

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	336
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-1fg676i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Calculating Power Dissipation

Table 2-3 • Standby Current

		ICCA	ICCDA	ICCBANK		ICCPLL	ICCCP ¹			
		Standby	Standby Current,	p	Standby Current per I/O Bank			y Current, je Pump		
Device Temperature	Temperature	Current (Core)	Differential I/O	2.5 V VCCI	3.3 V VCCI	Standby Current per PLL	Active	Bypassed Mode		Units
AX125	Typical at 25°C	1.5	1.5	0.2	0.3	0.2	0.3	0.01	±0.01	mA
	70°C	15	6	0.5	0.75	1	0.4	0.01	±0.01	mA
	85°C	25	6	0.6	0.8	1	0.4	0.2	±0.01	mA
	125°C	50	8	1	1.5	2	0.4	0.5	±0.01	mA
AX250	Typical at 25°C	1.5	1.4	0.25	0.4	0.2	0.3	0.01	±0.01	mA
	70°C	30	7	0.8	0.9	1	0.4	0.01	±0.01	mA
	85°C	40	7	0.8	1	1	0.4	0.2	±0.01	mA
	125°C	70	9	1.3	1.8	2	0.4	0.5	±0.01	mA
AX500	Typical at 25°C	5	1.4	0.4	0.75	0.2	0.3	0.01	±0.01	mA
	70°C	60	7	1	1.5	1	0.4	0.01	±0.01	mA
	85°C	80	7	1	1.9	1	0.4	0.2	±0.01	mA
	125°C	180	9	1.75	2.5	1.5	0.4	0.5	±0.01	mA
AX1000	Typical at 25°C	7.5	1.5	0.5	1.25	0.2	0.3	0.01	±0.01	mA
	70°C	80	8	1.5	3	1	0.4	0.01	±0.01	mA
	85°C	120	8	1.5	3.4	1	0.4	0.2	±0.01	mA
	125°C	200	10	3	4	1.5	0.4	0.5	±0.01	mA
AX2000	Typical at 25°C	20	1.6	0.7	1.5	0.2	0.3	0.01	±0.01	mA
	70°C	160	10	2	7	1	0.4	0.01	±0.01	mA
	85°C	200	10	3	8	1	0.4	0.2	±0.01	mA
	125°C	500	15	4	10	1.5	0.4	0.5	±0.01	mA

Notes:

1. ICCCP Active is the ICCDA or the Internal Charge Pump current. ICCCP Bypassed mode is the External Charge Pump current IIH (VPUMP pin).

2. IIH, IIL, or IOZ values are measured with inputs at the same level as VCCI for IIH and GND for IIL and IOZ.

User-Defined Supply Pins

VREF

Supply Voltage

Reference voltage for I/O banks. VREF pins are configured by the user from regular I/O pins; VREF pins are not in fixed locations. There can be one or more VREF pins in an I/O bank.

Global Pins

HCLKA/B/C/D Dedicated (Hardwired) Clocks A, B, C and D

These pins are the clock inputs for sequential modules or north PLLs. Input levels are compatible with all supported I/O standards. There is a P/N pin pair for support of differential I/O standards. Single-ended clock I/Os can only be assigned to the P side of a paired I/O. This input is directly wired to each R-cell and offers clock speeds independent of the number of R-cells being driven. When the HCLK pins are unused, it is recommended that they are tied to ground.

CLKE/F/G/H Routed Clocks E, F, G, and H

These pins are clock inputs for clock distribution networks or south PLLs. Input levels are compatible with all supported I/O standards. There is a P/N pin pair for support of differential I/O standards. Single-ended clock I/Os can only be assigned to the P side of a paired I/O. The clock input is buffered prior to clocking the R-cells. When the CLK pins are unused, Microsemi recommends that they are tied to ground.

JTAG/Probe Pins

PRA/B/C/D Probe A, B, C and D

The Probe pins are used to output data from any user-defined design node within the device (controlled with Silicon Explorer II). These independent diagnostic pins can be used to allow real-time diagnostic output of any signal path within the device. The pins' probe capabilities can be permanently disabled to protect programmed design confidentiality. The probe pins are of LVTTL output levels.

TCK Test Clock

Test clock input for JTAG boundary-scan testing and diagnostic probe (Silicon Explorer II).

TDI Test Data Input

Serial input for JTAG boundary-scan testing and diagnostic probe. TDI is equipped with an internal 10 k Ω pull-up resistor.

TDO Test Data Output

Serial output for JTAG boundary-scan testing.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1149.1 boundary-scan pins (TCK, TDI, TDO, TRST). TMS is equipped with an internal 10 k Ω pull-up resistor.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize or reset the boundary scan circuit. The TRST pin is equipped with a 10 k Ω pull-up resistor.

Special Functions

LP Low Power Pin

The LP pin controls the low power mode of Axcelerator devices. The device is placed in the low power mode by connecting the LP pin to logic high. To exit the low power mode, the LP pin must be set Low. Additionally, the LP pin must be set Low during chip powering-up or chip powering-down operations. See "Low Power Mode" on page 2-106 for more details.

NC No Connection

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

Timing Characteristics

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed -1 Speed			peed	Std S		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength = 1 (8 mA) / Low Slew Rate							4
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		14.28		16.27		19.13	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		15.25		17.37		20.42	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		14.26		16.24		19.09	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.56		1.57		1.58	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		1.95		1.96		1.97	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		039		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength = 2 (12 mA) / Low Slew Rate							L
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		12.14		13.83		16.26	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		12.43		14.16		16.65	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		12.17		13.86		16.30	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.73		1.74		1.75	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.22		2.23		2.24	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.38		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.12	0.13	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.50	0.56	0.66	ns
t _{RD2}	Routing delay for FO2	0.59	0.67	0.79	ns
t _{RD3}	Routing delay for FO3	0.70	0.80	0.94	ns
t _{RD4}	Routing delay for FO4	0.76	0.87	1.02	ns
t _{RD5}	Routing delay for FO5	0.98	1.11	1.31	ns
t _{RD6}	Routing delay for FO6	1.48	1.68	1.97	ns
t _{RD7}	Routing delay for FO7	1.65	1.87	2.20	ns
t _{RD8}	Routing delay for FO8	1.73	1.96	2.31	ns
t _{RD16}	Routing delay for FO16	2.58	2.92	3.44	ns
t _{RD32}	Routing delay for FO32	4.24	4.81	5.65	ns

Table 2-69 • AX2000 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

Table 2-80 • PLL Interface Signals

o	_	User	Allowable	
Signal Name	Туре	Accessible	Values	Function
RefCLK	Input	Yes		Reference Clock for the PLL
FB	Input	Yes		Feedback port for the PLL
PowerDown	Input	Yes		PLL power down control
			0	PLL powered down
			1	PLL active
DIVI[5:0]	Input	Yes	1 to 64, in	Sets value for feedback divider (multiplier)
DIVJ[5:0]	Input	Yes	unsigned binary notation offset by -1	Sets value for CLK1 divider
LowFreq	Input	Yes		Input frequency range selector
			0	50–200 MHz
			1	14–50 MHz
Osc[2:0]	Input	Yes		Output frequency range selector
			XX0	400–1000 MHZ
			001	200–400 MHZ
			011	100–200 MHZ
			101	50–100 MHZ
			111	20–50 MHZ
DelayLine[4:0]	Input	Yes	-15 to +15 (increments), in signed-and- magnitude binary representation	Clock Delay (positive/negative) in increments of 250 ps, with maximum value of ± 3.75 ns
FBMuxSel	Input	No		Selects the source for the feedback input
REFSEL	Input	No		Selects the source for the reference clock
OUTSEL	Input	No		Selects the source for the routed net output
PLLSEL	Input	No		ROOTSEL & PLLSEL are used to select the source of the global clock network
ROOTSEL	Input	No		
Lock	Output	Yes		High value indicates PLL has locked
CLK1	Output	Yes		PLL clock output
CLK2	Output	Yes		PLL clock output

Note: If the input RefClk is taken outside its operating range, the outputs Lock, CLK1 and CLK2 are indeterminate.

Table 2-98 • One FIFO Block

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed -1 Speed		peed	Std Speed			
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module Timing								
t _{WSU}	Write Setup		11.40		12.98		15.26	ns
t _{WHD}	Write Hold		0.22		0.25		0.30	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		0.88		0.88		0.88	ns
t _{WCKP}	Minimum WCLK Period	1.63		1.63		1.63		ns
t _{RSU}	Read Setup		11.63		13.25		15.58	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.77		0.77		0.77	ns
t _{RCKL}	RCLK Low		0.93		0.93		0.93	ns
t _{RCKP}	Minimum RCLK period	1.70		1.70		1.70		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.32		1.51		1.77	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.16		2.46		2.90	ns

Note: Timing data for this single block FIFO has a depth of 4,096. For all other combinations, use Microsemi's timing software.

throughout the fabric of the device and may be programmed by the user to thwart attempts to reverse engineer the device by attempting to exploit either the programming or probing interfaces. Both invasive and noninvasive attacks against an Axcelerator device that access or bypass these security fuses will destroy access to the rest of the device. (refer to the *Design Security in Nonvolatile Flash and Antifuse FPGAs* white paper).

Look for this symbol to ensure your valuable IP is protected with highest level of security in the industry.

Figure 2-69 • FuseLock Logo

To ensure maximum security in Axcelerator devices, it is recommended that the user program the device security fuse (SFUS). When programmed, the Silicon Explorer II testing probes are disabled to prevent internal probing, and the programming interface is also disabled. All JTAG public instructions are still accessible by the user.

For more information, refer to the Implementation of Security in Actel Antifuse FPGAs application note.

Global Set Fuse

The Global Set Fuse determines if all R-cells and I/O registers (InReg, OutReg, and EnReg) are either cleared or preset by driving the GCLR and GPSET inputs of all R-cells and I/O Registers (Figure 2-31 on page 2-58). Default setting is to clear all registers (GCLR = 0 and GPSET =1) at device power-up. When the GBSETFUS option is checked during FUSE file generation, all registers are preset (GCLR = 1 and GPSET = 0). A local CLR or PRESET will take precedence over this setting. Both pins are pulled High during normal device operation. For use details, see the Libero IDE online help.

Silicon Explorer II Probe Interface

Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer tools, allows users to examine any of the internal nets (except I/O registers) of the device while it is operating in a prototype or a production system. The user can probe up to four nodes at a time without changing the placement and routing of the design and without using any additional device resources. Highlighted nets in Designer's ChipPlanner can be accessed using Silicon Explorer II in order to observe their real time values.

Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle. In addition, Silicon Explorer II does not require relayout or additional MUXes to bring signals out to external pins, which is necessary when using programmable logic devices from other suppliers. By eliminating multiple place-and-route program cycles, the integrity of the design is maintained throughout the debug process.

Each member of the Axcelerator family has four external pads: PRA, PRB, PRC, and PRD. These can be used to bring out four probe signals from the Axcelerator device (note that the AX125 only has two probe signals that can be observed: PRA and PRB). Each core tile has up to two probe signals. To disallow probing, the SFUS security fuse in the silicon signature has to be programmed (see "Special Fuses" on page 2-108).

Silicon Explorer II connects to the host PC using a standard serial port connector. Connections to the circuit board are achieved using a nine-pin D-Sub connector (Figure 1-9 on page 1-7). Once the design has been placed-and-routed, and the Axcelerator device has been programmed, Silicon Explorer II can be connected and the Explorer software can be launched.

Silicon Explorer II comes with an additional optional PC hosted tool that emulates an 18-channel logic analyzer. Four channels are used to monitor four internal nodes, and 14 channels are available to probe external signals. The software included with the tool provides the user with an intuitive interface that allows for easy viewing and editing of signal waveforms.

Programming

Device programming is supported through the Silicon Sculptor II, a single-site, robust and compact device programmer for the PC. Up to four Silicon Sculptor IIs can be daisy-chained and controlled from a single PC host. With standalone software for the PC, Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC when daisy-chained.

Silicon Sculptor II programs devices independently to achieve the fastest programming times possible. Each fuse is verified by Silicon Sculptor II to ensure correct programming. Furthermore, at the end of programming, there are integrity tests that are run to ensure that programming was completed properly. Not only does it test programmed and nonprogrammed fuses, Silicon Sculptor II also provides a self-test to test its own hardware extensively.

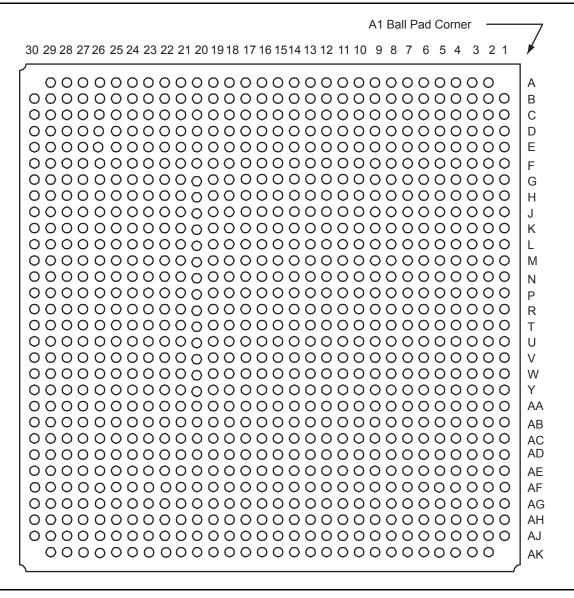
Programming an Axcelerator device using Silicon Sculptor II is similar to programming any other antifuse device. The procedure is as follows:

- 1. Load the *.AFM file.
- 2. Select the device to be programmed.
- 3. Begin programming.

When the design is ready to go to production, Microsemi offers device volume-programming services either through distribution partners or via our In-House Programming Center.

In addition, BP Microsystems offers multi-site programmers that provide qualified support for Axcelerator devices.

For more details on programming the Axcelerator devices, please refer to the Silicon Sculptor II User's Guide.


FG256		FG256		FG256	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
Bank 6	1	IO117NB7F7	C2	GND	M12
IO91NB6F6	L4	IO117PB7F7	B1	GND	M5
IO91PB6F6	M4	IO118NB7F7	D2	GND	P13
IO92NB6F6	L3	IO118PB7F7	D3	GND	P3
IO92PB6F6	M3	IO119NB7F7	E3	GND	R15
IO94NB6F6	P2	IO119PB7F7	F3	GND	R2
IO94PB6F6	N2	Dedicated I	0	GND	T1
IO97NB6F6	J4	VCCDA	E4	GND	T16
IO97PB6F6	K4	GND	A1	GND/LP	D4
IO98NB6F6	N1	GND	A16	PRA	D8
IO98PB6F6	P1	GND	B15	PRB	C8
IO100NB6F6	L2	GND	B2	PRC	N9
IO100PB6F6	M2	GND	D15	PRD	P9
IO102NB6F6	L1	GND	E12	ТСК	D5
IO102PB6F6	M1	GND	E5	TDI	C6
IO103NB6F6	J3	GND	F11	TDO	C4
IO103PB6F6	K3	GND	F6	TMS	C3
IO104NB6F6	J2	GND	G10	TRST	C5
IO104PB6F6	K2	GND	G7	VCCA	D14
Bank 7	1	GND	G8	VCCA	F10
IO107NB7F7	J1	GND	G9	VCCA	F4
IO107PB7F7	K1	GND	H10	VCCA	F7
IO108NB7F7	G2	GND	H7	VCCA	F8
IO108PB7F7	H2	GND	H8	VCCA	F9
IO111NB7F7	G3	GND	H9	VCCA	G11
IO111PB7F7	H3	GND	J10	VCCA	G6
IO112NB7F7	E1	GND	J7	VCCA	H11
IO112PB7F7	F1	GND	J8	VCCA	H6
IO113NB7F7	G1	GND	J9	VCCA	J11
IO114NB7F7	E2	GND	K10	VCCA	J6
IO114PB7F7	F2	GND	K7	VCCA	K11
IO115NB7F7	G4	GND	K8	VCCA	K6
IO115PB7F7	H4	GND	K9	VCCA	L10
IO116NB7F7	C1	GND	L11	VCCA	L7
IO116PB7F7	D1	GND	L6	VCCA	L8

FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	A8	GND	L12	GND	R12
GND	AC23	GND	L13	GND	R13
GND	AC4	GND	L14	GND	R14
GND	AD24	GND	L15	GND	R15
GND	AD3	GND	L16	GND	R16
GND	AE2	GND	L17	GND	R17
GND	AE25	GND	M10	GND	T10
GND	AF1	GND	M11	GND	T11
GND	AF13	GND	M12	GND	T12
GND	AF14	GND	M13	GND	T13
GND	AF19	GND	M14	GND	T14
GND	AF26	GND	M15	GND	T15
GND	AF8	GND	M16	GND	T16
GND	B2	GND	M17	GND	T17
GND	B25	GND	N1	GND	U10
GND	B26	GND	N10	GND	U11
GND	C24	GND	N11	GND	U12
GND	C3	GND	N12	GND	U13
GND	G20	GND	N13	GND	U14
GND	G7	GND	N14	GND	U15
GND	H1	GND	N15	GND	U16
GND	H19	GND	N16	GND	U17
GND	H26	GND	N17	GND	V18
GND	H8	GND	N26	GND	V9
GND	J18	GND	P1	GND	W1
GND	J9	GND	P10	GND	W19
GND	K10	GND	P11	GND	W26
GND	K11	GND	P12	GND	W8
GND	K12	GND	P13	GND	Y20
GND	K13	GND	P14	GND	Y7
GND	K14	GND	P15	GND/LP	C2
GND	K15	GND	P16	NC	A25
GND	K16	GND	P17	NC	AC13
GND	K17	GND	P26	NC	AC14
GND	L10	GND	R10	NC	AF2
GND	L11	GND	R11	NC	AF25

FG896

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

CQ208		CQ208		CQ208
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function
Bank 0		IO61PB2F5	134	IO105PB5F10/CLKGP
IO03NB0F0	198	IO62NB2F5	131	IO106NB5F10/CLKHN
IO03PB0F0	199	IO62PB2F5	133	IO106PB5F10/CLKHP
IO04NB0F0	197	Bank 3		IO107NB5F10
IO19NB0F1/HCLKAN	191	IO63NB3F6	127	IO107PB5F10
IO19PB0F1/HCLKAP	192	IO63PB3F6	129	IO119NB5F11
IO20NB0F1/HCLKBN	185	IO64NB3F6	126	IO121NB5F11
IO20PB0F1/HCLKBP	186	IO64PB3F6	128	IO121PB5F11
Bank 1		IO66NB3F6	122	IO123NB5F11
IO21NB1F2/HCLKCN	180	IO66PB3F6	123	IO123PB5F11
IO21PB1F2/HCLKCP	181	IO68NB3F6	120	IO125NB5F11
IO22NB1F2/HCLKDN	174	IO68PB3F6	121	IO125PB5F11
IO22PB1F2/HCLKDP	175	IO77NB3F7	116	Bank 6
IO23NB1F2	170	IO77PB3F7	117	IO127NB6F12
IO23PB1F2	171	IO79NB3F7	114	IO127PB6F12
IO37NB1F3	165	IO79PB3F7	115	IO128NB6F12
IO37PB1F3	166	IO81NB3F7	110	IO128PB6F12
IO39NB1F3	161	IO81PB3F7	111	IO129NB6F12
IO39PB1F3	162	IO82NB3F7	108	IO129PB6F12
IO41NB1F3	159	IO82PB3F7	109	IO130PB6F12
IO41PB1F3	160	IO83NB3F7	106	IO132NB6F12
Bank 2	1	IO83PB3F7	107	IO132PB6F12
IO43NB2F4	151	Bank 4		IO141NB6F13
IO43PB2F4	153	IO84PB4F8	103	IO141PB6F13
IO44NB2F4	152	IO85NB4F8	100	IO142PB6F13
IO44PB2F4	154	IO86NB4F8	101	IO143NB6F13
IO45PB2F4	148	IO86PB4F8	102	IO143PB6F13
IO46NB2F4	146	IO87NB4F8	96	IO145NB6F13
IO46PB2F4	147	IO87PB4F8	97	IO145PB6F13
IO48NB2F4	144	IO101NB4F9	91	IO146NB6F13
IO48PB2F4	145	IO101PB4F9	92	IO146PB6F13
IO57NB2F5	139	IO103NB4F9/CLKEN	87	Bank 7
IO57PB2F5	140	IO103PB4F9/CLKEP	88	IO147NB7F14
IO58PB2F5	141	IO104NB4F9/CLKFN	81	IO147PB7F14
IO59NB2F5	137	IO104PB4F9/CLKFP	82	IO148NB7F14
IO59PB2F5	138	Bank 5	•	IO148PB7F14
IO61NB2F5	132	IO105NB5F10/CLKGN	76	IO150NB7F14

Pin Number

CQ352		CQ352		CQ352	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
GND	21	GND	240	TDI	348
GND	27	GND	246	TDO	347
GND	33	GND	252	TMS	350
GND	39	GND	258	TRST	351
GND	45	GND	264	VCCA	3
GND	51	GND	265	VCCA	14
GND	57	GND	274	VCCA	32
GND	63	GND	280	VCCA	56
GND	69	GND	286	VCCA	74
GND	75	GND	292	VCCA	87
GND	81	GND	298	VCCA	102
GND	88	GND	310	VCCA	114
GND	89	GND	322	VCCA	150
GND	97	GND	330	VCCA	162
GND	103	GND	334	VCCA	175
GND	109	GND	340	VCCA	191
GND	115	GND	345	VCCA	209
GND	121	GND	352	VCCA	233
GND	133	NC	91	VCCA	251
GND	145	NC	117	VCCA	263
GND	151	NC	130	VCCA	279
GND	157	NC	131	VCCA	291
GND	163	NC	148	VCCA	329
GND	169	NC	174	VCCA	339
GND	176	NC	268	VCCDA	2
GND	177	NC	294	VCCDA	44
GND	186	NC	307	VCCDA	90
GND	192	NC	308	VCCDA	116
GND	198	NC	327	VCCDA	132
GND	204	NC	328	VCCDA	149
GND	210	PRA	312	VCCDA	178
GND	216	PRB	311	VCCDA	221
GND	222	PRC	135	VCCDA	266
GND	228	PRD	134	VCCDA	293
GND	234	ТСК	349	VCCDA	309

Package Pin Assignments

CQ352		CQ352		CQ352	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO182PB4F17	171	IO240PB5F22	101	IO296NB6F27	46
IO183NB4F17	166	IO242NB5F22	94	IO296PB6F27	47
IO183PB4F17	167	IO242PB5F22	95	Bank 7	
IO184NB4F17	164	IO243NB5F22	98	IO300NB7F28	42
IO184PB4F17	165	IO243PB5F22	99	IO300PB7F28	43
IO185NB4F17	160	IO244NB5F22	92	IO303NB7F28	40
IO185PB4F17	161	IO244PB5F22	93	IO303PB7F28	41
IO190NB4F17	158	Bank 6		IO310NB7F29	34
IO190PB4F17	159	IO257PB6F24	86	IO310PB7F29	35
IO191NB4F17	154	IO258NB6F24	84	IO311NB7F29	36
IO191PB4F17	155	IO258PB6F24	85	IO311PB7F29	37
IO192NB4F17	152	IO261NB6F24	82	IO312NB7F29	28
IO192PB4F17	153	IO261PB6F24	83	IO312PB7F29	29
IO207NB4F19	146	IO262NB6F24	78	IO315NB7F29	30
IO207PB4F19	147	IO262PB6F24	79	IO315PB7F29	31
IO212NB4F19/CLKEN	142	IO265NB6F24	76	IO316NB7F29	22
IO212PB4F19/CLKEP	143	IO265PB6F24	77	IO316PB7F29	23
IO213NB4F19/CLKFN	136	IO279NB6F26	72	IO317NB7F29	24
IO213PB4F19/CLKFP	137	IO279PB6F26	73	IO317PB7F29	25
Bank 5		IO280NB6F26	70	IO318NB7F29	18
IO214NB5F20/CLKGN	128	IO280PB6F26	71	IO318PB7F29	19
IO214PB5F20/CLKGP	129	IO281NB6F26	66	IO320NB7F29	16
IO215NB5F20/CLKHN	122	IO281PB6F26	67	IO320PB7F29	17
IO215PB5F20/CLKHP	123	IO282NB6F26	64	IO334NB7F31	10
IO217NB5F20	118	IO282PB6F26	65	IO334PB7F31	11
IO217PB5F20	119	IO284NB6F26	60	IO335NB7F31	12
IO236NB5F22	110	IO284PB6F26	61	IO335PB7F31	13
IO236PB5F22	111	IO285NB6F26	58	IO338NB7F31	6
IO237NB5F22	112	IO285PB6F26	59	IO338PB7F31	7
IO237PB5F22	113	IO286NB6F26	54	IO341NB7F31	4
IO238NB5F22	104	IO286PB6F26	55	IO341PB7F31	5
IO238PB5F22	105	IO287NB6F26	52	Dedicated I/	0
IO239NB5F22	106	IO287PB6F26	53	GND	1
IO239PB5F22	107	IO294NB6F27	48	GND	9
IO240NB5F22	100	IO294PB6F27	49	GND	15

CG624		CG624		CG624	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	A8	GND/LP	E8	GND	V1
GND	AA10	GND	H1	GND	V25
GND	AA16	GND	H21	GND	V5
GND	AA18	GND	H25	NC	A14
GND	AA21	GND	K21	NC	AA20
GND	AA5	GND	K23	NC	AB13
GND	AB22	GND	K3	NC	AD4
GND	AB4	GND	L11	NC	AE12
GND	AC10	GND	L12	NC	F21
GND	AC16	GND	L13	NC	G10
GND	AC23	GND	L14	PRA	F13
GND	AC3	GND	L15	PRB	A13
GND	AD1	GND	M11	PRC	AB12
GND	AD2	GND	M12	PRD	AE13
GND	AD24	GND	M13	ТСК	F5
GND	AD25	GND	M14	TDI	C5
GND	AE1	GND	M15	TDO	F6
GND	AE18	GND	N11	TMS	D6
GND	AE2	GND	N12	TRST	E6
GND	AE24	GND	N13	VCCA	AB20
GND	AE25	GND	N14	VCCA	F22
GND	AE8	GND	N15	VCCA	F4
GND	B1	GND	P11	VCCA	J17
GND	B2	GND	P12	VCCA	J9
GND	B24	GND	P13	VCCA	K10
GND	B25	GND	P14	VCCA	K11
GND	C10	GND	P15	VCCA	K15
GND	C16	GND	R11	VCCA	K16
GND	C23	GND	R12	VCCA	L10
GND	C3	GND	R13	VCCA	L16
GND	D22	GND	R14	VCCA	R10
GND	D4	GND	R15	VCCA	R16
GND	E10	GND	T21	VCCA	T10
GND	E16	GND	T23	VCCA	T11
GND	E21	GND	Т3	VCCA	T15
GND	E5	GND	T5	VCCA	T16

CG624		CG624		CG624	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO157PB3F14	U20	IO177PB4F16	AB18	IO208PB4F19	W16
IO158NB3F14	AB25	IO182NB4F17	V19	IO209NB4F19	AE14
IO158PB3F14	AA25	IO182PB4F17	W19	IO210NB4F19	V15
IO160PB3F14	W24	IO183PB4F17	AC19	IO210PB4F19	V16
IO161NB3F15	U24	IO184NB4F17	AB17	IO211NB4F19	AD14
IO161PB3F15	U23	IO184PB4F17	AC17	IO211PB4F19	AC14
IO162NB3F15	AA24	IO185NB4F17	AD19	IO212NB4F19/CLKEN	W14
IO162PB3F15	Y24	IO185PB4F17	AD20	IO212PB4F19/CLKEP	W15
IO163NB3F15	V22	IO187PB4F17	AC18	IO213NB4F19/CLKFN	AC13
IO163PB3F15	U22	IO188NB4F17	Y17	IO213PB4F19/CLKFP	AD13
IO164NB3F15	V23	IO188PB4F17	AA17	Bank 5	
IO164PB3F15	V24	IO189PB4F17	AE22	IO214NB5F20/CLKGN	W13
IO166NB3F15	AB24	IO191NB4F17	W18	IO214PB5F20/CLKGP	Y13
IO167NB3F15	V21	IO191PB4F17	V18	IO215NB5F20/CLKHN	AC12
IO167PB3F15	U21	IO192PB4F17	U18	IO215PB5F20/CLKHP	AD12
IO168NB3F15	Y23	IO195PB4F18	AE21	IO216NB5F20	U13
IO168PB3F15	AA23	IO196NB4F18	AB16	IO216PB5F20	V13
IO169NB3F15	W22*	IO197NB4F18	AD17	IO217NB5F20	AE10
IO169PB3F15	W23*	IO197PB4F18	AD18	IO217PB5F20	AE11
IO170NB3F15	Y22	IO198NB4F18	V17	IO218NB5F20	W11
IO170PB3F15	Y21	IO198PB4F18	W17	IO218PB5F20	W12
Bank 4	•	IO199NB4F18	AE19	IO222NB5F20	AA11
IO171NB4F16	AC20*	IO199PB4F18	AE20	IO222PB5F20	Y11
IO171PB4F16	AC21*	IO200NB4F18	AC15	IO223PB5F21	AE9
IO172NB4F16	W20	IO201NB4F18	AD15	IO225NB5F21	AE6
IO172PB4F16	Y20	IO201PB4F18	AD16	IO225PB5F21	AE7
IO173NB4F16	AD21	IO202NB4F18	Y15	IO226NB5F21	Y10
IO173PB4F16	AD22	IO202PB4F18	Y16	IO226PB5F21	W10
IO174NB4F16	AA19	IO206NB4F19	AB14	IO227PB5F21	T13
IO176NB4F16	Y18	IO206PB4F19	AB15	IO228NB5F21	AB10
IO176PB4F16	Y19	IO207NB4F19	AE15	IO228PB5F21	AB11
IO177NB4F16	AB19	IO207PB4F19	AE16	IO229NB5F21	AD9

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

CG624				
AX2000 Function	Pin Number			
IO229PB5F21	AD10			
IO230NB5F21	V11			
IO233NB5F21	AD7			
IO233PB5F21	AD8			
IO234NB5F21	V9			
IO234PB5F21	V10			
IO236NB5F22	AC9			
IO238NB5F22	W8			
IO238PB5F22	W9			
IO239NB5F22	AE4			
IO239PB5F22	AE5			
IO240NB5F22	AB9			
IO242NB5F22	AA9			
IO242PB5F22	Y9			
IO243NB5F22	AD5			
IO243PB5F22	AD6			
IO244NB5F22	U8			
IO246NB5F23	AB8			
IO246PB5F23	AC8			
IO247NB5F23	AB7			
IO247PB5F23	AC7			
IO250NB5F23	AA8			
IO250PB5F23	Y8			
IO251NB5F23	V8			
IO251PB5F23	V7			
IO252NB5F23	Y7			
IO252PB5F23	W7			
IO253NB5F23	AC5			
IO253PB5F23	AC6			
IO254NB5F23	Y6			
IO254PB5F23	W6			
IO256NB5F23	AB6*			

CG624				
AX2000 Function	Pin Number			
IO256PB5F23	AA6*			
Bank 6				
IO257NB6F24	Y3			
IO257PB6F24	AA3			
IO258NB6F24	V3			
IO258PB6F24	W3			
IO259NB6F24	AA2			
IO259PB6F24	AB2			
IO260NB6F24	V6*			
IO260PB6F24	W4*			
IO262NB6F24	U4			
IO262PB6F24	V4			
IO263NB6F24	Y5			
IO263PB6F24	W5			
IO268NB6F25	U6			
IO268PB6F25	U5			
IO269PB6F25	U3			
IO272NB6F25	T2			
IO272PB6F25	U2			
IO273NB6F25	W2			
IO273PB6F25	Y2			
IO274NB6F25	R6			
IO274PB6F25	Т6			
IO275NB6F25	T7			
IO275PB6F25	U7			
IO277NB6F25	V2			
IO278NB6F26	R4			
IO278PB6F26	T4			
IO279PB6F26	R3			
IO280NB6F26	R5			
IO281NB6F26	AA1			
IO281PB6F26	AB1			

00001				
CG624				
AX2000 Function	Pin Number			
IO284NB6F26	R8			
IO284PB6F26	Т8			
IO285NB6F26	W1			
IO285PB6F26	Y1			
IO286NB6F26	P2			
IO286PB6F26	R2			
IO287NB6F26	T1			
IO287PB6F26	U1			
IO288NB6F26	P5			
IO290NB6F27	P6			
IO291NB6F27	P1			
IO291PB6F27	R1			
IO292NB6F27	P7			
IO292PB6F27	R7			
IO293NB6F27	M1			
IO293PB6F27	N1			
IO294NB6F27	P8			
IO296NB6F27	N3			
IO296PB6F27	P3			
IO298NB6F27	N4			
IO298PB6F27	P4			
IO299NB6F27	M2			
IO299PB6F27	N2			
Bank 7				
IO300NB7F28	P9*			
IO300PB7F28	N6*			
IO302NB7F28	M6			
IO304NB7F28	N8			
IO304PB7F28	N7			
IO308NB7F28	M4			
IO309NB7F28	L3			
IO309PB7F28	M3			

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O. Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

CG624		CG624		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	
VCCIB2	D23	VCCIB6	Т9	
VCCIB2	E22	VCCIB7	C1	
VCCIB2	K17	VCCIB7	C2	
VCCIB2	L17	VCCIB7	D3	
VCCIB2	M16	VCCIB7	E4	
VCCIB3	AA22	VCCIB7	K9	
VCCIB3	AB23	VCCIB7	L9	
VCCIB3	AC24	VCCIB7	M10	
VCCIB3	AC25	VCCPLA	E12	
VCCIB3	P16	VCCPLB	J12	
VCCIB3	R17	VCCPLC	E14	
VCCIB3	T17	VCCPLD	H14	
VCCIB4	AB21	VCCPLE	Y14	
VCCIB4	AC22	VCCPLF	U14	
VCCIB4	AD23	VCCPLG	Y12	
VCCIB4	AE23	VCCPLH	U12	
VCCIB4	T14	VCOMPLA	F12	
VCCIB4	U15	VCOMPLB	H12	
VCCIB4	U16	VCOMPLC	F14	
VCCIB5	AB5	VCOMPLD	J14	
VCCIB5	AC4	VCOMPLE	AA14	
VCCIB5	AD3	VCOMPLF	V14	
VCCIB5	AE3	VCOMPLG	AA12	
VCCIB5	T12	VCOMPLH	V12	
VCCIB5	U10	VPUMP	E20	
VCCIB5	U11	Note: *Not routed on		
VCCIB6	AA4	package layer a LGA pads as its		
VCCIB6	AB3	pair complemen	nt.	
VCCIB6	AC1	Recommended a single-ended		
VCCIB6	AC2			
VCCIB6	P10			

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

R9

VCCIB6

Revision	Changes	Page
Revision 8 (continued)	The following changes were made in the "FG676"(AX500) section: AE2, AE25 Change from NC to GND. AF2, AF25 Changed from GND to NC AB4, AF24, C1, C26 Changed from V _{CCDA} to V _{CCA} AD15 Change from V _{CCDA} to V _{COMPLE} AD17 Changed from V _{COMPLE} to V _{CCDA}	3-37
	In the "FG896" (AX2000) section, the AK28 changed from VCCIB5 to VCCIB4.	3-52
	The "CQ352" and "CG624" sections are new.	3-98, 3-115
Revision 7	All I/O FIFO capability was removed.	
(Advance v1.6)	Table 1 was updated.	i
	Figure 1-9 was updated.	1-7
	Figure 2-5 was updated.	2-16
	The "Using an I/O Register" section was updated.	2-16
	The AX250 and AX1000 descriptions were added to the "FG484"section.	3-21
Revision 6	Table 2-3 was updated.	2-2
(Advance v1.5)	Figure 2-1 was updated.	2-8
	Figure 2-48 was updated.	2-75
	Figure 2-52 was updated.	2-82
Revision 5 (Advance v1.4)	In the "PQ208" table, pin 196 was missing, but it has been added in this version with a function of GND.	3-84
	The following pins in the "FG484" table for AX500 were changed: Pin G7 is GND/LP Pins AB8, C10, C11, C14, AB16 are NC.	3-21
	The "FG676" table was updated.	3-37
Revision 4	The "Device Resources" section was updated for the CS180.	ii
(Advance v1.3)	The "Programmable Interconnect Element" and Figure 1-2 are new.	" 1-1 and 1-2
	The "CS180" table is new.	3-1
	The "PQ208" tables for the AX500 were updated. The following pins were not defined in the previous version: GND 21 IO106PB5F10/CLKHP 71 GND 136	3-84
Revision 3 (Advance v1.2)	Table 1, "Ordering Information", "Device Resources", and the Product Plan table were updated.	i, ii
	The following figures and tables were updated: Figure 1-3 Figure 1-8 (new) Table 2-3 Figure 2-2 Table 2-8 Figure 2-11	1-2 1-6 2-2 2-9 2-12 2-23
	The "Design Environment" section was updated.	1-7
	The "Package Thermal Characteristics" was updated.	2-6