E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	4224
Number of Logic Elements/Cells	-
Total RAM Bits	55296
Number of I/O	115
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microsemi/ax250-pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .

I/O Module Timing Characteristics

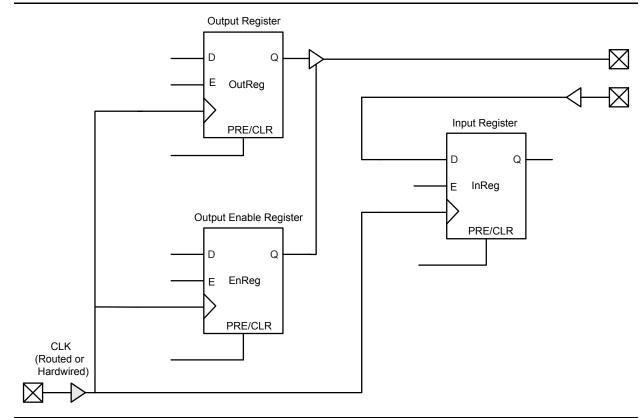
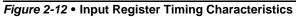
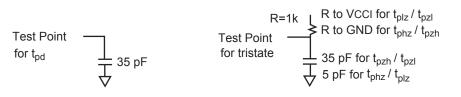



Figure 2-11 • Timing Model

Detailed Specifications


1.5 V LVCMOS (JESD8-11)

Low-Voltage Complementary Metal-Oxide Semiconductor for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.

Table 2-29 • DC Input and Output Levels

	VIL	VII	H	VOL	VOH	IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.35 VCCI	0.65 VCCI	3.6	0.4	VCCI – 0.4	8 mA	–8 mA

AC Loadings

Table 2-30 • AC Test Loads

Table 2-31 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	1.5	0.5V _{CCI}	N/A	35

Note: * Measuring Point = VTRIP

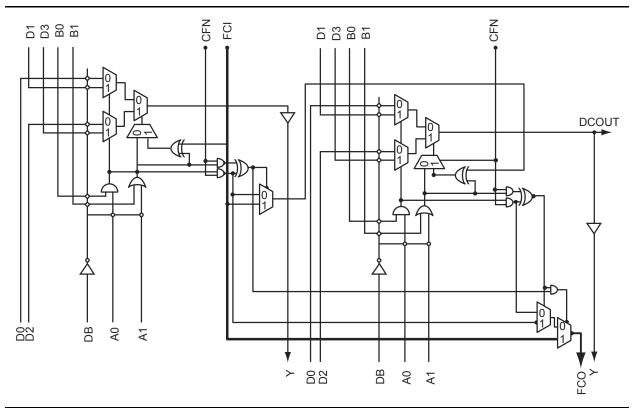
Timing Characteristics

Table 2-61 • LVPECL I/O Module Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVPECL Ou	itput Module Timing							
t _{DP}	Input Buffer		1.66		1.89		2.22	ns
t _{PY}	Output Buffer		2.24		2.55		3.00	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the IO output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Detailed Specifications

Carry-Chain Logic


The Axcelerator dedicated carry-chain logic offers a very compact solution for implementing arithmetic functions without sacrificing performance.

To implement the carry-chain logic, two C-cells in a Cluster are connected together so the FCO (i.e. carry out) for the two bits is generated in a carry look-ahead scheme to achieve minimum propagation delay from the FCI (i.e. carry in) into the two-bit Cluster. The two-bit carry logic is shown in Figure 2-29.

The FCI of one C-cell pair is driven by the FCO of the C-cell pair immediately above it. Similarly, the FCO of one C-cell pair, drives the FCI input of the C-cell pair immediately below it (Figure 1-4 on page 1-3 and Figure 2-30 on page 2-57).

The carry-chain logic is selected via the CFN input. When carry logic is not required, this signal is deasserted to save power. Again, this configuration is handled automatically for the user through Microsemi's macro library.

The signal propagation delay between two C-cells in the carry-chain sequence is 0.1 ns.

Routing Specifications

Routing Resources

The routing structure found in Axcelerator devices enables any logic module to be connected to any other logic module while retaining high performance. There are multiple paths and routing resources that can be used to route one logic module to another, both within a SuperCluster and elsewhere on the chip.

There are four primary types of routing within the AX architecture: DirectConnect, CarryConnect, FastConnect, and Vertical and Horizontal Routing.

DirectConnect

DirectConnects provide a high-speed connection between an R-cell and its adjacent C-cell (Figure 2-35). This connection can be made from DCOUT of the C-cell to DCIN of the R-cell by configuring of the S1 line of the R-cell. This provides a connection that does not require an antifuse and has a delay of less than 0.1 ns.

Figure 2-35 • DirectConnect and CarryConnect

CarryConnect

CarryConnects are used to build carry chains for arithmetic functions (Figure 2-35). The FCO output of the right C-cell of a two-C-cell Cluster drives the FCI input of the left C-cell in the two-C-cell Cluster immediately below it. This pattern continues down both sides of each SuperCluster column.

Similar to the DirectConnects, CarryConnects can be built without an antifuse connection. This connection has a delay of less than 0.1 ns from the FCO of one two-C-cell cluster to the FCI of the two-C-cell cluster immediately below it (see the "Carry-Chain Logic" section on page 2-56 for more information).

FastConnect

For high-speed routing of logic signals, FastConnects can be used to build a short distance connection using a single antifuse (Figure 2-36 on page 2-62). FastConnects provide a maximum delay of 0.3 ns. The outputs of each logic module connect directly to the Output Tracks within a SuperCluster. Signals on the Output Tracks can then be routed through a single antifuse connection to drive the inputs of logic modules either within one SuperCluster or in the SuperCluster immediately below it.

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

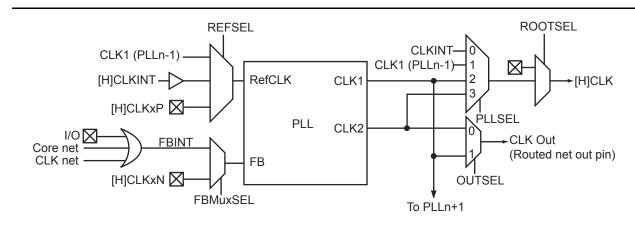
Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5


EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

CLK1	CLK2
CLK1	Routed net
CLK1	Unused
CLK2	CLK1
CLK2	Routed net
CLK2	Both CLK1 and routed net
CLK2	Unused
Unused	CLK1
Unused	Routed net
Unused	Both CLK1 and routed net
Unused	Unused
Routed net	CLK1
Routed net	Unused
Both CLK1 and CLK2	Routed net
Both CLK1 and CLK2	Unused
Both CLK1 and routed net	Unusable
Both CLK2 and routed net	CLK1
Both CLK2 and routed net	Unused
CLK1, CLK2, and routed net	Unusable

Table 2-83 • South PLL Connections

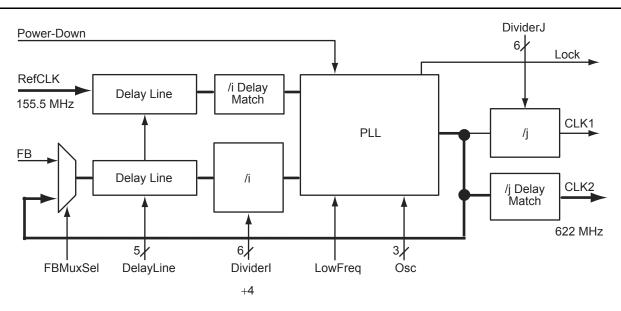
Note: Designer software currently does not support all of these connections. Only exclusive connections where one output connects to a single net are supported at this time (e.g., CLK1 driving both CLK1 and CLK2 is not supported).

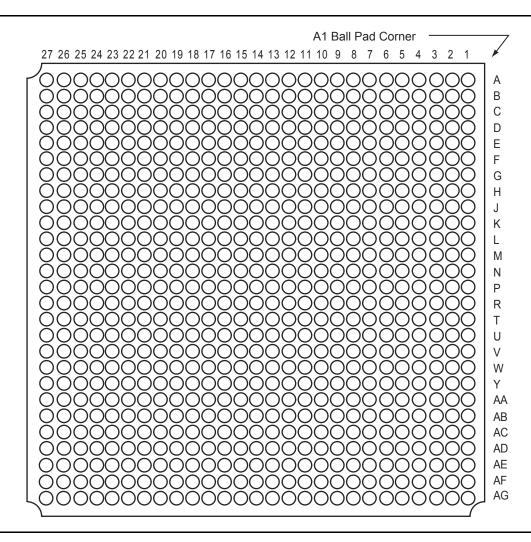
Sample Implementations

Frequency Synthesis

Figure 2-53 illustrates an example where the PLL is used to multiply a 155.5 MHz external clock up to 622 MHz. Note that the same PLL schematic could use an external 350 MHz clock, which is divided down to 155 MHz by the FPGA internal logic.

Figure 2-54 illustrates the PLL using both dividers to synthesize a 133 MHz output clock from a 155 MHz input reference clock. The input frequency of 155 MHz is multiplied by 6 and divided by 7, giving a CLK1 output frequency of 132.86 MHz. When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL.




Figure 2-53 • Using the PLL 155.5 MHz In, 622 MHz Out

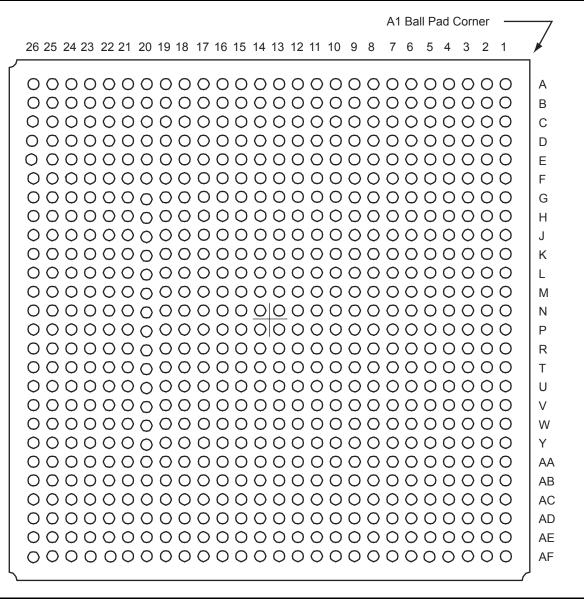
Adjustable Clock Delay

Figure 2-55 illustrates using the PLL to delay the reference clock by employing one of the adjustable delay lines. In this case, the output clock is delayed relative to the reference clock. Delaying the reference clock relative to the output clock is accomplished by using the delay line in the feedback path.

BG729

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.


Microsemi

BG729		BG729		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	
VCCIB0	B4	VCCIB4	W17	
VCCIB0	C4	VCCIB4	W18	
VCCIB0	J10	VCCIB5	AE4	
VCCIB0	J11	VCCIB5	AF4	
VCCIB0	J12	VCCIB5	AG4	
VCCIB0	K12	VCCIB5	V12	
VCCIB0	K13	VCCIB5	V13	
VCCIB1	A24	VCCIB5	W10	
VCCIB1	B24	VCCIB5	W11	
VCCIB1	C24	VCCIB5	W12	
VCCIB1	J16	VCCIB6	AD1	
VCCIB1	J17	VCCIB6	AD2	
VCCIB1	J18	VCCIB6	AD3	
VCCIB1	K15	VCCIB6	R10	
VCCIB1	K16	VCCIB6	T10	
VCCIB2	D25	VCCIB6	Т9	
VCCIB2	D26	VCCIB6	U9	
VCCIB2	D27	VCCIB6	V9	
VCCIB2	K19	VCCIB7	D1	
VCCIB2	L19	VCCIB7	D2	
VCCIB2	M18	VCCIB7	D3	
VCCIB2	M19	VCCIB7	K9	
VCCIB2	N18	VCCIB7	L9	
VCCIB3	AD25	VCCIB7	M10	
VCCIB3	AD26	VCCIB7	M9	
VCCIB3	AD27	VCCIB7	N10	
VCCIB3	R18	VCOMPLA	B13	
VCCIB3	T18	VCOMPLB	A14	
VCCIB3	T19	VCOMPLC	A15	
VCCIB3	U19	VCOMPLD	J15	
VCCIB3	V19	VCOMPLE	AG15	
VCCIB4	AE24	VCOMPLF	W15	
VCCIB4	AF24	VCOMPLG	AC14	
VCCIB4	AG24	VCOMPLH	W13	
VCCIB4	V15	VPUMP	D24	
VCCIB4	V16			
VCCIB4	W16			

FG256-Pin FBGA		FG256-Pin FI	BGA	FG256-Pin FI	BGA
AX125 Function	Pin Number	AX125 Function	Pin Number	AX125 Function	Pin Number
Bank 6		IO81NB7F7	C2	GND	M12
IO60NB6F6	L4	IO81PB7F7	B1	GND	M5
IO60PB6F6	M4	IO82NB7F7	D2	GND	P13
IO61NB6F6	L3	IO82PB7F7	D3	GND	P3
IO61PB6F6	M3	IO83NB7F7	E3	GND	R15
IO63NB6F6	P2	IO83PB7F7	F3	GND	R2
IO63PB6F6	N2	Dedicated I	/0	GND	T1
IO64NB6F6	J4	VCCDA	E4	GND	T16
IO64PB6F6	K4	GND	A1	GND/LP	D4
IO65NB6F6	N1	GND	A16	NC	A11
IO65PB6F6	P1	GND	B15	NC	R11
IO67NB6F6	L2	GND	B2	NC	R5
IO67PB6F6	M2	GND	D15	PRA	D8
IO69NB6F6	L1	GND	E12	PRB	C8
IO69PB6F6	M1	GND	E5	PRC	N9
IO70NB6F6	J3	GND	F11	PRD	P9
IO70PB6F6	K3	GND	F6	ТСК	D5
IO71NB6F6	J2	GND	G10	TDI	C6
IO71PB6F6	K2	GND	G7	TDO	C4
Bank 7		GND	G8	TMS	C3
IO72NB7F7	J1	GND	G9	TRST	C5
IO72PB7F7	K1	GND	H10	VCCA	D14
IO73NB7F7	G2	GND	H7	VCCA	F10
IO73PB7F7	H2	GND	H8	VCCA	F4
IO74NB7F7	G3	GND	H9	VCCA	F7
IO74PB7F7	H3	GND	J10	VCCA	F8
IO75NB7F7	E1	GND	J7	VCCA	F9
IO75PB7F7	F1	GND	J8	VCCA	G11
IO76NB7F7	G1	GND	J9	VCCA	G6
IO77NB7F7	E2	GND	K10	VCCA	H11
IO77PB7F7	F2	GND	K7	VCCA	H6
IO78NB7F7	G4	GND	K8	VCCA	J11
IO78PB7F7	H4	GND	К9	VCCA	J6
IO79NB7F7	C1	GND	L11	VCCA	K11
IO79PB7F7	D1	GND	L6	VCCA	K6

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG676		FG676	
X500 Function	Pin Number	AX500 Function	Pin Number
VCCIB3	T19	VCCIB7	L8
VCCIB3	U19	VCCIB7	M8
VCCIB3	U20	VCCIB7	N8
VCCIB3	V19	VCCPLA	E12
VCCIB3	V20	VCCPLB	F13
VCCIB3	W20	VCCPLC	E15
VCCIB4	W14	VCCPLD	G14
VCCIB4	W15	VCCPLE	AF15
VCCIB4	W16	VCCPLF	AA14
VCCIB4	W17	VCCPLG	AF12
VCCIB4	W18	VCCPLH	AB13
VCCIB4	Y17	VCOMPLA	D12
VCCIB4	Y18	VCOMPLB	G13
VCCIB4	Y19	VCOMPLC	D15
VCCIB5	W10	VCOMPLD	F14
VCCIB5	W11	VCOMPLE	AD15
VCCIB5	W12	VCOMPLF	AB14
VCCIB5	W13	VCOMPLG	AD12
VCCIB5	W9	VCOMPLH	Y13
VCCIB5	Y10	VPUMP	E22
VCCIB5	Y8		
VCCIB5	Y9		
VCCIB6	P8		
VCCIB6	R8		
VCCIB6	Т8		
VCCIB6	U7		
VCCIB6	U8		
VCCIB6	V7		
VCCIB6	V8		
VCCIB6	W7		
VCCIB7	H7		
VCCIB7	J7		
VCCIB7	J8		
VCCIB7	K7		
VCCIB7	K8		

FG896	FG896		
AX1000 Function	Pin Number	AX1000 Function	Pin Number
VCCIB2	L22	VCCIB5	AK3
VCCIB2	M21	VCCIB6	AA9
VCCIB2	M22	VCCIB6	AH1
VCCIB2	N21	VCCIB6	AH2
VCCIB2	P21	VCCIB6	T10
VCCIB2	R21	VCCIB6	U10
VCCIB3	AA22	VCCIB6	V10
VCCIB3	AH29	VCCIB6	W10
VCCIB3	AH30	VCCIB6	W9
VCCIB3	T21	VCCIB6	Y10
VCCIB3	U21	VCCIB6	Y9
VCCIB3	V21	VCCIB7	C1
VCCIB3	W21	VCCIB7	C2
VCCIB3	W22	VCCIB7	K9
VCCIB3	Y21	VCCIB7	L10
VCCIB3	Y22	VCCIB7	L9
VCCIB4	AA16	VCCIB7	M10
VCCIB4	AA17	VCCIB7	M9
VCCIB4	AA18	VCCIB7	N10
VCCIB4	AA19	VCCIB7	P10
VCCIB4	AA20	VCCIB7	R10
VCCIB4	AB19	VCOMPLA	F14
VCCIB4	AB20	VCOMPLB	J15
VCCIB4	AB21	VCOMPLC	F17
VCCIB4	AJ28	VCOMPLD	H16
VCCIB4	AK28	VCOMPLE	AF17
VCCIB5	AA11	VCOMPLF	AD16
VCCIB5	AA12	VCOMPLG	AF14
VCCIB5	AA13	VCOMPLH	AB15
VCCIB5	AA14	VPUMP	G24
VCCIB5	AA15		•
VCCIB5	AB10		
VCCIB5	AB11		
VCCIB5	AB12		
VCCIB5	AJ3		
	•		

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
Bank 0		IO17NB0F1	F12	IO34PB0F3	D14
IO00NB0F0	D6	IO17PB0F1	F11	IO35NB0F3	A15
IO00PB0F0	C6	IO18NB0F1	E11	IO35PB0F3	B15
IO01NB0F0	H10	IO18PB0F1	E10	IO36NB0F3	B16
IO01PB0F0	H9	IO19NB0F1	F13	IO36PB0F3	A16
IO02NB0F0	F8	IO19PB0F1	G13	IO37NB0F3	G16
IO02PB0F0	G8	IO20NB0F1	A10	IO37PB0F3	G15
IO03NB0F0	A6	IO20PB0F1	A9	IO38NB0F3	D16
IO03PB0F0	B6	IO21NB0F1	K14	IO38PB0F3	C16
IO04NB0F0	C7	IO21PB0F1	K13	IO39NB0F3	K16
IO04PB0F0	D7	IO22NB0F2	B11	IO39PB0F3	L16
IO05NB0F0	K10	IO22PB0F2	B10	IO40NB0F3	D17
IO05PB0F0	J10	IO23NB0F2	C12	IO40PB0F3	C17
IO06NB0F0	F9	IO23PB0F2	C11	IO41NB0F3/HCLKAN	E16
IO06PB0F0	G9	IO24NB0F2	A12	IO41PB0F3/HCLKAP	F16
IO07NB0F0	F10	IO24PB0F2	A11	IO42NB0F3/HCLKBN	G17
IO07PB0F0	G10	IO25NB0F2	H14	IO42PB0F3/HCLKBP	F17
IO08NB0F0	E9	IO25PB0F2	J14	Bank 1	
IO08PB0F0	E8	IO26NB0F2	D13	IO43NB1F4/HCLKCN	G19
IO09NB0F0	J11	IO26PB0F2	D12	IO43PB1F4/HCLKCP	G18
IO09PB0F0	K11	IO27NB0F2	F14	IO44NB1F4/HCLKDN	E19
IO10NB0F0	C8	IO27PB0F2	G14	IO44PB1F4/HCLKDP	F19
IO10PB0F0	D8	IO28NB0F2	E14	IO45NB1F4	C18
IO11NB0F0	K12	IO28PB0F2	E13	IO45PB1F4	D18
IO11PB0F0	J12	IO29NB0F2	B13	IO46NB1F4	A18
IO12NB0F1	G11	IO29PB0F2	B12	IO46PB1F4	B18
IO12PB0F1	H11	IO30NB0F2	C14	IO47NB1F4	K19
IO13NB0F1	G12	IO30PB0F2	C13	IO47PB1F4	L19
IO13PB0F1	H12	IO31NB0F2	H15	IO48NB1F4	C19
IO14NB0F1	A7	IO31PB0F2	J15	IO48PB1F4	D19
IO14PB0F1	B7	IO32NB0F2	A14	IO49NB1F4	K20
IO15NB0F1	H13	IO32PB0F2	B14	IO49PB1F4	L20
IO15PB0F1	J13	IO33NB0F2	K15	IO50NB1F4	A19
IO16NB0F1	C9	IO33PB0F2	L15	IO50PB1F4	B19
IO16PB0F1	D9	IO34NB0F3	D15	IO51NB1F4	H20

CQ352				
AX250 Function	Pin Number			
VCCDA	346			
VCCIB0	321			
VCCIB0	333			
VCCIB0	344			
VCCIB1	273			
VCCIB1	285			
VCCIB1	297			
VCCIB2	227			
VCCIB2	239			
VCCIB2	245			
VCCIB2	257			
VCCIB3	185			
VCCIB3	197			
VCCIB3	203			
VCCIB3	215			
VCCIB4	144			
VCCIB4	156			
VCCIB4	168			
VCCIB5	96			
VCCIB5	108			
VCCIB5	120			
VCCIB6	50			
VCCIB6	62			
VCCIB6	68			
VCCIB6	80			
VCCIB7	8			
VCCIB7	20			
VCCIB7	26			
VCCIB7	38			
VCCPLA	317			
VCCPLB	315			
VCCPLC	303			
VCCPLD	301			
VCCPLE	140			
VCCPLF	138			

CQ352					
AX250 Function	Pin Number				
VCCPLG	126				
VCCPLH	124				
VCOMPLA	318				
VCOMPLB	316				
VCOMPLC	304				
VCOMPLD	302				
VCOMPLE	141				
VCOMPLF	139				
VCOMPLG	127				
VCOMPLH	125				
VPUMP	267				

3-102

CG624		CG624		CG624	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
Bank 0		IO23NB0F2	E11	IO42NB1F4	G21
IO00NB0F0	F8	IO23PB0F2	F11	IO42PB1F4	G20
IO00PB0F0	F7	IO24NB0F2	D7	IO43NB1F4	A16
IO02NB0F0	G7	IO24PB0F2	E7	IO43PB1F4	A15
IO02PB0F0	G6	IO25PB0F2	B12	IO44NB1F4	A20
IO04NB0F0	E9	IO26NB0F2	H11	IO44PB1F4	A19
IO04PB0F0	D8	IO26PB0F2	G11	IO45NB1F4	B17
IO06NB0F0	G9	IO27NB0F2	C11	IO45PB1F4	B16
IO06PB0F0	G8	IO27PB0F2	B8	IO46NB1F4	G17
IO07PB0F0	B6	IO28NB0F2	J13	IO46PB1F4	H17
IO08NB0F0	F10	IO28PB0F2	K13	IO47NB1F4	A17
IO08PB0F0	F9	IO29NB0F2	J8	IO48NB1F4	C19
IO09PB0F0	C7	IO29PB0F2	J7	IO48PB1F4	C18
IO10NB0F0	H8	IO30NB0F2/HCLKAN	G13	IO49NB1F4	B20
IO10PB0F0	H7	IO30PB0F2/HCLKAP	G12	IO49PB1F4	B19
IO11NB0F0	D10	IO31NB0F2/HCLKBN	C13	IO50NB1F4	H20
IO11PB0F0	D9	IO31PB0F2/HCLKBP	C12	IO50PB1F4	H19
IO12NB0F1	B5	Bank 1		IO51NB1F4	A22
IO12PB0F1	B4	IO32NB1F3/HCLKCN	G15	IO51PB1F4	A21
IO13NB0F1	A7	IO32PB1F3/HCLKCP	G14	IO52NB1F4	C21
IO13PB0F1	A6	IO33NB1F3/HCLKDN	B14	IO52PB1F4	C20
IO14NB0F1	C9	IO33PB1F3/HCLKDP	B13	IO53NB1F4	B22
IO14PB0F1	C8	IO34NB1F3	G16	IO53PB1F4	B21
IO15PB0F1	B7	IO34PB1F3	H16	IO54NB1F5	J18
IO16NB0F1	A5	IO35NB1F3	C17	IO54PB1F5	J19
IO16PB0F1	A4	IO35PB1F3	B18	IO55NB1F5	D18
IO17NB0F1	A9	IO36NB1F3	H18	IO55PB1F5	D17
IO17PB0F1	B9	IO36PB1F3	H15	IO56NB1F5	F20
IO18NB0F1	D12	IO37NB1F3	H13	IO56PB1F5	F19
IO18PB0F1	D11	IO38NB1F3	E15	IO58NB1F5	E17
IO20NB0F1	B11	IO38PB1F3	F15	IO58PB1F5	F17
IO20PB0F1	B10	IO39NB1F3	D14	IO60NB1F5	D20
IO21NB0F1	A11	IO39PB1F3	C14	IO60PB1F5	D19
IO21PB0F1	A10	IO40NB1F3	D16	IO62NB1F5	E18
IO22NB0F2	H10	IO40PB1F3	D15	IO62PB1F5	F18
IO22PB0F2	H9	IO41NB1F4	F16	IO63NB1F5	G19

Revision	Changes	Page
Revision 8 (continued)	The following changes were made in the "FG676"(AX500) section: AE2, AE25 Change from NC to GND. AF2, AF25 Changed from GND to NC AB4, AF24, C1, C26 Changed from V _{CCDA} to V _{CCA} AD15 Change from V _{CCDA} to V _{COMPLE} AD17 Changed from V _{COMPLE} to V _{CCDA}	3-37
	In the "FG896" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.	3-52
	The "CQ352" and "CG624" sections are new.	3-98, 3-115
Revision 7 (Advance v1.6)	All I/O FIFO capability was removed.	n/a
	Table 1 was updated.	i
	Figure 1-9 was updated.	1-7
	Figure 2-5 was updated.	2-16
	The "Using an I/O Register" section was updated.	2-16
	The AX250 and AX1000 descriptions were added to the "FG484"section.	3-21
Revision 6 (Advance v1.5)	Table 2-3 was updated.	2-2
	Figure 2-1 was updated.	2-8
	Figure 2-48 was updated.	2-75
	Figure 2-52 was updated.	2-82
Revision 5 (Advance v1.4)	In the "PQ208" table, pin 196 was missing, but it has been added in this version with a function of GND.	3-84
	The following pins in the "FG484" table for AX500 were changed: Pin G7 is GND/LP Pins AB8, C10, C11, C14, AB16 are NC.	3-21
	The "FG676" table was updated.	3-37
Revision 4	The "Device Resources" section was updated for the CS180.	ii
(Advance v1.3)	The "Programmable Interconnect Element" and Figure 1-2 are new.	" 1-1 and 1-2
	The "CS180" table is new.	3-1
	The "PQ208" tables for the AX500 were updated. The following pins were not defined in the previous version: GND 21 IO106PB5F10/CLKHP 71 GND 136	3-84
Revision 3 (Advance v1.2)	Table 1, "Ordering Information", "Device Resources", and the Product Plan table were updated.	i, ii
	The following figures and tables were updated: Figure 1-3 Figure 1-8 (new) Table 2-3 Figure 2-2 Table 2-8 Figure 2-11	1-2 1-6 2-2 2-9 2-12 2-23
	The "Design Environment" section was updated.	1-7
	The "Package Thermal Characteristics" was updated.	2-6