

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	4224
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	138
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax250-fg256m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Axcelerator Family Device Status

Axcelerator [®] Devices	Status
AX125	Production
AX250	Production
AX500	Production
AX1000	Production
AX2000	Production

Temperature Grade Offerings

Package	AX125	AX250	AX500	AX1000	AX2000
PQ208	-	C, I, M	C, I, M	_	_
CQ208	-	М	М	_	_
CQ256	-	_	_	_	М
FG256	C, I	C, I, M	-	-	-
FG324	C, I	-	-	-	-
CQ352	-	М	М	М	М
FG484	-	C, I, M	C, I, M	C, I, M	-
CG624	-	-	-	М	М
FG676	-	-	C, I, M	C, I, M	-
BG729	-	-	-	C, I, M	-
FG896	-	-	-	C, I, M	C, I, M
FG1152	-	-	-	-	C, I, M

C = Commercial

l = Industrial

M = Military

Speed Grade and Temperature Grade Matrix

Temperature Grade	Std	-1	-2
С	\checkmark	\checkmark	\checkmark
1	\checkmark	\checkmark	\checkmark
Μ	\checkmark	\checkmark	-

C = Commercial

l = Industrial

M = Military

Axcelerator Family FPGAs

Packaging Data

Refer to the following documents located on the Microsemi SoC Products Group website for additional packaging information.

Package Mechanical Drawings

Package Thermal Characteristics and Weights

Hermatic Package Mechanical Information

Contact your local Microsemi representative for device availability.

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

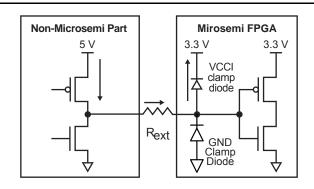
The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .


5 V Tolerance

There are two schemes to achieve 5 V tolerance:

1. 3.3 V PCI and 3.3 V PCI-X are the only I/O standards that directly allow 5 V tolerance. To implement this, an internal clamp diode between the input pad and the VCCI pad is enabled so that the voltage at the input pin is clamped, as shown in EQ 3:

EQ 3

The internal VCCI clamp diode is only enabled while the device is powered on, so the voltage at the input will not be clamped if the VCCI or VCCA are powered off. An external series resistor (~100 Ω) is required between the input pin and the 5 V signal source to limit the current to less than 20 mA (Figure 2-3). The 100 Ω resistor was chosen to meet the input Tr/Tf requirement (Table 2-19 on page 2-21). The GND clamp diode is available for all I/O standards and always enabled.

Figure 2-3 • Use of an External Resistor for 5 V Tolerance

5 V tolerance can also be achieved with 3.3 V I/O standards (3.3 V PCI, 3.3 V PCI-X, and LVTTL) using a bus-switch product (e.g. IDTQS32X2384). This will convert the 5 V signal to a 3.3 V signal with minimum delay (Figure 2-4).

Figure 2-4 • Bus Switch IDTQS32X2384

Simultaneous Switching Outputs (SSO)

When multiple output drivers switch simultaneously, they induce a voltage drop in the chip/package power distribution. This simultaneous switching momentarily raises the ground voltage within the device relative to the system ground. This apparent shift in the ground potential to a non-zero value is known as simultaneous switching noise (SSN) or more commonly, ground bounce.

SSN becomes more of an issue in high pin count packages and when using high performance devices such as the Axcelerator family. Based upon testing, Microsemi recommends that users not exceed eight simultaneous switching outputs (SSO) per each VCCI/GND pair. To ease this potential burden on designers, Microsemi has designed all of the Axcelerator BGAs³ to not exceed this limit with the exception of the CS180, which has an I/O to VCCI/GND pair ratio of nine to one.

Please refer to the *Simultaneous Switching Noise and Signal Integrity* application note for more information.

^{3.} The user should note that in Bank 8 of both AX1000-FG484 and AX500-FG484, there are local violations of this 8:1 ratio.

I/O Clusters

Each I/O cluster incorporates two I/O modules, four RX modules, two TX modules, and a buffer module. In turn, each I/O module contains one Input Register (InReg), one Output Register (OutReg), and one Enable Register (EnReg) (Figure 2-5).

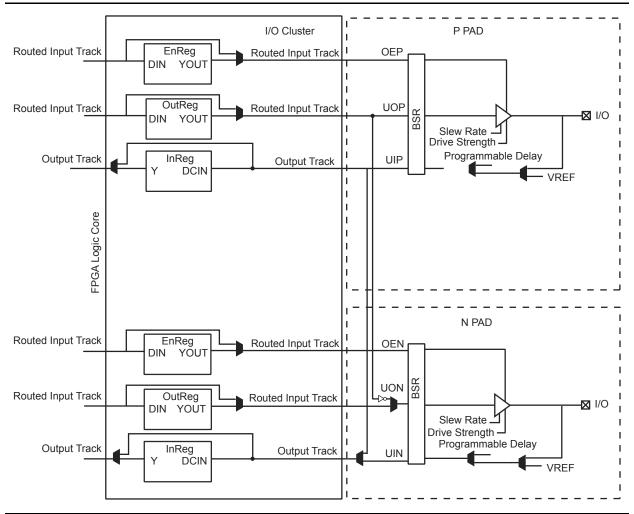
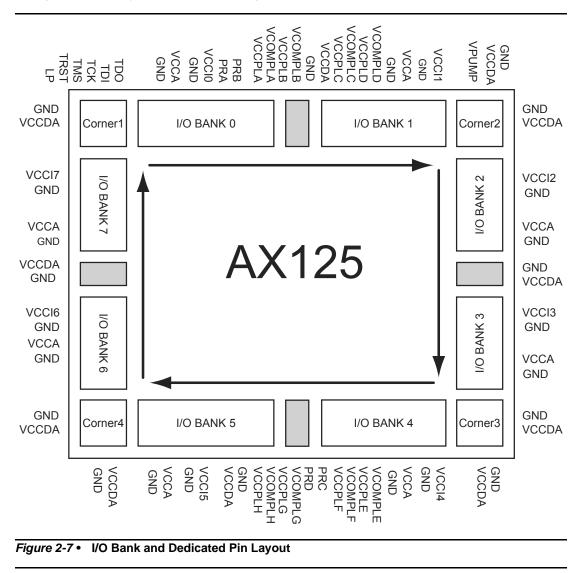


Figure 2-5 • I/O Cluster Interface

Using an I/O Register

To access the I/O registers, registers must be instantiated in the netlist and then connected to the I/Os. Usage of each I/O register (register combining) is individually controlled and can be selected/deselected using the PinEditor tool in the Designer software. I/O register combining can also be controlled at the device level, affecting all I/Os. Please note, the I/O register option is deselected by default in any given design.⁴


In addition, Designer software provides a global option to enable/disable the usage of registers in the I/Os. This option is design-specific. The setting for each individual I/O overrides this global option. Furthermore, the *global set fuse* option in the Designer software, when checked, causes all I/O registers to output logic High at device power-up.

^{4.} Please note that register combining for multi fanout nets is not supported.

User I/O Naming Conventions

Due to the complex and flexible nature of the Axcelerator family's user I/Os, a naming scheme is used to show the details of the I/O. The naming scheme explains to which bank an I/O belongs, as well as the pairing and pin polarity for differential I/Os (Figure 2-7).

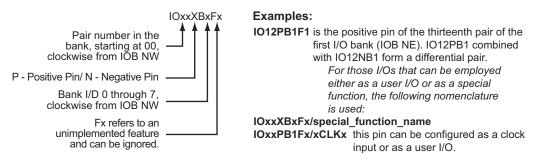
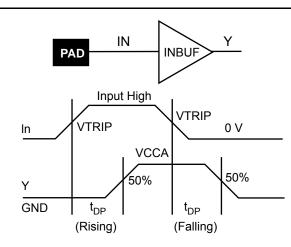


Figure 2-8 • General Naming Schemes

I/O Standard Electrical Specifications


Table 2-18 • Input Capacitance

Symbol	Parameter	Conditions	Min.	Max.	Units
C _{IN}	Input Capacitance	VIN = 0, f = 1.0 MHz		10	pF
CINCLK	Input Capacitance on HCLK and RCLK Pin	VIN = 0, f = 1.0 MHz		10	pF

Table 2-19 • I/O Input Rise Time and Fall Time*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)
LVTTL	No Requirement	50 ns
LVCMOS 2.5V	No Requirement	50 ns
LVCMOS 1.8V	No Requirement	50 ns
LVCMOS 1.5V	No Requirement	50 ns
PCI	No Requirement	50 ns
PCIX	No Requirement	50 ns
GTL+	No Requirement	50 ns
HSTL	No Requirement	50 ns
SSTL2	No Requirement	50 ns
HSTL3	No Requirement	50 ns
LVDS	No Requirement	50 ns
LVPECL	No Requirement	50 ns

Note: *Input Rise/Fall time applies to all inputs, be it clock or data. Inputs have to ramp up/down linearly, in a monotonic way. Glitches or a plateau may cause double clocking. They must be avoided. For output rise/fall time, refer to the IBIS models for extraction.

Figure 2-9 • Input Buffer Delays

Microsemi

Detailed Specifications

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C (continued)

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength =3 (16 mA) / High Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		3.12		3.56		4.18	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.54		4.04		4.75	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		2.78		3.17		3.72	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.91		1.93		1.93	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.58		2.59		2.60	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Routed Clocks

The routed clock (CLK) is a low-skew network that can drive the clock inputs of all sequential modules in the device (logically equivalent to the HCLK), but has the added flexibility in that it can drive the S0 (Enable), S1, PSET, and CLR input of a register (R-cells and I/O registers) as well as any of the inputs of any C-cell in the device. This allows CLKs to be used not only as clocks, but also for other global signals or high fanout nets. All four CLKs are available everywhere on the chip.

Timing Characteristics

Table 2-75 • AX125 Routed Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Arra	ay Clock Networks							
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Table 2-76 • AX250 Routed Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 S	speed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Arra	ay Clock Networks							
t _{RCKL}	Input Low to High		2.52		2.87		3.37	ns
t _{RCKH}	Input High to Low		2.59		2.95		3.47	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Embedded Memory

The AX architecture provides extensive, high-speed memory resources to the user. Each 4,608 bit block of RAM contains its own embedded FIFO controller, allowing the user to configure each block as either RAM or FIFO.

To meet the needs of high performance designs, the memory blocks operate in synchronous mode for both read and write operations. However, the read and write clocks are completely independent, and each may operate up to and above 500 MHz.

No additional core logic resources are required to cascade the address and data buses when cascading different RAM blocks. Dedicated routing runs along each column of RAM to facilitate cascading.

The AX memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY). Since read and write operations can occur asynchronously to one another, special control circuitry is included to prevent metastability, overflow, and underflow. A block diagram of the memory module is illustrated in Figure 2-57.

During RAM operation, read (RA) and write (WA) addresses are sourced by user logic and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Enables with programmable polarity are provided to create upper address bits for cascading up to 16 memory blocks. When cascading memory blocks, the bussed signals WA, WD, WEN, RA, RD, and REN are internally linked to eliminate external routing congestion.

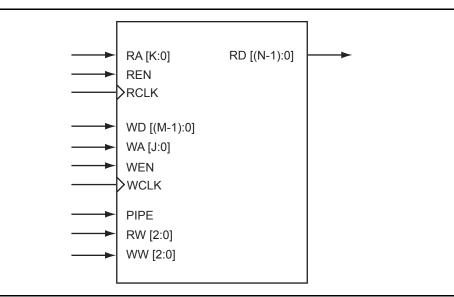


Figure 2-57 • Axcelerator Memory Module

Table 2-89 • One RAM Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 S	peed	-1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.22		0.25		0.30	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.08		1.23		1.45	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.22		0.25		0.30	ns
t _{wcкн}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	0.88		0.88		0.88		ns
t _{WCKP}	WCLK Minimum Period	1.63		1.63		1.63		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		0.81		0.92		1.08	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		0.81		0.92		1.08	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-to-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-to-OUT (Non-Pipelined)		2.16		2.46		2.90	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.77		0.77		0.77		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	0.93		0.93		0.93		ns
t _{RCKP}	RCLK Minimum Period	1.70		1.70		1.70		ns

Note: Timing data for this single block RAM has a depth of 4,096. For all other combinations, use Microsemi's timing software.

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		1.39		1.59		1.87	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	1.76		1.76		1.76		ns
t _{WCKP}	WCLK Minimum Period	2.51		2.51		2.51		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		1.71		1.94		2.28	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.43		1.63		1.92	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.26		2.58		3.03	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	1.89		1.89		1.89		ns
t _{RCKP}	RCLK Minimum Period	2.62		2.62		2.62		ns

Table 2-90 • Two RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these two cascaded RAM blocks uses a depth of 8,192. For all other combinations, use Microsemi's timing software.

TDO

TDO is normally tristated, and it is active only when the TAP controller is in the "Shift_DR" state or "Shift_IR" state. The least significant bit of the selected register (i.e. IR or DR) is clocked out to TDO first by the falling edge of TCK.

TAP Controller

The TAP Controller is compliant with the IEEE Standard 1149.1. It is a state machine of 16 states that controls the Instruction Register (IR) and the Data Registers (such as BSR, IDCODE, USRCODE, BYPASS, etc.). The TAP Controller steps into one of the states depending on the sequence of TMS at the rising edges of TCK.

Instruction Register (IR)

The IR has five bits (IR4 to IR0). At the TRST state, IR is reset to IDCODE. Each time when IR is selected, it goes through "select IR-Scan," "Capture-IR," "Shift-IR," all the way through "Update-IR." When there is no test error, the first five data bits coming out of TDO during the "Shift-IR" will be "10111". If a test error occurs, the last three bits will contain one to three zeroes corresponding to negatively asserted signals: "TDO_ERRORB," "PROBA_ERRORB," and "PROBB_ERRORB." The error(s) will be erased when the TAP is at the "Update-IR" or the TRST state. When in user mode start-up sequence, if the micro-probe has not been used, the "PROBA_ERRORB" is used as a "Power-up done successfully" flag.

Data Registers (DRs)

Data registers are distributed throughout the chip. They store testing/programming vectors. The MSB of a data register is connected to TDI, while the LSB is connected to TDO. There are different types of data registers. Descriptions of the main registers are as follow:

1. IDCODE:

The IDCODE is a 20-bit hard coded JTAG Silicon Signature. It is a hardwired device ID code, which contains the Microsemi identity, part number, and version number in a specific JTAG format.

2. USERCODE:

The USERCODE is a 33-bit programmable register. However, only 20 bits are allocated to use as JTAG Silicon Signature. It is a supplementary identity code for the user to program information to distinguish different programmed parts. USERCODE fuses will read out as "zeroes" when not programmed, so only the "1" bits need to be programmed.

3. Boundary-Scan Register (BSR):

Each I/O contains three Boundary-Scan Cells. Each cell has a shift register bit, a latch, and two MUXes. The boundary-scan cells are used for the Output-enable (E), Output (O), and Input (I) registers. The bit order of the boundary-scan cells for each of them is E-O-I. The boundary-scan cells are then chained serially to form the Boundary-Scan Register (BSR). The length of the BSR is the number of I/Os in the die multiplied by three.

4. Bypass Register (BYR):

This is the "1-bit" register. It is used to shorten the TDI-TDO serial chain in board-level testing to only one bit per device not being tested. It is also selected for all "reserved" or unused instructions.

Probing

Internal activities of the JTAG interface can be observed via the Silicon Explorer II probes: "PRA," "PRB," "PRC," and "PRD."

Special Fuses

Security

Microsemi antifuse FPGAs, with FuseLock technology, offer the highest level of design security available in a programmable logic device. Since antifuse FPGAs are live-at power-up, there is no bitstream that can be intercepted, and no bitstream or programming data is ever downloaded to the device during power-up, thus protecting against device cloning. In addition, special security fuses are hidden

1	FG256					
AX250 F	Pin Number	AX250 Function				
VCC	L9	VCCA				
VCC	N3	VCCA				
VCC	P14	VCCA				
VCC	C7	VCCPLA				
VCC	D6	VCCPLB				
VCC	A10	VCCPLC				
VCC	D10	VCCPLD				
VCC	P10	VCCPLE				
VCC	N11	VCCPLF				
VCC	T7	VCCPLG				
VCC	N7	VCCPLH				
VCON	A11	VCCDA				
VCON	A2	VCCDA				
VCON	C13	VCCDA				
VCON	D9	VCCDA				
VCON	H1	VCCDA				
VCON	J15	VCCDA				
VCON	N14	VCCDA				
VCON	N8	VCCDA				
VPU	P4	VCCDA				
	R11	VCCDA				
	R5	VCCDA				
	E6	VCCIB0				
	E7	VCCIB0				
	E8	VCCIB0				
	E10	VCCIB1				
	E11	VCCIB1				
	E9	VCCIB1				
	F12	VCCIB2				
	G12	VCCIB2				
	H12	VCCIB2				
	J12	VCCIB3				
	K12	VCCIB3				
	L12	VCCIB3				
	M10	VCCIB4				

AX250 Function	Pin Number
VCCIB4	M11
VCCIB4	M9
VCCIB5	M6
VCCIB5	M7
VCCIB5	M8
VCCIB6	J5
VCCIB6	K5
VCCIB6	L5
VCCIB7	F5
VCCIB7	G5
VCCIB7	H5
VCOMPLA	A7
VCOMPLB	D7
VCOMPLC	B9
VCOMPLD	D11
VCOMPLE	T10
VCOMPLF	N10
VCOMPLG	R8
VCOMPLH	N6
VPUMP	A14

FG256

Package Pin Assignments

FG324			
AX125 Function	Pin Number		
VCCIB5	N7		
VCCIB5	N8		
VCCIB5	N9		
VCCIB6	K6		
VCCIB6	L6		
VCCIB6	M6		
VCCIB7	G6		
VCCIB7	H6		
VCCIB7	J6		
VCOMPLA	B8		
VCOMPLB	E8		
VCOMPLC	C10		
VCOMPLD	E12		
VCOMPLE	U11		
VCOMPLF	P11		
VCOMPLG	Т9		
VCOMPLH	P7		
VPUMP	B15		

Package Pin Assignments

FG484		FG484		FG484	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
Bank 0	1	IO29NB0F2	B12	IO51PB1F4	D22
IO01NB0F0	E3	IO29PB0F2	B11	IO52NB1F4	E16
IO01PB0F0	D3	IO30NB0F2/HCLKAN	E11	IO52PB1F4	E15
IO02NB0F0	E7	IO30PB0F2/HCLKAP	E10	IO57NB1F5	E21
IO02PB0F0	E6	IO31NB0F2/HCLKBN	D12	IO57PB1F5	D21
IO05NB0F0	D2	IO31PB0F2/HCLKBP	D11	IO60NB1F5	G16
IO05PB0F0	E2	Bank 1		IO60PB1F5	G15
IO06NB0F0	C5	IO32NB1F3/HCLKCN	F13	IO61NB1F5	D18
IO06PB0F0	C4	IO32PB1F3/HCLKCP	F12	IO61PB1F5	E17
IO12NB0F1	D7	IO33NB1F3/HCLKDN	E14	IO63NB1F5	E20
IO12PB0F1	D6	IO33PB1F3/HCLKDP	E13	IO63PB1F5	D20
IO13NB0F1	B5	IO34NB1F3	C13	Bank 2	
IO13PB0F1	B4	IO34PB1F3	C12	IO64NB2F6	F18
IO14NB0F1	E9	IO37NB1F3	B14	IO64PB2F6	F17
IO14PB0F1	E8	IO37PB1F3	B13	IO67NB2F6	F19
IO15NB0F1	C7	IO38NB1F3	A16	IO67PB2F6	E19
IO15PB0F1	C6	IO38PB1F3	A15	IO68NB2F6	J16
IO16NB0F1	A5	IO40NB1F3	C15	IO68PB2F6	H16
IO16PB0F1	A4	IO42NB1F4	A18	IO70NB2F6	J17
IO17NB0F1	B7	IO42PB1F4	A17	IO70PB2F6	H17
IO17PB0F1	B6	IO43NB1F4	B16	IO74NB2F7	J18
IO18NB0F1	A7	IO43PB1F4	B15	IO74PB2F7	H18
IO18PB0F1	A6	IO44NB1F4	B18	IO75NB2F7	G20
IO19NB0F1	C9	IO44PB1F4	B17	IO75PB2F7	F20
IO19PB0F1	C8	IO45NB1F4	B19	IO79NB2F7	H19
IO20NB0F1	D9	IO45PB1F4	A19	IO79PB2F7	G19
IO20PB0F1	D8	IO46NB1F4	C19	IO80NB2F7	L16
IO21NB0F1	B9	IO46PB1F4	C18	IO80PB2F7	K16
IO21PB0F1	B8	IO48NB1F4	F15	IO84NB2F7	L17
IO22NB0F2	A9	IO48PB1F4	F14	IO84PB2F7	K17
IO22PB0F2	A8	IO49NB1F4	D16	IO85NB2F8	G21
IO23NB0F2	B10	IO49PB1F4	D15	IO85PB2F8	F21
IO23PB0F2	A10	IO50NB1F4	C17	IO86NB2F8	G22
IO26NB0F2	A14	IO50PB1F4	C16	IO86PB2F8	F22
IO26PB0F2	A13	IO51NB1F4	E22	IO87NB2F8	J20

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO51PB1F4	J20	IO69NB1F6	C27	IO86NB2F8	J28
IO52NB1F4	B20	IO69PB1F6	C26	IO86PB2F8	J27
IO52PB1F4	A20	IO70NB1F6	H24	IO87NB2F8	M25
IO53NB1F4	F20	IO70PB1F6	G24	IO87PB2F8	L25
IO53PB1F4	E20	IO71NB1F6	H23	IO88NB2F8	L26
IO54NB1F5	B21	IO71PB1F6	G23	IO88PB2F8	K26
IO54PB1F5	A21	IO72NB1F6	B28	IO89NB2F8	G31
IO55NB1F5	K21	IO72PB1F6	A28	IO89PB2F8	F31
IO55PB1F5	J21	IO73NB1F6	E26	IO90NB2F8	H29
IO56NB1F5	D21	IO73PB1F6	E25	IO90PB2F8	G29
IO56PB1F5	C21	IO74NB1F6	F26	IO91NB2F8	K28
IO57NB1F5	G22	IO74PB1F6	F25	IO91PB2F8	K27
IO57PB1F5	G21	IO75NB1F6	K25	IO92NB2F8	J30
IO58NB1F5	E22	IO75PB1F6	K24	IO92PB2F8	H30
IO58PB1F5	E21	IO76NB1F7	D27	IO93NB2F8	L28
IO59NB1F5	D22	IO76PB1F7	D26	IO93PB2F8	L27
IO59PB1F5	C22	IO77NB1F7	B29	IO94NB2F8	K29
IO60NB1F5	B23	IO77PB1F7	A29	IO94PB2F8	J29
IO60PB1F5	A23	IO78NB1F7	D28	IO95NB2F8	K31
IO61NB1F5	H22	IO78PB1F7	C28	IO95PB2F8	J31
IO61PB1F5	H21	IO79NB1F7	H25	IO96NB2F9	J32
IO62NB1F5	C24	IO79PB1F7	G25	IO96PB2F9	H32
IO62PB1F5	C23	IO80NB1F7	F27	IO97NB2F9	M27
IO63NB1F5	F23	IO80PB1F7	E27	IO97PB2F9	M26
IO63PB1F5	F22	IO81NB1F7	J25	IO98NB2F9	L30
IO64NB1F6	B24	IO81PB1F7	J24	IO98PB2F9	K30
IO64PB1F6	A24	IO82NB1F7	D29	IO99NB2F9	N25
IO65NB1F6	J22	IO82PB1F7	C29	IO99PB2F9	N26
IO65PB1F6	K22	IO83NB1F7	H26	IO100NB2F9	M29
IO66NB1F6	B25	IO83PB1F7	G26	IO100PB2F9	L29
IO66PB1F6	A25	IO84NB1F7	F28	IO101NB2F9	L33
IO67NB1F6	K23	IO84PB1F7	E28	IO101PB2F9	L32
IO67PB1F6	J23	IO85NB1F7	H27	IO102NB2F9	K34
IO68NB1F6	F24	IO85PB1F7	G27	IO102PB2F9	K33
IO68PB1F6	E24	Bank 2		IO103NB2F9	N28

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO155PB3F14	AC29	IO172PB4F16	AH27	IO190NB4F17	AH22
IO156NB3F14	AE30	IO173NB4F16	AJ27	IO190PB4F17	AH23
IO156PB3F14	AD30	IO173PB4F16	AJ28	IO191NB4F17	AJ23
IO157NB3F14	AC26	IO174NB4F16	AL27	IO191PB4F17	AJ24
IO157PB3F14	AB26	IO174PB4F16	AL28	IO192NB4F17	AG21
IO158NB3F14	AH33	IO175NB4F16	AM28	IO192PB4F17	AG22
IO158PB3F14	AG33	IO175PB4F16	AM29	IO193NB4F18	AP23
IO159NB3F14	AD27	IO176NB4F16	AG25	IO193PB4F18	AP24
IO159PB3F14	AC27	IO176PB4F16	AG26	IO194NB4F18	AN22
IO160NB3F14	AG32	IO177NB4F16	AK26	IO194PB4F18	AN23
IO160PB3F14	AF32	IO177PB4F16	AK27	IO195NB4F18	AM23
IO161NB3F15	AG31	IO178NB4F16	AF25	IO195PB4F18	AL23
IO161PB3F15	AF31	IO178PB4F16	AE25	IO196NB4F18	AF21
IO162NB3F15	AF29	IO179NB4F16	AP28	IO196PB4F18	AF22
IO162PB3F15	AE29	IO179PB4F16	AN28	IO197NB4F18	AL22
IO163NB3F15	AE28	IO180NB4F16	AJ25	IO197PB4F18	AM22
IO163PB3F15	AD28	IO180PB4F16	AJ26	IO198NB4F18	AE21
IO164NB3F15	AG30	IO181NB4F17	AM26	IO198PB4F18	AE22
IO164PB3F15	AF30	IO181PB4F17	AM27	IO199NB4F18	AJ21
IO165NB3F15	AE26	IO182NB4F17	AF24	IO199PB4F18	AJ22
IO165PB3F15	AD26	IO182PB4F17	AE24	IO200NB4F18	AK21
IO166NB3F15	AJ30	IO183NB4F17	AH24	IO200PB4F18	AK22
IO166PB3F15	AH30	IO183PB4F17	AH25	IO201NB4F18	AM21
IO167NB3F15	AG28	IO184NB4F17	AG23	IO201PB4F18	AL21
IO167PB3F15	AF28	IO184PB4F17	AG24	IO202NB4F18	AE20
IO168NB3F15	AF27	IO185NB4F17	AL25	IO202PB4F18	AD20
IO168PB3F15	AE27	IO185PB4F17	AL26	IO203NB4F19	AN21
IO169NB3F15	AH29	IO186NB4F17	AP25	IO203PB4F19	AP21
IO169PB3F15	AG29	IO186PB4F17	AP26	IO204NB4F19	AP20
IO170NB3F15	AD25	IO187NB4F17	AK24	IO204PB4F19	AN20
IO170PB3F15	AC25	IO187PB4F17	AK25	IO205NB4F19	AN19
Bank 4	<u> </u>	IO188NB4F17	AF23	IO205PB4F19	AP19
IO171NB4F16	AP29	IO188PB4F17	AE23	IO206NB4F19	AG20
IO171PB4F16	AN29	IO189NB4F17	AN24	IO206PB4F19	AF20
IO172NB4F16	AH26	IO189PB4F17	AM24	IO207NB4F19	AL19

Package Pin Assignments

AX500 Function Number VCCDA 346 VCCIB0 321 VCCIB0 333	er
VCCIB0 321	
VCCIB0 333	
VCCIB0 344	
VCCIB1 273	
VCCIB1 285	
VCCIB1 297	
VCCIB2 227	
VCCIB2 239	
VCCIB2 245	
VCCIB2 257	٦
VCCIB3 185	
VCCIB3 197	
VCCIB3 203	
VCCIB3 215	
VCCIB4 144	
VCCIB4 156	
VCCIB4 168	
VCCIB5 96	
VCCIB5 108	
VCCIB5 120	
VCCIB6 50	
VCCIB6 62	
VCCIB6 68	
VCCIB6 80	
VCCIB7 8	
VCCIB7 20	
VCCIB7 26	
VCCIB7 38	
VCCPLA 317	
VCCPLB 315	
VCCPLC 303	
VCCPLD 301	
VCCPLE 140	
VCCPLF 138	

CQ352	
AX500 Function	Pin Number
VCCPLG	126
VCCPLH	124
VCOMPLA	318
VCOMPLB	316
VCOMPLC	304
VCOMPLD	302
VCOMPLE	141
VCOMPLF	139
VCOMPLG	127
VCOMPLH	125
VPUMP	267

CG624	CG624			CG624	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO194NB6F18	Y3	IO215PB6F20	V4	IO237NB7F22	N8
IO194PB6F18	AA3	IO216NB6F20	P8	IO237PB7F22	N7
IO195NB6F18	V6	IO216PB6F20	R3	IO238NB7F22	M5
IO195PB6F18	W4	IO217NB6F20	P7	IO239NB7F22	L6
IO197NB6F18	R5	IO217PB6F20	R7	IO239PB7F22	L5
IO197PB6F18	U3	IO219NB6F20	R4	IO240NB7F22	M4
IO198NB6F18	P6	IO219PB6F20	T4	IO241NB7F22	L7
IO199NB6F18	Y5	IO220NB6F20	P2	IO241PB7F22	M7
IO199PB6F18	W5	IO220PB6F20	R2	IO242NB7F22	J3
IO200NB6F18	V3	IO221NB6F20	N4	IO243NB7F22	M9
IO200PB6F18	W3	IO221PB6F20	P4	IO243PB7F22	M8
IO201NB6F18	T7	IO223NB6F20	M2	IO244NB7F22	P9
IO201PB6F18	U7	IO223PB6F20	N2	IO244PB7F22	N6
IO202NB6F18	V2	IO224NB6F20	N3	IO245NB7F22	K8
IO203NB6F19	W2	IO224PB6F20	P3	IO245PB7F22	L8
IO203PB6F19	Y2	Bank 7	1	IO246NB7F22	F3
IO204NB6F19	AA1	IO225NB7F21	J2	IO246PB7F22	E3
IO204PB6F19	AB1	IO225PB7F21	J1	IO247NB7F23	K7
IO205NB6F19	R6	IO226PB7F21	G2	IO247PB7F23	K6
IO205PB6F19	Т6	IO227NB7F21	H3	IO248NB7F23	D2
IO206NB6F19	W1	IO227PB7F21	H2	IO249NB7F23	G4
IO206PB6F19	Y1	IO229NB7F21	K2	IO249PB7F23	G3
IO207NB6F19	T2	IO229PB7F21	L2	IO251NB7F23	N10
IO207PB6F19	U2	IO230NB7F21	K1	IO251PB7F23	N9
IO208NB6F19	T1	IO230PB7F21	L1	IO253NB7F23	H4
IO208PB6F19	U1	IO231NB7F21	E2	IO253PB7F23	J4
IO209NB6F19	AA2	IO231PB7F21	F2	IO255NB7F23	J6
IO209PB6F19	AB2	IO232NB7F21	F1	IO255PB7F23	J5
IO210NB6F19	P5	IO232PB7F21	G1	IO257NB7F23	H5
IO211NB6F19	M1	IO233NB7F21	L3	IO257PB7F23	H6
IO211PB6F19	N1	IO233PB7F21	M3	Dedicated I/O	
IO212NB6F19	P1	IO234NB7F21	D1	GND	K5
IO212PB6F19	R1	IO234PB7F21	E1	GND A1	
IO213NB6F19	R8	IO235NB7F21	K4	GND	A2
IO213PB6F19	Т8	IO235PB7F21	L4	GND	A24
IO215NB6F20	U4	IO236NB7F22	M6	GND	A25