

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

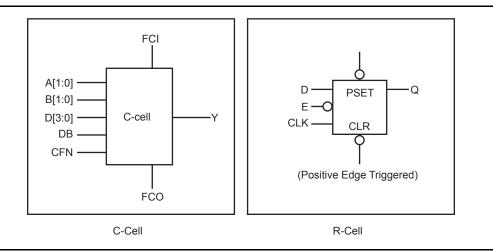
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	336
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	676-BGA
Supplier Device Package	676-FBGA (27x27)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-1fgg676

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



General Description

Figure 1-2 • Axcelerator Family Interconnect Elements

Logic Modules

Microsemi's Axcelerator family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell). The Axcelerator device can implement more than 4,000 combinatorial functions of up to five inputs (Figure 1-3).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and active-low enable control signals (Figure 1-3). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility (e.g., easy mapping of dual-data-rate functions into the FPGA) while conserving valuable clock resources. The clock source for the R-cell can be chosen from the hardwired clocks, routed clocks, or internal logic.

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

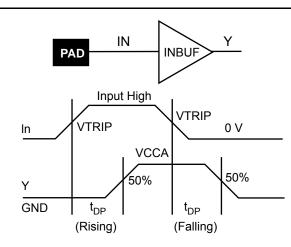
A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .

I/O Standard Electrical Specifications


Table 2-18 • Input Capacitance

Symbol	Parameter	Conditions	Min.	Max.	Units
C _{IN}	Input Capacitance	VIN = 0, f = 1.0 MHz		10	pF
CINCLK	Input Capacitance on HCLK and RCLK Pin	VIN = 0, f = 1.0 MHz		10	pF

Table 2-19 • I/O Input Rise Time and Fall Time*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)
LVTTL	No Requirement	50 ns
LVCMOS 2.5V	No Requirement	50 ns
LVCMOS 1.8V	No Requirement	50 ns
LVCMOS 1.5V	No Requirement	50 ns
PCI	No Requirement	50 ns
PCIX	No Requirement	50 ns
GTL+	No Requirement	50 ns
HSTL	No Requirement	50 ns
SSTL2	No Requirement	50 ns
HSTL3	No Requirement	50 ns
LVDS	No Requirement	50 ns
LVPECL	No Requirement	50 ns

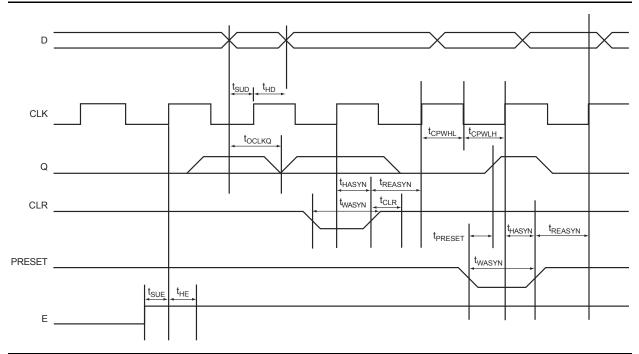

Note: *Input Rise/Fall time applies to all inputs, be it clock or data. Inputs have to ramp up/down linearly, in a monotonic way. Glitches or a plateau may cause double clocking. They must be avoided. For output rise/fall time, refer to the IBIS models for extraction.

Figure 2-9 • Input Buffer Delays

Detailed Specifications

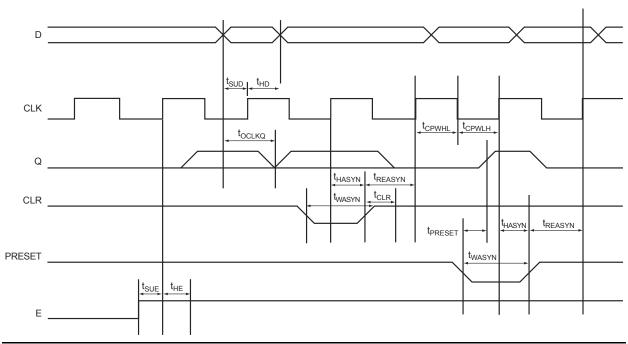


Figure 2-14 • Output Enable Register Timing Characteristics

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

		-2 Speed -1 Speed		Std Speed				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength = 4 (24 mA) / Low Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		10.45		11.90		13.99	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		10.61		12.08		14.21	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		10.47		11.93		14.02	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.92		1.94		1.94	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.57		2.58		2.59	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Timing Characteristics

Table 2-35 • 3.3 V PCI I/O Module Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

			peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V PCI Output Module Timing								
t _{DP}	Input Buffer		1.57		1.79		2.10	ns
t _{PY}	Output Buffer		1.91		2.18		2.56	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		1.61		1.62		1.63	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		1.45		1.47		1.47	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		2.55		2.90		3.41	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		3.52		4.01		4.72	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Detailed Specifications

The HM and CM modules can select between:

- The HCLK or CLK source respectively
- · A local signal routed on generic routing resources

This allows each core tile to have eight clocks independent of the other core tiles in the device.

Both HCLK and CLK are segmentable, meaning that individual branches of the global resource can be used independently.

Like the HM and CM modules, the HD and RD modules can select between:

- The HCLK or CLK source from the HM or CM module respectively
- A local signal routed on generic routing resources

The AX architecture is capable of supporting a large number of local clocks—24 segments per HCLK driving north-south and 28 segments per CLK driving east-west per core tile.

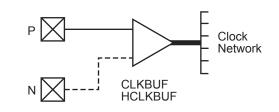
Microsemi's Designer software's place-and-route takes advantage of the segmented clock structure found in Axcelerator devices by turning off any unused clock segments. This results in not only better performance but also lower power consumption.

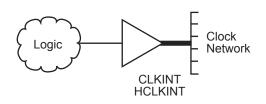
Global Resource Access Macros

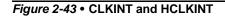
Global resources can be driven by one of three sources: external pad(s), an internal net, or the output of a PLL. These connections can be made by using one of three types of macros: CLKBUF, CLKINT, and PLLCLK.

CLKBUF and HCLKBUF

CLKBUF (HCLKBUF) is used to drive a CLK (HCLK) from external pads. These macros can be used either generically or with the specific I/O standard desired (e.g. CLKBUF_LVCMOS25, HCLKBUF_LVDS, etc.) (Figure 2-42).




Figure 2-42 • CLKBUF and HCLKBUF


Package pins CLKEP and CLKEN are associated with CLKE; package pins HCLKAP and HCLKAN are associated with HCLKA, etc.

Note that when CLKBUF (HCLKBUF) is used with a single-ended I/O standard, it must be tied to the P-pad of the CLK (HCLK) package pin. In this case, the CLK (HCLK) N-pad can be used for user signals.

CLKINT and HCLKINT

CLKINT (HCLKINT) is used to access the CLK (HCLK) resource internally from the user signals (Figure 2-43).

CLK1	CLK2
CLK1	Routed net
CLK1	Unused
CLK2	CLK1
CLK2	Routed net
CLK2	Both CLK1 and routed net
CLK2	Unused
Unused	CLK1
Unused	Routed net
Unused	Both CLK1 and routed net
Unused	Unused
Routed net	CLK1
Routed net	Unused
Both CLK1 and CLK2	Routed net
Both CLK1 and CLK2	Unused
Both CLK1 and routed net	Unusable
Both CLK2 and routed net	CLK1
Both CLK2 and routed net	Unused
CLK1, CLK2, and routed net	Unusable

Table 2-83 • South PLL Connections

Note: Designer software currently does not support all of these connections. Only exclusive connections where one output connects to a single net are supported at this time (e.g., CLK1 driving both CLK1 and CLK2 is not supported).

Detailed Specifications

Table 2-91 • Four RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

			–2 Speed		-1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	2.51		2.51		2.51		ns
t _{WCKP}	WCLK Minimum Period	3.26		3.26		3.26		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		2.36		2.69		3.16	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.83		3.23		3.79	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	2.96		2.96		2.96		ns
t _{RCKP}	RCLK Minimum Period	3.69		3.69		3.69		ns

Note: Timing data for these four cascaded RAM blocks uses a depth of 16,384. For all other combinations, use Microsemi's timing software.

Microsemi

Package Pin Assignments

BG729		BG729		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	
VCCIB0	B4	VCCIB4	W17	
VCCIB0	C4	VCCIB4	W18	
VCCIB0	J10	VCCIB5	AE4	
VCCIB0	J11	VCCIB5	AF4	
VCCIB0	J12	VCCIB5	AG4	
VCCIB0	K12	VCCIB5	V12	
VCCIB0	K13	VCCIB5	V13	
VCCIB1	A24	VCCIB5	W10	
VCCIB1	B24	VCCIB5	W11	
VCCIB1	C24	VCCIB5	W12	
VCCIB1	J16	VCCIB6	AD1	
VCCIB1	J17	VCCIB6	AD2	
VCCIB1	J18	VCCIB6	AD3	
VCCIB1	K15	VCCIB6	R10	
VCCIB1	K16	VCCIB6	T10	
VCCIB2	D25	VCCIB6	Т9	
VCCIB2	D26	VCCIB6	U9	
VCCIB2	D27	VCCIB6	V9	
VCCIB2	K19	VCCIB7	D1	
VCCIB2	L19	VCCIB7	D2	
VCCIB2	M18	VCCIB7	D3	
VCCIB2	M19	VCCIB7	K9	
VCCIB2	N18	VCCIB7	L9	
VCCIB3	AD25	VCCIB7	M10	
VCCIB3	AD26	VCCIB7	M9	
VCCIB3	AD27	VCCIB7	N10	
VCCIB3	R18	VCOMPLA	B13	
VCCIB3	T18	VCOMPLB	A14	
VCCIB3	T19	VCOMPLC	A15	
VCCIB3	U19	VCOMPLD	J15	
VCCIB3	V19	VCOMPLE	AG15	
VCCIB4	AE24	VCOMPLF	W15	
VCCIB4	AF24	VCOMPLG	AC14	
VCCIB4	AG24	VCOMPLH	W13	
VCCIB4	V15	VPUMP	D24	
VCCIB4	V16			
VCCIB4	W16			

FG324		FG324		FG324	
AX125 Function	Pin Number	AX125 Function	Pin Number	AX125 Function	Pin Number
GND	R4	NC	N4	VCCA	M8
GND	T16	NC	N5	VCCA	M9
GND	Т3	NC	R12	VCCA	P4
GND	U17	NC	R13	VCCA	R15
GND	U2	NC	R6	VCCPLA	D8
GND	V1	NC	R7	VCCPLB	E7
GND	V18	NC	T12	VCCPLC	B11
GND/LP	E5	NC	T6	VCCPLD	E11
NC	A10	NC	U16	VCCPLE	R11
NC	A11	NC	V17	VCCPLF	P12
NC	A12	PRA	E9	VCCPLG	U8
NC	A13	PRB	D9	VCCPLH	P8
NC	A8	PRC	P10	VCCDA	B3
NC	A9	PRD	R10	VCCDA	D14
NC	B12	ТСК	E6	VCCDA	E10
NC	F15	TDI	D7	VCCDA	J2
NC	F4	TDO	D5	VCCDA	K16
NC	G15	TMS	D4	VCCDA	P15
NC	G4	TRST	D6	VCCDA	P9
NC	H14	VCCA	E15	VCCDA	R5
NC	H15	VCCA	G10	VCCIB0	F7
NC	H5	VCCA	G11	VCCIB0	F8
NC	J1	VCCA	G5	VCCIB0	F9
NC	J14	VCCA	G8	VCCIB1	F10
NC	J15	VCCA	G9	VCCIB1	F11
NC	J5	VCCA	H12	VCCIB1	F12
NC	K14	VCCA	H7	VCCIB2	G13
NC	K15	VCCA	J12	VCCIB2	H13
NC	K5	VCCA	J7	VCCIB2	J13
NC	L14	VCCA	K12	VCCIB3	K13
NC	L15	VCCA	K7	VCCIB3	L13
NC	L5	VCCA	L12	VCCIB3	M13
NC	M4	VCCA	L7	VCCIB4	N10
NC	M5	VCCA	M10	VCCIB4	N11
NC	N17	VCCA	M11	VCCIB4	N12

Package Pin Assignments

FG324						
AX125 Function	Pin Number					
VCCIB5	N7					
VCCIB5	N8					
VCCIB5	N9					
VCCIB6	K6					
VCCIB6	L6					
VCCIB6	M6					
VCCIB7	G6					
VCCIB7	H6					
VCCIB7	J6					
VCOMPLA	B8					
VCOMPLB	E8					
VCOMPLC	C10					
VCOMPLD	E12					
VCOMPLE	U11					
VCOMPLF	P11					
VCOMPLG	Т9					
VCOMPLH	P7					
VPUMP	B15					

Microsemi

Package Pin Assignments

FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO197PB6F18	Y6	IO217PB6F20	R4	IO241NB7F22	K6
IO198NB6F18	AD1	IO218NB6F20	R2	IO241PB7F22	K5
IO198PB6F18	AE1	IO218PB6F20	T2	IO242NB7F22	H2
IO199NB6F18	AA2	IO219NB6F20	P3	IO242PB7F22	J2
IO199PB6F18	AB2	IO219PB6F20	R3	IO243NB7F22	J4
IO200NB6F18	Y3	IO220NB6F20	R1	IO243PB7F22	K4
IO200PB6F18	AA3	IO220PB6F20	T1	IO244NB7F22	H3
IO201NB6F18	V5	IO221NB6F20	P6	IO244PB7F22	J3
IO201PB6F18	W5	IO221PB6F20	P7	IO245NB7F22	G2
IO202NB6F18	AB1	IO223NB6F20	P5	IO245PB7F22	G1
IO202PB6F18	AC1	IO223PB6F20	P4	IO247NB7F23	J6
IO203NB6F19	V4	Bank 7		IO247PB7F23	J5
IO203PB6F19	W4	IO225NB7F21	N5	IO248NB7F23	E1
IO204NB6F19	V3	IO225PB7F21	N4	IO248PB7F23	F1
IO204PB6F19	W3	IO226NB7F21	N2	IO249NB7F23	E2
IO205NB6F19	U6	IO226PB7F21	N3	IO249PB7F23	F2
IO205PB6F19	V6	IO227NB7F21	N6	IO250NB7F23	G4
IO206NB6F19	W2	IO227PB7F21	N7	IO250PB7F23	H4
IO206PB6F19	Y2	IO229NB7F21	M7	IO251NB7F23	F3
IO207NB6F19	U4	IO229PB7F21	M6	IO251PB7F23	G3
IO207PB6F19	U5	IO231NB7F21	M5	IO253NB7F23	H6
IO208NB6F19	Y1	IO231PB7F21	M4	IO253PB7F23	H5
IO208PB6F19	AA1	IO232NB7F21	L1	IO254NB7F23	D2
IO209NB6F19	Т6	IO232PB7F21	M1	IO254PB7F23	D1
IO209PB6F19	Τ7	IO233NB7F21	M2	IO255NB7F23	E4
IO211NB6F19	Т3	IO233PB7F21	M3	IO255PB7F23	F4
IO211PB6F19	U3	IO235NB7F21	K2	IO256NB7F23	D3
IO212NB6F19	V1	IO235PB7F21	L2	IO256PB7F23	E3
IO212PB6F19	V2	IO236NB7F22	L5	IO257NB7F23	F5
IO213NB6F19	Т5	IO236PB7F22	L4	IO257PB7F23	G5
IO213PB6F19	T4	IO237NB7F22	L6	Dedicated	1/0
IO214NB6F20	U1	IO237PB7F22	L7	GND	A1
IO214PB6F20	U2	IO238NB7F22	K3	GND	A13
IO215NB6F20	R6	IO238PB7F22	L3	GND	A14
IO215PB6F20	R7	IO240NB7F22	J1	GND	A19
IO217NB6F20	R5	IO240PB7F22	K1	GND	A26

FG896		FG896		FG896	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
Bank 0	<u> </u>	IO17NB0F1	B11	IO34NB1F3	A17
IO00NB0F0	D6	IO17PB0F1	B10	IO34PB1F3	B17
IO00PB0F0	E6	IO18NB0F1	D11	IO35NB1F3	D18
IO01NB0F0	A5	IO18PB0F1	E11	IO35PB1F3	C18
IO01PB0F0	B5	IO19NB0F1	C12	IO36NB1F3	H17
IO02NB0F0	G9	IO19PB0F1	C11	IO36PB1F3	J17
IO02PB0F0	G8	IO20NB0F1	F12	IO37NB1F3	B19
IO03NB0F0	F8	IO20PB0F1	G12	IO37PB1F3	A19
IO03PB0F0	F7	IO21NB0F1	D12	IO38NB1F3	H18
IO04NB0F0	D7	IO21PB0F1	E12	IO38PB1F3	J18
IO04PB0F0	E7	IO22NB0F2	H13	IO39NB1F3	B20
IO05NB0F0	C7	IO22PB0F2	J13	IO39PB1F3	A20
IO05PB0F0	C6	IO23NB0F2	A12	IO40NB1F3	C20
IO06NB0F0	H9	IO23PB0F2	A11	IO40PB1F3	C19
IO06PB0F0	H8	IO24NB0F2	F13	IO41NB1F4	E20
IO07NB0F0	D8	IO24PB0F2	G13	IO41PB1F4	E19
IO07PB0F0	E8	IO25NB0F2	B13	IO42NB1F4	F18
IO08NB0F0	E9	IO25PB0F2	B12	IO42PB1F4	G18
IO08PB0F0	F9	IO26NB0F2	E14	IO43NB1F4	A22
IO09NB0F0	A7	IO26PB0F2	E13	IO43PB1F4	A21
IO09PB0F0	B7	IO27NB0F2	B14	IO44NB1F4	F20
IO10NB0F0	H10	IO27PB0F2	A14	IO44PB1F4	F19
IO10PB0F0	G10	IO28NB0F2	H14	IO45NB1F4	D21
IO11NB0F0	C9	IO28PB0F2	J14	IO45PB1F4	D20
IO11PB0F0	C8	IO29NB0F2	B15	IO46NB1F4	D22
IO12NB0F1	E10	IO29PB0F2	A15	IO46PB1F4	C22
IO12PB0F1	F10	IO30NB0F2/HCLKAN	C14	IO47NB1F4	A25
IO13NB0F1	D10	IO30PB0F2/HCLKAP	D14	IO47PB1F4	A24
IO13PB0F1	D9	IO31NB0F2/HCLKBN	E15	IO48NB1F4	H19
IO14NB0F1	F11	IO31PB0F2/HCLKBP	D15	IO48PB1F4	G19
IO14PB0F1	G11	Bank 1		IO49NB1F4	C24
IO15NB0F1	A10	IO32NB1F3/HCLKCN	E17	IO49PB1F4	C23
IO15PB0F1	A9	IO32PB1F3/HCLKCP	E16	IO50NB1F4	G20
IO16NB0F1	H12	IO33NB1F3/HCLKDN	C17	IO50PB1F4	H20
IO16PB0F1	H11	IO33PB1F3/HCLKDP	D17	IO51NB1F4	F21

Pin Number M8 Μ7 K4 L4 L6 M6 K5 L5 J4 J3 G2 H2 L8 L7 G3 H3 G4 H4 J6 K6 H5 J5 F2 F1 K8 K7 F4 F3 G6 H6 F5 G5 H7 J7

FG896		FG896		FG896	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	
IO206PB6F19	AB4	IO224NB6F20	R2	IO241NB7F22	
IO207NB6F19	W6	IO224PB6F20	T2	IO241PB7F22	
IO207PB6F19	W7	Bank 7		IO242NB7F22	
IO208NB6F19	AB3	IO225NB7F21	R7	IO242PB7F22	
IO208PB6F19	AC3	IO225PB7F21	R6	IO243NB7F22	Τ
IO209NB6F19	V8	IO226NB7F21	R4	IO243PB7F22	
IO209PB6F19	V9	IO226PB7F21	R5	IO244NB7F22	Τ
IO210NB6F19	AA2	IO227NB7F21	R8	IO244PB7F22	
IO210PB6F19	AA1	IO227PB7F21	R9	IO245NB7F22	
IO211NB6F19	V5	IO228NB7F21	P1	IO245PB7F22	
IO211PB6F19	W5	IO228PB7F21	R1	IO246NB7F22	
IO212NB6F19	Y3	IO229NB7F21	P9	IO246PB7F22	
IO212PB6F19	Y4	IO229PB7F21	P8	IO247NB7F23	
IO213NB6F19	V7	IO230NB7F21	N2	IO247PB7F23	
IO213PB6F19	V6	IO230PB7F21	P2	IO248NB7F23	
IO214NB6F20	W3	IO231NB7F21	P7	IO248PB7F23	
IO214PB6F20	W4	IO231PB7F21	P6	IO249NB7F23	Τ
IO215NB6F20	U8	IO232NB7F21	N3	IO249PB7F23	
IO215PB6F20	U9	IO232PB7F21	P3	IO250NB7F23	Τ
IO216NB6F20	W1	IO233NB7F21	P4	IO250PB7F23	
IO216PB6F20	W2	IO233PB7F21	P5	IO251NB7F23	
IO217NB6F20	U7	IO234NB7F21	L1	IO251PB7F23	Τ
IO217PB6F20	U6	IO234PB7F21	M1	IO252NB7F23	
IO218NB6F20	U4	IO235NB7F21	M4	IO252PB7F23	Τ
IO218PB6F20	V4	IO235PB7F21	N4	IO253NB7F23	Τ
IO219NB6F20	T5	IO236NB7F22	N7	IO253PB7F23	
IO219PB6F20	U5	IO236PB7F22	N6	IO254NB7F23	
IO220NB6F20	U3	IO237NB7F22	N8	IO254PB7F23	
IO220PB6F20	V3	IO237PB7F22	N9	IO255NB7F23	Τ
IO221NB6F20	Т8	IO238NB7F22	M5	IO255PB7F23	
IO221PB6F20	Т9	IO238PB7F22	N5	IO256NB7F23	
IO222NB6F20	U2	IO239NB7F22	L2	IO256PB7F23	Γ
IO222PB6F20	V2	IO239PB7F22	M2	IO257NB7F23	Ι
IO223NB6F20	T7	IO240NB7F22	L3	IO257PB7F23	
IO223PB6F20	T6	IO240PB7F22	M3	Dedicated I/	0

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
NC	AP9	PRB	F18	VCCA	T22
NC	B17	PRC	AD18	VCCA	U13
NC	B22	PRD	AH18	VCCA	U22
NC	B27	ТСК	J9	VCCA	V13
NC	B8	TDI	F7	VCCA	V22
NC	D10	TDO	L10	VCCA	W13
NC	D20	TMS	H8	VCCA	W22
NC	D23	TRST	E6	VCCA	Y13
NC	D25	VCCA	AA13	VCCA	Y22
NC	F3	VCCA	AA22	VCCDA	AF26
NC	F32	VCCA	AB14	VCCDA	AF9
NC	F33	VCCA	AB15	VCCDA	AG17
NC	F34	VCCA	AB16	VCCDA	AG18
NC	F4	VCCA	AB17	VCCDA	AH14
NC	G1	VCCA	AB18	VCCDA	AH15
NC	G32	VCCA	AB19	VCCDA	AH17
NC	G33	VCCA	AB20	VCCDA	AH20
NC	G34	VCCA	AB21	VCCDA	AH21
NC	H31	VCCA	AF8	VCCDA	AK29
NC	H33	VCCA	AK28	VCCDA	AK6
NC	J1	VCCA	G30	VCCDA	E15
NC	J3	VCCA	G5	VCCDA	E29
NC	J34	VCCA	N14	VCCDA	E7
NC	M1	VCCA	N15	VCCDA	F15
NC	M4	VCCA	N16	VCCDA	F21
NC	P1	VCCA	N17	VCCDA	F5
NC	P2	VCCA	N18	VCCDA	G20
NC	R31	VCCA	N19	VCCDA	H17
NC	T1	VCCA	N20	VCCDA	H18
NC	T2	VCCA	N21	VCCDA	H28
NC	V3	VCCA	P13	VCCDA	J18
NC	V34	VCCA	P22	VCCDA	V27
NC	W3	VCCA	R13	VCCDA	V6
NC	W34	VCCA	R22	VCCIB0	A5
PRA	J17	VCCA	T13	VCCIB0	B5

CQ352		CQ352		CQ352	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	21	GND	240	VCCA	14
GND	27	GND	246	VCCA	32
GND	33	GND	252	VCCA	56
GND	39	GND	258	VCCA	74
GND	45	GND	264	VCCA	87
GND	51	GND	265	VCCA	102
GND	57	GND	274	VCCA	114
GND	63	GND	280	VCCA	150
GND	69	GND	286	VCCA	162
GND	75	GND	292	VCCA	175
GND	81	GND	298	VCCA	191
GND	88	GND	310	VCCA	209
GND	89	GND	322	VCCA	233
GND	97	GND	330	VCCA	251
GND	103	GND	334	VCCA	263
GND	109	GND	340	VCCA	279
GND	115	GND	345	VCCA	291
GND	121	GND	352	VCCA	329
GND	133	NC	91	VCCA	339
GND	145	NC	130	VCCDA	2
GND	151	NC	131	VCCDA	44
GND	157	NC	174	VCCDA	90
GND	163	NC	268	VCCDA	116
GND	169	NC	307	VCCDA	117
GND	176	NC	308	VCCDA	132
GND	177	PRA	312	VCCDA	148
GND	186	PRB	311	VCCDA	149
GND	192	PRC	135	VCCDA	178
GND	198	PRD	134	VCCDA	221
GND	204	ТСК	349	VCCDA	266
GND	210	TDI	348	VCCDA	293
GND	216	TDO	347	VCCDA	294
GND	222	TMS	350	VCCDA	309
GND	228	TRST	351	VCCDA	327
GND	234	VCCA	3	VCCDA	328

Revision	Changes	Page
Revision 12 (v2.4)	Revised ordering information and timing data to reflect phase out of –3 speed grade options.	
	Table 2-3 was updated.	2
Revision 11 (v2.3)	The "Packaging Data" section is new.	iv
	Table 2-2 was updated.	2-1
	"VCCDA Supply Voltage" was updated.	2-9
	"PRA/B/C/D Probe A, B, C and D" was updated.	2-10
	The "User I/Os" was updated.	2-11
Revision 10	Figure 1-3 was updated.	1-2
(v2.2)	Table 2-2 was updated.	2-1
	The "Power-Up/Down Sequence" section was updated.	2-1
	Table 2-4 was updated.	2-3
	Table 2-5 was updated.	2-4
	The "Timing Characteristics" section was added.	2-7
	Table 2-7 was updated.	2-7
	Figure 2-1 was updated.	2-8
	The External Setup and Clock-to-Out (Pad-to-Pad) equations in the "Hardwired Clock – Using LVTTL 24 mA High Slew Clock I/O" section were updated.	2-8
	The External Setup and Clock-to-Out (Pad-to-Pad) in the "Routed Clock – Using LVTTL 24 mA High Slew Clock I/O" section were updated.	2-8
	The "Global Pins" section was updated.	2-10
	The "User I/Os" section was updated.	2-11
	Table 2-17 was updated.	2-19
	Figure 2-8 was updated.	2-20
	Figure 2-13 and Figure 2-14 were updated.	2-24
	The following timing parameters were renamed in I/O timing characteristic tables from Table 2-22 to Table 2-60:	2-26 to 2-52
	$t_{IOCLKQ} > t_{ICLKQ}$	
	t _{IOCLKY} > t _{OCLKQ}	
	Timing numbers were updated from Table 2-22 to Table 2-78.	2-26 to 2-69
	The "R-Cell" section was updated.	2-58
	Figure 2-59 was updated.	2-89
	Figure 2-60 was updated.	2-89
	Figure 2-67 was updated.	2-100
	Figure 2-68 was updated.	2-101
	Table 2-89 to Table 2-93 were updated.	2-90 to 2-94
	Table 2-98 to Table 2-102 were updated.	2-102 to 2-106

Datasheet Information

Revision	Changes	Page
Revision 10 (continued)	The "TRST" section was updated.	2-107
	The "Global Set Fuse" section was added.	2-109
	A footnote was added to "FG896" for the AX2000 regarding pins AB1, AE2, G1, and K2.	3-52
	Pinouts for the AX250, AX500, and AX1000 were added for "CQ352".	3-98
	Pinout for the AX1000 was added for "CG624".	3-115
Revision 9	Table 2-79 was updated.	2-69
(v2.1)	The "Low Power Mode" section was updated.	2-106
Revision 8 (v2.0)	Table 1 has been updated.	i
	The "Ordering Information" section has been updated.	ii
	The "Device Resources" section has been updated.	ii
	The "Temperature Grade Offerings" section is new.	iii
	The "Speed Grade and Temperature Grade Matrix" section has been updated.	iii
	Table 2-9 has been updated.	2-12
	Table 2-10 has been updated.	2-12
	Table 2-1 has been updated.	2-1
	Table 2-2 has been updated.	2-1
	Table 2-3 has been updated.	2-2
	Table 2-4 has been updated.	2-3
	Table 2-5 has been updated.	2-4
	The "Power Estimation Example" section has been updated.	2-5
	The "Thermal Characteristics" section has been updated.	2-6
	The "Package Thermal Characteristics" section has been updated.	2-6
	The "Timing Characteristics" section has been updated.	2-7
	The "Pin Descriptions" section has been updated.	2-9
	Timing numbers have been updated from the "3.3 V LVTTL" section to the "Timing Characteristics" section. Many AC Loads were updated as well.	2-25 to 2-59
	Timing characteristics for the "Hardwired Clocks" and "Routed Clocks" sections were updated.	2-66, 2-68
	Table 2-89 to Table 2-92 and Table 2-98 to Table 2-99 were updated.	2-90 to 2-93, 2-102 to 2-103
	The following sections were updated: "Low Power Mode", "Interface", "Data Registers (DRs)", "Security", "Silicon Explorer II Probe Interface", and "Programming"	2-106 to 2-110
	In the "PQ208" (AX500) section, pins 2, 52, and 156 changed from V _{CCDA} to V _{CCA} . For pins 170 and 171, the I/O names refer to pair 23 instead of 24.	3-84