and TRIBUF macros. These are available only with TTL and LVCMOS thresholds. They can be used to model the behavior of the pull-up and pull-down resistors available in the architecture. Whenever an input pin is left unconnected, the output pin will either go high or low rather than unknown. This allows users to leave inputs unconnected without having the negative effect on simulation of propagating unknowns.
- DDR_REG macro. It can be connected to any I/O standard input buffers (i.e. INBUF) to implement a double data rate register. Designer software will map it to the I/O module in the same way it maps the other registers to the I/O module.

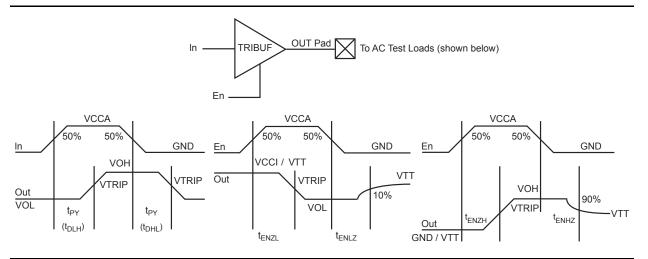


Figure 2-10 • Output Buffer Delays

Table 2-36 • 3.3 V PCI-X I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI-X	Output Module Timing							
t _{DP}	Input Buffer		1.57		1.79		2.10	ns
t _{PY}	Output Buffer		2.10		2.40		2.82	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		1.61		1.62		1.63	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		1.59		1.60		1.61	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		2.65		3.02		3.55	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		3.11		3.55		4.17	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Timing Characteristics

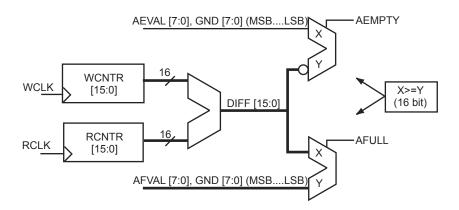
Table 2-61 • LVPECL I/O Module Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVPECL Ou	itput Module Timing							
t _{DP}	Input Buffer		1.66		1.89		2.22	ns
t _{PY}	Output Buffer		2.24		2.55		3.00	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the IO output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Timing Characteristics

Table 2-65 • AX125 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.35	0.40	0.47	ns
t _{RD2}	Routing delay for FO2	0.38	0.43	0.51	ns
t _{RD3}	Routing delay for FO3	0.43	0.48	0.57	ns
t _{RD4}	Routing delay for FO4	0.48	0.55	0.64	ns
t _{RD5}	Routing delay for FO5	0.55	0.62	0.73	ns
t _{RD6}	Routing delay for FO6	0.64	0.72	0.85	ns
t _{RD7}	Routing delay for FO7	0.79	0.89	1.05	ns
t _{RD8}	Routing delay for FO8	0.88	0.99	1.17	ns
t _{RD16}	Routing delay for FO16	1.49	1.69	1.99	ns
t _{RD32}	Routing delay for FO32	2.32	2.63	3.10	ns


Table 2-66 • AX250 Predicted Routing Delays

Worst-Case Commercial Conditions VCCA = $1.425 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted F	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.39	0.45	0.53	ns
t _{RD2}	Routing delay for FO2	0.41	0.46	0.54	ns
t _{RD3}	Routing delay for FO3	0.48	0.55	0.64	ns
t _{RD4}	Routing delay for FO4	0.56	0.63	0.75	ns
t _{RD5}	Routing delay for FO5	0.60	0.68	0.80	ns
t _{RD6}	Routing delay for FO6	0.84	0.96	1.13	ns
t _{RD7}	Routing delay for FO7	0.90	1.02	1.20	ns
t _{RD8}	Routing delay for FO8	1.00	1.13	1.33	ns
t _{RD16}	Routing delay for FO16	2.17	2.46	2.89	ns
t _{RD32}	Routing delay for FO32	3.55	4.03	4.74	ns

Figure 2-63 illustrates flag generation.

Figure 2-63 • ALMOST-EMPTY and ALMOST-FULL Logic

The Verilog codes for the flags are:

assign AF = (DIFF[15:0] >={AFVAL[7:0],8'b00000000})?1:0; assign AE = ({AEVAL[7:0],8'b00000000}>=DIFF[15:0])?1:0;

The number of DIFF-bits active depends on the configuration depth and width (Table 2-95).

Table 2-95 • Number of Available Configuration Bits

Number of Blocks	Block DxW	Number of AEVAL/AFVAL Bits
1	1x1	4
2	1x2	4
2	2x1	5
4	1x4	4
4	2x2	5
4	4x1	6
8	1x8	4
8	2x4	5
8	4x2	6
8	8x1	7
16	1x16	4
16	2x8	5
16	4x4	6
16	8x2	7
16	16x1	8

The active-high CLR pin is used to reset the FIFO to the empty state, which sets FULL and AFULL low, and EMPTY and AEMPTY high.

Assuming that the EMPTY flag is not set, new data is read from the FIFO when REN is valid on the active edge of the clock. Write and read transfers are described with timing requirements in "Timing Characteristics" on page 2-100.

Table 2-98 • One FIFO Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		11.40		12.98		15.26	ns
t _{WHD}	Write Hold		0.22		0.25		0.30	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		0.88		0.88		0.88	ns
t _{WCKP}	Minimum WCLK Period	1.63		1.63		1.63		ns
t _{RSU}	Read Setup		11.63		13.25		15.58	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.77		0.77		0.77	ns
t _{RCKL}	RCLK Low		0.93		0.93		0.93	ns
t _{RCKP}	Minimum RCLK period	1.70		1.70		1.70		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.16		2.46		2.90	ns

Note: Timing data for this single block FIFO has a depth of 4,096. For all other combinations, use Microsemi's timing software.

Table 2-100 • Four FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		14.60		16.63		19.55	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		2.51		2.51		2.51	ns
t _{WCKP}	Minimum WCLK Period	3.26		3.26		3.26		ns
t _{RSU}	Read Setup		15.27		17.39		20.44	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		2.96		2.96		2.96	ns
t _{RCKP}	Minimum RCLK period	3.69		3.69		3.69		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		2.36		2.69		3.16	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		2.83		3.23		3.79	ns

Note: Timing data for these four cascaded FIFO blocks uses a depth of 16,384. For all other combinations, use Microsemi's timing software.

Microsemi

FG484	4	FG48	4	FG48	34
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
IO104PB6F6	N4	IO122NB7F7	G5	GND	J9
IO105NB6F6	M5	IO122PB7F7	G6	GND	K10
IO105PB6F6	N5	IO123NB7F7	F5	GND	K11
IO106NB6F6	M3	IO123PB7F7	E4	GND	K12
IO106PB6F6	N3	Dedicate	d I/O	GND	K13
Bank	7	VCCDA	H7	GND	L1
IO107NB7F7	M2	GND	A1	GND	L10
IO107PB7F7	N1	GND	A11	GND	L11
IO108NB7F7	L3	GND	A12	GND	L12
IO108PB7F7	L2	GND	A2	GND	L13
IO109NB7F7	K2	GND	A21	GND	L22
IO109PB7F7	K1	GND	A22	GND	M1
IO110NB7F7	K5	GND	AA1	GND	M10
IO110PB7F7	L5	GND	AA2	GND	M11
IO111NB7F7	K6	GND	AA21	GND	M12
IO111PB7F7	L6	GND	AA22	GND	M13
IO112NB7F7	K4	GND	AB1	GND	M22
IO112PB7F7	K3	GND	AB11	GND	N10
IO113NB7F7	K7	GND	AB12	GND	N11
IO113PB7F7	L7	GND	AB2	GND	N12
IO114NB7F7	H1	GND	AB21	GND	N13
IO114PB7F7	J1	GND	AB22	GND	P14
IO115NB7F7	H2	GND	B1	GND	P9
IO115PB7F7	J2	GND	B2	GND	R15
IO116NB7F7	H4	GND	B21	GND	R8
IO116PB7F7	J4	GND	B22	GND	U16
IO117NB7F7	H5	GND	C20	GND	U6
IO117PB7F7	J5	GND	C3	GND	V18
IO118NB7F7	F2	GND	D19	GND	V5
IO118PB7F7	G2	GND	D4	GND	W19
IO119NB7F7	H6	GND	E18	GND	W4
IO119PB7F7	J6	GND	E5	GND	Y20
IO120NB7F7	F1	GND	G18	GND	Y3
IO120PB7F7	G1	GND	H15	GND/LP	G7
IO121NB7F7	F4	GND	H8	NC	A17
IO121PB7F7	G4	GND	J14	NC	A18

Microsemi

FG48	4	FG48	4
AX250 Function	Pin Number	AX250 Function	Pin Number
VCCPLH	T10	VCCIB4	R14
VCCDA	D14	VCCIB5	AA3
VCCDA	D5	VCCIB5	AB3
VCCDA	F16	VCCIB5	R10
VCCDA	G12	VCCIB5	R11
VCCDA	L4	VCCIB5	R9
VCCDA	M18	VCCIB6	M8
VCCDA	T11	VCCIB6	N8
VCCDA	T17	VCCIB6	P8
VCCDA	U7	VCCIB6	Y1
VCCDA	V14	VCCIB6	Y2
VCCDA	V8	VCCIB7	C1
VCCIB0	A3	VCCIB7	C2
VCCIB0	B3	VCCIB7	J8
VCCIB0	H10	VCCIB7	K8
VCCIB0	H11	VCCIB7	L8
VCCIB0	H9	VCOMPLA	D10
VCCIB1	A20	VCOMPLB	G10
VCCIB1	B20	VCOMPLC	E12
VCCIB1	H12	VCOMPLD	G14
VCCIB1	H13	VCOMPLE	W13
VCCIB1	H14	VCOMPLF	T13
VCCIB2	C21	VCOMPLG	V11
VCCIB2	C22	VCOMPLH	Т9
VCCIB2	J15	VPUMP	D17
VCCIB2	K15	L	
VCCIB2	L15		
VCCIB3	M15		
VCCIB3	N15		
VCCIB3	P15		
VCCIB3	Y21		
VCCIB3	Y22		
VCCIB4	AA20		
VCCIB4	AB20		
VCCIB4	R12		
VCCIB4	R13		

FG484		FG484	
AX500 Function	Pin Number	AX500 Function	Pin Number
VCCA	P11	VCCIB2	C22
VCCA	P12	VCCIB2	J15
VCCA	P13	VCCIB2	K15
VCCA	Т6	VCCIB2	L15
VCCA	U17	VCCIB3	M15
VCCPLA	F10	VCCIB3	N15
VCCPLB	G9	VCCIB3	P15
VCCPLC	D13	VCCIB3	Y21
VCCPLD	G13	VCCIB3	Y22
VCCPLE	U13	VCCIB4	AA20
VCCPLF	T14	VCCIB4	AB20
VCCPLG	W10	VCCIB4	R12
VCCPLH	T10	VCCIB4	R13
VCCDA	D14	VCCIB4	R14
VCCDA	D5	VCCIB5	AA3
VCCDA	F16	VCCIB5	AB3
VCCDA	G12	VCCIB5	R10
VCCDA	L4	VCCIB5	R11
VCCDA	M18	VCCIB5	R9
VCCDA	T11	VCCIB6	M8
VCCDA	T17	VCCIB6	N8
VCCDA	U7	VCCIB6	P8
VCCDA	V14	VCCIB6	Y1
VCCDA	V8	VCCIB6	Y2
VCCIB0	A3	VCCIB7	C1
VCCIB0	B3	VCCIB7	C2
VCCIB0	H10	VCCIB7	J8
VCCIB0	H11	VCCIB7	K8
VCCIB0	H9	VCCIB7	L8
VCCIB1	A20	VCOMPLA	D10
VCCIB1	B20	VCOMPLB	G10
VCCIB1	H12	VCOMPLC	E12
VCCIB1	H13	VCOMPLD	G14
VCCIB1	H14	VCOMPLE	W13
VCCIB2	C21	VCOMPLF	T13

FG484			
AX500 Function	Pin Number		
VCOMPLG	V11		
VCOMPLH	Т9		
VPUMP	D17		

FG484		FG484		FG484	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO246NB7F22	F3	GND	D4	GND	V5
IO246PB7F22	G3	GND	E18	GND	W19
IO250NB7F23	F4	GND	E5	GND	W4
IO250PB7F23	G4	GND	G18	GND	Y20
IO253NB7F23	G5	GND	H15	GND	Y3
IO253PB7F23	G6	GND	H8	GND/LP	G7
IO254NB7F23	D1	GND	J14	PRA	G11
IO254PB7F23	E1	GND	J9	PRB	F11
IO257NB7F23	F5	GND	K10	PRC	T12
IO257PB7F23	E4	GND	K11	PRD	U12
Dedicated I/	0	GND	K12	ТСК	G8
VCCDA	H7	GND	K13	TDI	F9
GND	A1	GND	L1	TDO	F7
GND	A11	GND	L10	TMS	F6
GND	A12	GND	L11	TRST	F8
GND	A2	GND	L12	VCCA	G17
GND	A21	GND	L13	VCCA	J10
GND	A22	GND	L22	VCCA	J11
GND	AA1	GND	M1	VCCA	J12
GND	AA2	GND	M10	VCCA	J13
GND	AA21	GND	M11	VCCA	J7
GND	AA22	GND	M12	VCCA	K14
GND	AB1	GND	M13	VCCA	K9
GND	AB11	GND	M22	VCCA	L14
GND	AB12	GND	N10	VCCA	L9
GND	AB2	GND	N11	VCCA	M14
GND	AB21	GND	N12	VCCA	M9
GND	AB22	GND	N13	VCCA	N14
GND	B1	GND	P14	VCCA	N9
GND	B2	GND	P9	VCCA	P10
GND	B21	GND	R15	VCCA	P11
GND	B22	GND	R8	VCCA	P12
GND	C20	GND	U16	VCCA	P13
GND	C3	GND	U6	VCCA	Т6
GND	D19	GND	V18	VCCA	U17

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	Pin AX2000 Function Num	
Bank 0		IO17NB0F1	F12	IO34PB0F3	D14
IO00NB0F0	D6	IO17PB0F1	F11	IO35NB0F3	A15
IO00PB0F0	C6	IO18NB0F1	E11	IO35PB0F3	B15
IO01NB0F0	H10	IO18PB0F1	E10	IO36NB0F3	B16
IO01PB0F0	H9	IO19NB0F1	F13	IO36PB0F3	A16
IO02NB0F0	F8	IO19PB0F1	G13	IO37NB0F3	G16
IO02PB0F0	G8	IO20NB0F1	A10	IO37PB0F3	G15
IO03NB0F0	A6	IO20PB0F1	A9	IO38NB0F3	D16
IO03PB0F0	B6	IO21NB0F1	K14	IO38PB0F3	C16
IO04NB0F0	C7	IO21PB0F1	K13	IO39NB0F3	K16
IO04PB0F0	D7	IO22NB0F2	B11	IO39PB0F3	L16
IO05NB0F0	K10	IO22PB0F2	B10	IO40NB0F3	D17
IO05PB0F0	J10	IO23NB0F2	C12	IO40PB0F3	C17
IO06NB0F0	F9	IO23PB0F2	C11	IO41NB0F3/HCLKAN	E16
IO06PB0F0	G9	IO24NB0F2	A12	IO41PB0F3/HCLKAP	F16
IO07NB0F0	F10	IO24PB0F2	A11	IO42NB0F3/HCLKBN	G17
IO07PB0F0	G10	IO25NB0F2	H14	IO42PB0F3/HCLKBP	F17
IO08NB0F0	E9	IO25PB0F2	J14	Bank 1	
IO08PB0F0	E8	IO26NB0F2	D13	IO43NB1F4/HCLKCN	G19
IO09NB0F0	J11	IO26PB0F2	D12	IO43PB1F4/HCLKCP	G18
IO09PB0F0	K11	IO27NB0F2	F14	IO44NB1F4/HCLKDN	E19
IO10NB0F0	C8	IO27PB0F2	G14	IO44PB1F4/HCLKDP	F19
IO10PB0F0	D8	IO28NB0F2	E14	IO45NB1F4	C18
IO11NB0F0	K12	IO28PB0F2	E13	IO45PB1F4	D18
IO11PB0F0	J12	IO29NB0F2	B13	IO46NB1F4	A18
IO12NB0F1	G11	IO29PB0F2	B12	IO46PB1F4	B18
IO12PB0F1	H11	IO30NB0F2	C14	IO47NB1F4	K19
IO13NB0F1	G12	IO30PB0F2	C13	IO47PB1F4	L19
IO13PB0F1	H12	IO31NB0F2	H15	IO48NB1F4	C19
IO14NB0F1	A7	IO31PB0F2	J15	IO48PB1F4	D19
IO14PB0F1	B7	IO32NB0F2	A14	IO49NB1F4	K20
IO15NB0F1	H13	IO32PB0F2	B14	IO49PB1F4	L20
IO15PB0F1	J13	IO33NB0F2	K15	IO50NB1F4	A19
IO16NB0F1	C9	IO33PB0F2	L15	IO50PB1F4	B19
IO16PB0F1	D9	IO34NB0F3	D15	IO51NB1F4	H20

CQ352		CQ352		CQ352	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
IO64PB4F4	167	IO85PB5F5	105	IO106NB6F6	46
IO65NB4F4	170	IO86NB5F5	98	IO106PB6F6	47
IO65PB4F4	171	IO86PB5F5	99	Bank 7	
IO66NB4F4	164	IO87NB5F5	94	IO107NB7F7	40
IO66PB4F4	165	IO87PB5F5	95	IO107PB7F7	41
IO67NB4F4	160	IO89NB5F5	92	IO108NB7F7	42
IO67PB4F4	161	IO89PB5F5	93	IO108PB7F7	43
IO68NB4F4	158	Bank 6		IO109NB7F7	36
IO68PB4F4	159	IO90PB6F6	86	IO109PB7F7	37
IO70NB4F4	154	IO91NB6F6	84	IO110NB7F7	34
IO70PB4F4	155	IO91PB6F6	85	IO110PB7F7	35
IO72NB4F4	152	IO92NB6F6	78	IO111NB7F7	30
IO72PB4F4	153	IO92PB6F6	79	IO111PB7F7	31
IO73NB4F4	146	IO93NB6F6	82	IO113NB7F7	28
IO73PB4F4	147	IO93PB6F6	83	IO113PB7F7	29
IO74NB4F4/CLKEN	142	IO95NB6F6	76	IO114NB7F7	24
IO74PB4F4/CLKEP	143	IO95PB6F6	77	IO114PB7F7	25
IO75NB4F4/CLKFN	136	IO96NB6F6	72	IO115NB7F7	22
IO75PB4F4/CLKFP	137	IO96PB6F6	73	IO115PB7F7	23
Bank 5		IO97NB6F6	70	IO116NB7F7	18
IO76NB5F5/CLKGN	128	IO97PB6F6	71	IO116PB7F7	19
IO76PB5F5/CLKGP	129	IO98NB6F6	66	IO117NB7F7	16
IO77NB5F5/CLKHN	122	IO98PB6F6	67	IO117PB7F7	17
IO77PB5F5/CLKHP	123	IO99NB6F6	64	IO118NB7F7	12
IO78NB5F5	112	IO99PB6F6	65	IO118PB7F7	13
IO78PB5F5	113	IO100NB6F6	60	IO119NB7F7	10
IO79NB5F5	118	IO100PB6F6	61	IO119PB7F7	11
IO79PB5F5	119	IO101NB6F6	58	IO121NB7F7	6
IO80NB5F5	110	IO101PB6F6	59	IO121PB7F7	7
IO80PB5F5	111	IO103NB6F6	54	IO123NB7F7	4
IO82NB5F5	106	IO103PB6F6	55	IO123PB7F7	5
IO82PB5F5	107	IO104NB6F6	52	Dedicated I/C)
IO84NB5F5	100	IO104PB6F6	53	GND	1
IO84PB5F5	101	IO105NB6F6	48	GND	9
IO85NB5F5	104	IO105PB6F6	49	GND	15

CQ352			
AX1000 Function	Pin Number		
VCCDA	346		
VCCIB0	321		
VCCIB0	333		
VCCIB0	344		
VCCIB1	273		
VCCIB1	285		
VCCIB1	297		
VCCIB2	227		
VCCIB2	239		
VCCIB2	245		
VCCIB2	257		
VCCIB3	185		
VCCIB3	197		
VCCIB3	203		
VCCIB3	215		
VCCIB4	144		
VCCIB4	156		
VCCIB4	168		
VCCIB5	96		
VCCIB5	108		
VCCIB5	120		
VCCIB6	50		
VCCIB6	62		
VCCIB6	68		
VCCIB6	80		
VCCIB7	8		
VCCIB7	20		
VCCIB7	26		
VCCIB7	38		
VCCPLA	317		
VCCPLB	315		
VCCPLC	303		
VCCPLD	301		
VCCPLE	140		
VCCPLF	138		

CQ352	
AX1000 Function	Pin Number
VCCPLG	126
VCCPLH	124
VCOMPLA	318
VCOMPLB	316
VCOMPLC	304
VCOMPLD	302
VCOMPLE	141
VCOMPLF	139
VCOMPLG	127
VCOMPLH	125
VPUMP	267

Datasheet Information

Revision	Changes	Page
Revision 17 (continued)	The C180 package was removed from product tables and the "Package Pin Assignments" section (PDN 0909).	3-1
	Package names used in the "Axcelerator Family Product Profile" and "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	i, 3-1
	The "Introduction" section for "User I/Os" was updated as follows:	2-11
	"The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os" (SARs 24181, 24309).	
	Power values in Table 2-4 • Default CLOAD/VCCI were updated to reflect those of SmartPower (SAR 33945).	2-3
	Two parameter names were corrected in Figure 2-10 • Output Buffer Delays. One occurrence of t_{ENLZ} was changed to t_{ENZL} and one occurrence of t_{ENHZ} was changed to t_{ENZH} (SAR 33890).	2-22
	The "Timing Model" section was updated with new timing values. Timing tables in the "I/O Specifications" section were updated to include enable paths. Values in the timing tables in the "Voltage-Referenced I/O Standards" section and "Differential Standards" section were updated. Table 2-63 • R-Cell was updated (SAR 33945).	2-8, 2-26 to 2-53
	Figure 2-11 • Timing Model was replaced (SAR 33043).	2-23
	The timing tables for "RAM" and "FIFO" were updated (SAR 33945).	2-90 to 2-106
	"Data Registers (DRs)" values were modified for IDCODE and USERCODE (SARs 18257, 26406).	2-108
	The package diagram for the "CQ208" package was incorrect and has been replaced with the correct diagram (SARs 23865, 26345).	3-89
Revision 16 (v2.8, Oct. 2009)	The datasheet was updated to include AX2000-CQ2526 information.	N/A
	MIL-STD-883 Class B is no longer supported by Axcelerator FPGAs and as a result was removed.	N/A
	A footnote was added to the "Introduction" in the "Axcelerator Clock Management System" section.	2-75
Revision 15	RoHS-compliant information was added to the "Ordering Information".	ii
(v2.7, Nov. 2008)	ACTgen was changed to SmartGen because ACTgen is obsolete.	N/A
Revision 14 (v2.6)	In Table 2-4, the units for the $P_{\text{LOAD}},P_{10},\text{and}P_{\text{I/O}}$ were updated from mW/MHz to mW/MHz.	2-3
	In the "Pin Descriptions"section, the HCLK and CLK descriptions were updated to include tie-off information.	2-9
	The "Global Resource Distribution" section was updated.	2-70
	The " CG624" table was updated.	3-116
Revision 13 (v2.5)	A note was added to Table 2-2.	2-1
	In the "Package Thermal Characteristics", the temperature was changed from 150°C to 125°C.	2-6

Revision	Changes	Page
Revision 12 (v2.4)	Revised ordering information and timing data to reflect phase out of –3 speed grade options.	
	Table 2-3 was updated.	2
Revision 11 (v2.3)	The "Packaging Data" section is new.	iv
	Table 2-2 was updated.	2-1
	"VCCDA Supply Voltage" was updated.	2-9
	"PRA/B/C/D Probe A, B, C and D" was updated.	2-10
	The "User I/Os" was updated.	2-11
Revision 10	Figure 1-3 was updated.	1-2
(v2.2)	Table 2-2 was updated.	2-1
	The "Power-Up/Down Sequence" section was updated.	2-1
	Table 2-4 was updated.	2-3
	Table 2-5 was updated.	2-4
	The "Timing Characteristics" section was added.	2-7
	Table 2-7 was updated.	2-7
	Figure 2-1 was updated.	2-8
	The External Setup and Clock-to-Out (Pad-to-Pad) equations in the "Hardwired Clock – Using LVTTL 24 mA High Slew Clock I/O" section were updated.	2-8
	The External Setup and Clock-to-Out (Pad-to-Pad) in the "Routed Clock – Using LVTTL 24 mA High Slew Clock I/O" section were updated.	2-8
	The "Global Pins" section was updated.	2-10
	The "User I/Os" section was updated.	2-11
	Table 2-17 was updated.	2-19
	Figure 2-8 was updated.	2-20
	Figure 2-13 and Figure 2-14 were updated.	2-24
	The following timing parameters were renamed in I/O timing characteristic tables from Table 2-22 to Table 2-60:	2-26 to 2-52
	$t_{IOCLKQ} > t_{ICLKQ}$	
	t _{IOCLKY} > t _{OCLKQ}	
	Timing numbers were updated from Table 2-22 to Table 2-78.	2-26 to 2-69
	The "R-Cell" section was updated.	2-58
	Figure 2-59 was updated.	2-89
	Figure 2-60 was updated.	2-89
	Figure 2-67 was updated.	2-100
	Figure 2-68 was updated.	2-101
	Table 2-89 to Table 2-93 were updated.	2-90 to 2-94
	Table 2-98 to Table 2-102 were updated.	2-102 to 2-106

Datasheet Information

Revision	Changes	Page
Revision 3 (continued)	The timing characteristics tables from pages 2-26 to 2-60 were updated.	2-26 to 2-60
	The "Global Resources" section was updated.	2-66
	The timing characteristics tables from pages 2-102 to 2-103 were updated.	2-102 to 2-103
	The "PQ208", "FG256", and "FG324" tables are new.	3-9,3-16, 3-84