E·XFL

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	115
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-1pqg208

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Figure 1-2 • Axcelerator Family Interconnect Elements

Logic Modules

Microsemi's Axcelerator family provides two types of logic modules: the register cell (R-cell) and the combinatorial cell (C-cell). The Axcelerator device can implement more than 4,000 combinatorial functions of up to five inputs (Figure 1-3).

The R-cell contains a flip-flop featuring asynchronous clear, asynchronous preset, and active-low enable control signals (Figure 1-3). The R-cell registers feature programmable clock polarity selectable on a register-by-register basis. This provides additional flexibility (e.g., easy mapping of dual-data-rate functions into the FPGA) while conserving valuable clock resources. The clock source for the R-cell can be chosen from the hardwired clocks, routed clocks, or internal logic.

I/O Standard Electrical Specifications

Table 2-18 • Input Capacitance

Symbol	Parameter	Conditions	Min.	Max.	Units
C _{IN}	Input Capacitance	VIN = 0, f = 1.0 MHz		10	pF
CINCLK	Input Capacitance on HCLK and RCLK Pin	VIN = 0, f = 1.0 MHz		10	pF

Table 2-19 • I/O Input Rise Time and Fall Time*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)
LVTTL	No Requirement	50 ns
LVCMOS 2.5V	No Requirement	50 ns
LVCMOS 1.8V	No Requirement	50 ns
LVCMOS 1.5V	No Requirement	50 ns
PCI	No Requirement	50 ns
PCIX	No Requirement	50 ns
GTL+	No Requirement	50 ns
HSTL	No Requirement	50 ns
SSTL2	No Requirement	50 ns
HSTL3	No Requirement	50 ns
LVDS	No Requirement	50 ns
LVPECL	No Requirement	50 ns

Note: *Input Rise/Fall time applies to all inputs, be it clock or data. Inputs have to ramp up/down linearly, in a monotonic way. Glitches or a plateau may cause double clocking. They must be avoided. For output rise/fall time, refer to the IBIS models for extraction.

Figure 2-9 • Input Buffer Delays

Microsemi

Detailed Specifications

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C (continued)

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Outp	out Drive Strength =3 (16 mA) / Low Slew Rate							
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		11.03		12.56		14.77	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		11.42		13.01		15.29	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		11.04		12.58		14.79	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.86		1.88		1.88	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.50		2.51		2.52	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Differential Standards

Physical Implementation

Implementing differential I/O standards requires the configuration of a pair of external I/O pads, resulting in a single internal signal. To facilitate construction of the differential pair, a single I/O Cluster contains the resources for a pair of I/Os. Configuration of the I/O Cluster as a differential pair is handled by Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit is carried through two signal lines, so two pins are needed. It also requires an external resistor termination. The voltage swing between these two signal lines is approximately 350 mV.

Figure 2-25 • LVDS Board-Level Implementation

The LVDS circuit consists of a differential driver connected to a terminated receiver through a constantimpedance transmission line. The receiver is a wide-common-mode-range differential amplifier. The common-mode range is from 0.2 V to 2.2 V for a differential input with 400 mV swing.

To implement the driver for the LVDS circuit, drivers from two adjacent I/O cells are used to generate the differential signals (note that the driver is not a current-mode driver). This driver provides a nominal constant current of 3.5 mA. When this current flows through a 100 Ω termination resistor on the receiver side, a voltage swing of 350 mV is developed across the resistor. The direction of the current flow is controlled by the data fed to the driver.

An external-resistor network (three resistors) is needed to reduce the voltage swing to about 350 mV. Therefore, four external resistors are required, three for the driver and one for the receiver.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI ¹	Supply Voltage	2.375	2.5	2.625	V
VOH	Output High Voltage	1.25	1.425	1.6	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common Mode Voltage	1.125	1.25	1.375	V
VICM2	Input Common Mode Voltage	0.2	1.25	2.2	V

 Table 2-56 • DC Input and Output Levels

Notes: 1. ±5%

2. Differential input voltage = $\pm 350 \text{ mV}$.

Timing Characteristics

Table 2-65 • AX125 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	outing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.35	0.40	0.47	ns
t _{RD2}	Routing delay for FO2	0.38	0.43	0.51	ns
t _{RD3}	Routing delay for FO3	0.43	0.48	0.57	ns
t _{RD4}	Routing delay for FO4	0.48	0.55	0.64	ns
t _{RD5}	Routing delay for FO5	0.55	0.62	0.73	ns
t _{RD6}	Routing delay for FO6	0.64	0.72	0.85	ns
t _{RD7}	Routing delay for FO7	0.79	0.89	1.05	ns
t _{RD8}	Routing delay for FO8	0.88	0.99	1.17	ns
t _{RD16}	Routing delay for FO16	1.49	1.69	1.99	ns
t _{RD32}	Routing delay for FO32	2.32	2.63	3.10	ns

Table 2-66 • AX250 Predicted Routing Delays

Worst-Case Commercial Conditions VCCA = $1.425 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$

		-2 Speed	–1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted Routing Delays					
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.39	0.45	0.53	ns
t _{RD2}	Routing delay for FO2	0.41	0.46	0.54	ns
t _{RD3}	Routing delay for FO3	0.48	0.55	0.64	ns
t _{RD4}	Routing delay for FO4	0.56	0.63	0.75	ns
t _{RD5}	Routing delay for FO5	0.60	0.68	0.80	ns
t _{RD6}	Routing delay for FO6	0.84	0.96	1.13	ns
t _{RD7}	Routing delay for FO7	0.90	1.02	1.20	ns
t _{RD8}	Routing delay for FO8	1.00	1.13	1.33	ns
t _{RD16}	Routing delay for FO16	2.17	2.46	2.89	ns
t _{RD32}	Routing delay for FO32	3.55	4.03	4.74	ns

Global Resource Distribution

At the root of each global resource is a PLL. There are two groups of four PLLs for every device. One group, located at the center of the north edge (in the I/O ring) of the chip, sources the four HCLKs. The second group, located at the center of the south edge (again in the I/O ring), sources the four CLKs (Figure 2-38).

Regardless of the type of global resource, HCLK or CLK, each of the eight resources reach the ClockTileDist (CTD) Cluster located at the center of every core tile with zero skew. From the ClockTileDist Cluster, all four HCLKs and four CLKs are distributed through the core tile (Figure 2-39).

Figure 2-39 • Example of HCLK and CLK Distributions on the AX2000

PLL Configurations

The following rules apply to the different PLL inputs and outputs:

Reference Clock

The RefCLK can be driven by (Figure 2-50):

- 1. Global routed clocks (CLKE/F/G/H) or user-created clock network
- 2. CLK1 output of an adjacent PLL
- 3. [H]CLKxP (single-ended or voltage-referenced)
- 4. [H]CLKxP/[H]CLKxN pair (differential modes like LVPECL or LVDS)

Feedback Clock

The feedback clock can be driven by (Figure 2-51 on page 2-78):

- 1. Global routed clocks (CLKE/F/G/H) or user-created clock network
- 2. External [H]CLKxP/N I/O pad(s) from the adjacent PLL cell
- 3. An internal signal from the PLL block

Any macro from the core, except HCLK nets

Figure 2-50 • Reference Clock Connections

Figure 2-51 • Feedback Clock Connections

Embedded Memory

The AX architecture provides extensive, high-speed memory resources to the user. Each 4,608 bit block of RAM contains its own embedded FIFO controller, allowing the user to configure each block as either RAM or FIFO.

To meet the needs of high performance designs, the memory blocks operate in synchronous mode for both read and write operations. However, the read and write clocks are completely independent, and each may operate up to and above 500 MHz.

No additional core logic resources are required to cascade the address and data buses when cascading different RAM blocks. Dedicated routing runs along each column of RAM to facilitate cascading.

The AX memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (FULL, EMPTY, AFULL, AEMPTY). Since read and write operations can occur asynchronously to one another, special control circuitry is included to prevent metastability, overflow, and underflow. A block diagram of the memory module is illustrated in Figure 2-57.

During RAM operation, read (RA) and write (WA) addresses are sourced by user logic and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Enables with programmable polarity are provided to create upper address bits for cascading up to 16 memory blocks. When cascading memory blocks, the bussed signals WA, WD, WEN, RA, RD, and REN are internally linked to eliminate external routing congestion.

Figure 2-57 • Axcelerator Memory Module

			-2 Speed		-1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		5.78		6.58		7.74	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		5.78		6.58		7.74	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		5.78		6.58		7.74	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	5.13		5.13		5.13		ns
t _{WCKP}	WCLK Minimum Period	5.88		5.88		5.88		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		6.75		7.69		9.04	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		6.75		7.69		9.04	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		3.39		3.86		4.54	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		4.93		5.62		6.61	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	5.77		5.77		5.77		ns
t _{RCKP}	RCLK Minimum Period	6.50		6.50		6.50		ns

Table 2-92 • Eight RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

Note: Timing data for these eight cascaded RAM blocks uses a depth of 32,768. For all other combinations, use Microsemi's timing software.

FIFO

Every memory block has its own embedded FIFO controller. Each FIFO block has one read port and one write port. This embedded FIFO controller uses no internal FPGA logic and features:

- Glitch-free FIFO Flags
- · Gray-code address counters/pointers to prevent metastability problems
- Overflow and underflow control

Both ports are configurable in various sizes from 4k x 1 to 128 x 36, similar to the RAM block size. Each port is fully synchronous.

Read and write operations can be completely independent. Data on the appropriate WD pins are written to the FIFO on every active WCLK edge as long as WEN is high. Data is read from the FIFO and output on the appropriate RD pins on every active RCLK edge as long as REN is asserted.

The FIFO block offers programmable almost-empty (AEMPTY) and almost-full (AFULL) flags as well as EMPTY and FULL flags (Figure 2-61):

- The FULL flag is synchronous to WCLK. It allows the FIFO to inhibit writing when full.
- The EMPTY flag is synchronous to RCLK. It allows the FIFO to inhibit reading at the empty condition.

Gray code counters are used to prevent metastability problems associated with flag logic. The depth of the FIFO is dependent on the data width and the number of memory blocks used to create the FIFO. The write operations to the FIFO are synchronous with respect to the WCLK, and the read operations are synchronous with respect to the RCLK.

The FIFO block may be reset to the empty state.

Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller

BG729		BG729		BG729	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	B27	GND	R11	VCCA	K11
GND	B3	GND	R12	VCCA	K17
GND	C1	GND	R13	VCCA	K18
GND	C2	GND	R14	VCCA	L10
GND	C25	GND	R15	VCCA	L18
GND	C26	GND	R16	VCCA	U10
GND	C27	GND	R17	VCCA	U18
GND	C3	GND	T11	VCCA	V10
GND	E27	GND	T12	VCCA	V11
GND	L11	GND	T13	VCCA	V17
GND	L12	GND	T14	VCCA	V18
GND	L13	GND	T15	VCCPLA	A13
GND	L14	GND	T16	VCCPLB	J13
GND	L15	GND	T17	VCCPLC	B15
GND	L16	GND	U11	VCCPLD	C15
GND	L17	GND	U12	VCCPLE	AG14
GND	M11	GND	U13	VCCPLF	AF14
GND	M12	GND	U14	VCCPLG	AB13
GND	M13	GND	U15	VCCPLH	AG13
GND	M14	GND	U16	VCCDA	A11
GND	M15	GND	U17	VCCDA	AB12
GND	M16	GND/LP	J8	VCCDA	AC12
GND	M17	NC	U3	VCCDA	AC25
GND	N11	PRA	J14	VCCDA	AD16
GND	N12	PRB	D14	VCCDA	AD17
GND	N13	PRC	V14	VCCDA	E16
GND	N14	PRD	AB14	VCCDA	E2
GND	N15	ТСК	E4	VCCDA	E24
GND	N16	TDI	D4	VCCDA	F12
GND	N17	TDO	J9	VCCDA	F16
GND	P11	TMS	H8	VCCDA	F7
GND	P12	TRST	E3	VCCDA	K14
GND	P13	VCCA	AA21	VCCDA	P10
GND	P14	VCCA	AD5	VCCDA	P18
GND	P15	VCCA	E1	VCCDA	W14
GND	P16	VCCA	G22	VCCDA	W9
GND	P17	VCCA	K10	VCCIB0	A4

Package Pin Assignments

FG256-Pin FB	GA	FG256-Pin FBGA		FG256-Pin FBGA	
AX125 Function	Pin Number	AX125 Function	Pin Number	AX125 Function	Pin Number
Bank 0		IO20NB2F2	F15	IO41PB3F3	L14
IO01NB0F0	B4	IO20PB2F2	E15	Bank 4	
IO01PB0F0	B3	IO21NB2F2	C16	IO42NB4F4	N12
IO03NB0F0	A4	IO21PB2F2	B16	IO42PB4F4	N13
IO03PB0F0	A3	IO22NB2F2	H13	IO43NB4F4	T14
IO04NB0F0	B6	IO22PB2F2	G13	IO43PB4F4	R14
IO04PB0F0	B5	IO23NB2F2	E16	IO44PB4F4	T15
IO06NB0F0	A6	IO23PB2F2	D16	IO45NB4F4	R12
IO06PB0F0	A5	IO25NB2F2	H15	IO45PB4F4	R13
IO07NB0F0/HCLKAN	B8	IO25PB2F2	G15	IO46NB4F4	P11
IO07PB0F0/HCLKAP	B7	IO26NB2F2	H14	IO46PB4F4	P12
IO08NB0F0/HCLKBN	A9	IO26PB2F2	G14	IO47PB4F4	T11
IO08PB0F0/HCLKBP	A8	IO27NB2F2	G16	IO48NB4F4	T12
Bank 1		IO27PB2F2	F16	IO48PB4F4	T13
IO09NB1F1/HCLKCN	C10	IO28NB2F2	K15	IO49NB4F4/CLKEN	R9
IO09PB1F1/HCLKCP	C9	IO28PB2F2	K16	IO49PB4F4/CLKEP	R10
IO10NB1F1/HCLKDN	B11	IO29NB2F2	J16	IO50NB4F4/CLKFN	Т8
IO10PB1F1/HCLKDP	B10	IO29PB2F2	H16	IO50PB4F4/CLKFP	Т9
IO12NB1F1	A13	Bank 3	Bank 3		
IO12PB1F1	A12	IO30NB3F3	K13	IO51NB5F5/CLKGN	P7
IO13NB1F1	B13	IO30PB3F3	J13	IO51PB5F5/CLKGP	P8
IO13PB1F1	B12	IO31NB3F3	K14	IO52NB5F5/CLKHN	R6
IO14NB1F1	C12	IO31PB3F3	J14	IO52PB5F5/CLKHP	R7
IO14PB1F1	C11	IO33NB3F3	L15	IO54NB5F5	T5
IO15NB1F1	A15	IO33PB3F3	L16	IO54PB5F5	T6
IO15PB1F1	B14	IO35NB3F3	P16	IO55NB5F5	P5
IO16NB1F1	C15	IO35PB3F3	N16	IO55PB5F5	P6
IO16PB1F1	C14	IO36PB3F3	M16	IO56NB5F5	Т3
IO17NB1F1	D13	IO37NB3F3	P15	IO56PB5F5	T4
IO17PB1F1	D12	IO37PB3F3	R16	IO57NB5F5	R3
Bank 2		IO39NB3F3	N15	IO57PB5F5 R4	
IO18NB2F2	F13	IO39PB3F3	M15	IO58NB5F5	R1
IO18PB2F2	E13	IO40NB3F3	M13	IO58PB5F5	T2
IO19NB2F2	F14	IO40PB3F3	L13	IO59NB5F5	N4
IO19PB2F2	E14	IO41NB3F3	M14	IO59PB5F5	N5

FG256		FG256	FG256		
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
Bank 0		IO32NB2F2	C16	IO61PB3F3	L14
IO01NB0F0	B4	IO32PB2F2	B16	Bank 4	•
IO01PB0F0	B3	IO33NB2F2	F15	IO62NB4F4	N12
IO03NB0F0	A4	IO33PB2F2	E15	IO62PB4F4	N13
IO03PB0F0	A3	IO35NB2F2	H13	IO63NB4F4	T14
IO05NB0F0	B6	IO35PB2F2	G13	IO63PB4F4	R14
IO05PB0F0	B5	IO36NB2F2	E16	IO66PB4F4	T15
IO07NB0F0	A6	IO36PB2F2	D16	IO67NB4F4	R12
IO07PB0F0	A5	IO38NB2F2	H15	IO67PB4F4	R13
IO12NB0F0/HCLKAN	B8	IO38PB2F2	G15	IO69NB4F4	P11
IO12PB0F0/HCLKAP	B7	IO39NB2F2	H14	IO69PB4F4	P12
IO13NB0F0/HCLKBN	A9	IO39PB2F2	G14	IO70PB4F4	T11
IO13PB0F0/HCLKBP	A8	IO40NB2F2	G16	IO73NB4F4	T12
Bank 1		IO40PB2F2	F16	IO73PB4F4	T13
IO14NB1F1/HCLKCN	C10	IO43NB2F2	K15	IO74NB4F4/CLKEN	R9
IO14PB1F1/HCLKCP	C9	IO43PB2F2	K16	IO74PB4F4/CLKEP	R10
IO15NB1F1/HCLKDN	B11	IO44NB2F2	J16	IO75NB4F4/CLKFN	Т8
IO15PB1F1/HCLKDP	B10	IO44PB2F2	H16	IO75PB4F4/CLKFP	Т9
IO17NB1F1	A13	Bank 3	<u>.</u>	Bank 5	•
IO17PB1F1	A12	IO45NB3F3	K13	IO76NB5F5/CLKGN	P7
IO19NB1F1	B13	IO45PB3F3	J13	IO76PB5F5/CLKGP	P8
IO19PB1F1	B12	IO46NB3F3	K14	IO77NB5F5/CLKHN	R6
IO21NB1F1	C12	IO46PB3F3	J14	IO77PB5F5/CLKHP	R7
IO21PB1F1	C11	IO52NB3F3	L15	IO79NB5F5	T5
IO23NB1F1	A15	IO52PB3F3	L16	IO79PB5F5	Т6
IO23PB1F1	B14	IO54NB3F3	P16	IO81NB5F5	P5
IO26NB1F1	C15	IO54PB3F3	N16	IO81PB5F5	P6
IO26PB1F1	C14	IO55PB3F3	M16	IO83NB5F5	Т3
IO27NB1F1	D13	IO56NB3F3	P15	IO83PB5F5	T4
IO27PB1F1	D12	IO56PB3F3	R16	IO85NB5F5	R3
Bank 2		IO58NB3F3	N15	IO85PB5F5	R4
IO29NB2F2	F13	IO58PB3F3	M15	IO88NB5F5	R1
IO29PB2F2	E13	IO59NB3F3	M13	IO88PB5F5	T2
IO30NB2F2	F14	IO59PB3F3	L13	IO89NB5F5	N4
IO30PB2F2	E14	IO61NB3F3	M14	IO89PB5F5	N5

FG324		FG324	ļ	FG324	
AX125 Function	Pin Number	AX125 Function	Pin Number	AX125 Function	Pin Number
GND	R4	NC	N4	VCCA	M8
GND	T16	NC	N5	VCCA	M9
GND	Т3	NC	R12	VCCA	P4
GND	U17	NC	R13	VCCA	R15
GND	U2	NC	R6	VCCPLA	D8
GND	V1	NC	R7	VCCPLB	E7
GND	V18	NC	T12	VCCPLC	B11
GND/LP	E5	NC	Т6	VCCPLD	E11
NC	A10	NC	U16	VCCPLE	R11
NC	A11	NC	V17	VCCPLF	P12
NC	A12	PRA	E9	VCCPLG	U8
NC	A13	PRB	D9	VCCPLH	P8
NC	A8	PRC	P10	VCCDA	B3
NC	A9	PRD	R10	VCCDA	D14
NC	B12	ТСК	E6	VCCDA	E10
NC	F15	TDI	D7	VCCDA	J2
NC	F4	TDO	D5	VCCDA	K16
NC	G15	TMS	D4	VCCDA	P15
NC	G4	TRST	D6	VCCDA	P9
NC	H14	VCCA	E15	VCCDA	R5
NC	H15	VCCA	G10	VCCIB0	F7
NC	H5	VCCA	G11	VCCIB0	F8
NC	J1	VCCA	G5	VCCIB0	F9
NC	J14	VCCA	G8	VCCIB1	F10
NC	J15	VCCA	G9	VCCIB1	F11
NC	J5	VCCA	H12	VCCIB1	F12
NC	K14	VCCA	H7	VCCIB2	G13
NC	K15	VCCA	J12	VCCIB2	H13
NC	K5	VCCA	J7	VCCIB2	J13
NC	L14	VCCA	K12	VCCIB3	K13
NC	L15	VCCA	K7	VCCIB3	L13
NC	L5	VCCA	L12	VCCIB3	M13
NC	M4	VCCA	L7	VCCIB4	N10
NC	M5	VCCA	M10	VCCIB4	N11
NC	N17	VCCA	M11	VCCIB4	N12

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Package Pin Assignments

FG896		FG896		FG896	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
NC	K1	VCCA	N20	VCCDA	AF19
NC	K2	VCCA	P11	VCCDA	C13
NC	L30	VCCA	P20	VCCDA	C5
NC	M30	VCCA	R11	VCCDA	D13
NC	N29	VCCA	R20	VCCDA	D19
NC	T1	VCCA	T11	VCCDA	D3
NC	U1	VCCA	T20	VCCDA	E18
NC	W30	VCCA	U11	VCCDA	F26
NC	Y1	VCCA	U20	VCCDA	G16
NC	Y2	VCCA	V11	VCCDA	T25
NC	Y30	VCCA	V20	VCCDA	T4
PRA	G15	VCCA	W11	VCCIB0	A3
PRB	D16	VCCA	W20	VCCIB0	B3
PRC	AB16	VCCA	Y12	VCCIB0	J10
PRD	AF16	VCCA	Y13	VCCIB0	J11
ТСК	G7	VCCA	Y14	VCCIB0	J12
TDI	D5	VCCA	Y15	VCCIB0	K11
TDO	J8	VCCA	Y16	VCCIB0	K12
TMS	F6	VCCA	Y17	VCCIB0	K13
TRST	C4	VCCA	Y18	VCCIB0	K14
VCCA	AD6	VCCA	Y19	VCCIB0	K15
VCCA	AH26	VCCPLA	G14	VCCIB1	A28
VCCA	E28	VCCPLB	H15	VCCIB1	B28
VCCA	E3	VCCPLC	G17	VCCIB1	J19
VCCA	L12	VCCPLD	J16	VCCIB1	J20
VCCA	L13	VCCPLE	AH17	VCCIB1	J21
VCCA	L14	VCCPLF	AC16	VCCIB1	K16
VCCA	L15	VCCPLG	AH14	VCCIB1	K17
VCCA	L16	VCCPLH	AD15	VCCIB1	K18
VCCA	L17	VCCDA	AD24	VCCIB1	K19
VCCA	L18	VCCDA	AD7	VCCIB1	K20
VCCA	L19	VCCDA	AF12	VCCIB2	C29
VCCA	M11	VCCDA	AF13	VCCIB2	C30
VCCA	M20	VCCDA	AF15	VCCIB2	K22
VCCA	N11	VCCDA	AF18	VCCIB2	L21

Package Pin Assignments

CQ352				
AX1000 Function	Pin Number			
VCCDA	346			
VCCIB0	321			
VCCIB0	333			
VCCIB0	344			
VCCIB1	273			
VCCIB1	285			
VCCIB1	297			
VCCIB2	227			
VCCIB2	239			
VCCIB2	245			
VCCIB2	257			
VCCIB3	185			
VCCIB3	197			
VCCIB3	203			
VCCIB3	215			
VCCIB4	144			
VCCIB4	156			
VCCIB4	168			
VCCIB5	96			
VCCIB5	108			
VCCIB5	120			
VCCIB6	50			
VCCIB6	62			
VCCIB6	68			
VCCIB6	80			
VCCIB7	8			
VCCIB7	20			
VCCIB7	26			
VCCIB7	38			
VCCPLA	317			
VCCPLB	315			
VCCPLC	303			
VCCPLD	301			
VCCPLE	140			
VCCPLF	138			

CQ352				
AX1000 Function	Pin Number			
VCCPLG	126			
VCCPLH	124			
VCOMPLA	318			
VCOMPLB	316			
VCOMPLC	304			
VCOMPLD	302			
VCOMPLE	141			
VCOMPLF	139			
VCOMPLG	127			
VCOMPLH	125			
VPUMP	267			

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

Datasheet Information

Revision	Changes	Page
Revision 17 (continued)	The C180 package was removed from product tables and the "Package Pin Assignments" section (PDN 0909).	3-1
	Package names used in the "Axcelerator Family Product Profile" and "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	i, 3-1
	The "Introduction" section for "User I/Os" was updated as follows:	2-11
	"The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os" (SARs 24181, 24309).	
	Power values in Table 2-4 • Default CLOAD/VCCI were updated to reflect those of SmartPower (SAR 33945).	2-3
	Two parameter names were corrected in Figure 2-10 • Output Buffer Delays. One occurrence of t_{ENLZ} was changed to t_{ENZL} and one occurrence of t_{ENHZ} was changed to t_{ENZH} (SAR 33890).	2-22
	The "Timing Model" section was updated with new timing values. Timing tables in the "I/O Specifications" section were updated to include enable paths. Values in the timing tables in the "Voltage-Referenced I/O Standards" section and "Differential Standards" section were updated. Table 2-63 • R-Cell was updated (SAR 33945).	2-8, 2-26 to 2-53
	Figure 2-11 • Timing Model was replaced (SAR 33043).	2-23
	The timing tables for "RAM" and "FIFO" were updated (SAR 33945).	2-90 to 2-106
	"Data Registers (DRs)" values were modified for IDCODE and USERCODE (SARs 18257, 26406).	2-108
	The package diagram for the "CQ208" package was incorrect and has been replaced with the correct diagram (SARs 23865, 26345).	3-89
Revision 16 (v2.8, Oct. 2009)	The datasheet was updated to include AX2000-CQ2526 information.	N/A
	MIL-STD-883 Class B is no longer supported by Axcelerator FPGAs and as a result was removed.	N/A
	A footnote was added to the "Introduction" in the "Axcelerator Clock Management System" section.	2-75
Revision 15 (v2.7, Nov. 2008)	RoHS-compliant information was added to the "Ordering Information".	ii
	ACTgen was changed to SmartGen because ACTgen is obsolete.	N/A
Revision 14 (v2.6)	In Table 2-4, the units for the $P_{\text{LOAD}},P_{10},\text{and}P_{\text{I/O}}$ were updated from mW/MHz to mW/MHz.	2-3
	In the "Pin Descriptions"section, the HCLK and CLK descriptions were updated to include tie-off information.	2-9
	The "Global Resource Distribution" section was updated.	2-70
	The " CG624" table was updated.	3-116
Revision 13 (v2.5)	A note was added to Table 2-2.	2-1
	In the "Package Thermal Characteristics", the temperature was changed from 150°C to 125°C.	2-6