

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	317
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-2fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

*Poutputs = PI/O * po * Fpo*

Cload	=	the output load (technology dependent)
VCCI	=	the output voltage (technology dependent)
ро	=	the number of outputs
F _{po}	=	the average output frequency

Pmemory = P11 * Nblock * FRCLK + P12 * Nblock * FWCLK

 N_{block} = the number of RAM/FIFO blocks (1 block = 4k)

- F_{RCLK} = the read-clock frequency of the memory
- F_{WCLK} = the write-clock frequency of the memory

PPLL = P13 * FCLK

 F_{RefCLK} = the clock frequency of the clock input of the PLL

 F_{CLK} = the clock frequency of the first clock output of the PLL

Power Estimation Example

This example employs an AX1000 shift-register design with 1,080 R-cells, one C-cell, one reset input, and one LVTTL 12 mA output, with high slew.

This design uses one HCLK at 100 MHz.

ms =	1,080 (in a shift register - 100% of R-cells are toggling at each clock cycle)
Fs =	100 MHz
s =	1080
=>	P _{HCLK} = (P1 + P2 * s + P3 * sqrt[s]) * Fs = 79 mW and Fs = 100 MHz
=>	P _{R-cells} = P7 * ms * Fs = 173 mW
mc =	1 (1 C-cell in this shift-register) and Fs = 100 MHz
=>	P _{C-cells} = P8 * mc * Fs = 0.14 mW
F _{pi} ~ 0 N	ЛНz
	and pi= 1 (1 reset input => this is why F _{pi} =0)
=>	P _{inputs} = P9 * pi * F _{pi} = 0 mW
F _{po} = 50	MHz
	and po = 1
=>	$P_{outputs} = P_{I/O} * po * F_{po} = 27.10 \text{ mW}$
No RAM	I/FIFO in this shift-register
=>	P _{memory} = 0 mW
No PLL	in this shift-register
=>	P _{PLL} = 0 mW
P _{ac} = P _F	$P_{HCLK} + P_{CLK} + P_{R-cells} + P_{C-cells} + P_{inputs} + P_{outputs} + P_{memory} + P_{PLL} = 276 \text{ mW}$ $P_{dc} = 7.5\text{mA} * 1.5\text{V} = 11.25 \text{ mW}$
	P _{total} = P _{dc} + P _{ac} = 11.25 mW + 276mW = 290.30 mW

User I/Os²

Introduction

The Axcelerator family features a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) with its bank-selectable I/Os. Table 2-8 on page 2-12 contains the I/O standards supported by the Axcelerator family, and Table 2-10 on page 2-12 compares the features of the different I/O standards.

Each I/O provides programmable slew rates, drive strengths, and weak pull-up and weak pull-down circuits. The slew rate setting is effective for both rising and falling edges.

I/O standards, except 3.3 V PCI and 3.3 V PCI-X, are capable of hot insertion. 3.3 V PCI and 3.3 V PCI-X are 5 V tolerant with the aid of an external resistor.

The input buffer has an optional user-configurable delay element. The element can reduce or eliminate the hold time requirement for input signals registered within the I/O cell. The value for the delay is set on a bank-wide basis. Note that the delay WILL be a function of process variations as well as temperature and voltage changes.

Each I/O includes three registers: an input (InReg), an output (OutReg), and an enable register (EnReg). I/Os are organized into banks, and there are eight banks per device—two per side (Figure 2-6 on page 2-18). Each I/O bank has a common VCCI, the supply voltage for its I/Os.

For voltage-referenced I/Os, each bank also has a common reference-voltage bus, VREF. While VREF must have a common voltage for an entire I/O bank, its location is user-selectable. In other words, any user I/O in the bank can be selected to be a VREF.

The location of the VREF pin should be selected according to the following rules:

- Any pin that is assigned as a VREF can control a maximum of eight user I/O pad locations in each direction (16 total maximum) within the same I/O bank.
- I/O pad locations listed as no connects are counted as part of the 16 maximum. In many cases, this leads to fewer than eight user I/O package pins in each direction being controlled by a VREF pin.
- Dedicated I/O pins such as GND and VCCI are counted as part of the 16.
- The two user I/O pads immediately adjacent on each side of the VREF pin (four in total) may only be used as inputs. The exception is when there is a VCCI/GND pair separating the VREF pin and the user I/O pad location.
- The user does not need to assign VREF pins for OUTBUF and TRIBUF. VREF pins are needed only for input and bidirectional I/Os.

The differential amplifier supply voltage VCCDA should be connected to 3.3 V.

A user can gain access to the various I/O standards in three ways:

- Instantiate specific library macros that represent the desired specific standard.
- Use generic I/O macros and then use Designer's PinEditor to specify the desired I/O standards (please note that this is not applicable to differential standards).
- A combination of the first two methods.

Refer to the I/O Features in Axcelerator Family Devices application note and the Antifuse Macro Library Guide for more details.

^{2.} Do not use an external resister to pull the I/O above V_{CCI} for a higher logic "1" voltage level. The desired higher logic "1" voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above V_{CCI} .

Module Specifications

C-Cell

Introduction

The C-cell is one of the two logic module types in the AX architecture. It is the combinatorial logic resource in the Axcelerator device. The AX architecture implements a new combinatorial cell that is an extension of the C-cell implemented in the SX-A family. The main enhancement of the new C-cell is the addition of carry-chain logic.

The C-cell can be used in a carry-chain mode to construct arithmetic functions. If carry-chain logic is not required, it can be disabled.

The C-cell features the following (Figure 2-27):

- Eight-input MUX (data: D0-D3, select: A0, A1, B0, B1). User signals can be routed to any one of these inputs. Any of the C-cell inputs (D0-D3, A0, A1, B0, B1) can be tied to one of the four routed clocks (CLKE/F/G/H).
- Inverter (DB input) can be used to drive a complement signal of any of the inputs to the C-cell.
- A carry input and a carry output. The carry input signal of the C-cell is the carry output from the C-cell directly to the north.
- · Carry connect for carry-chain logic with a signal propagation time of less than 0.1 ns.
- A hardwired connection (direct connect) to the adjacent R-cell (Register Cell) for all C-cells on the east side of a SuperCluster with a signal propagation time of less than 0.1 ns.

This layout of the C-cell (and the C-cell Cluster) enables the implementation of over 4,000 functions of up to five bits. For example, two C-cells can be used together to implement a four-input XOR function in a single cell delay.

The carry-chain configuration is handled automatically for the user with Microsemi's extensive macro library (please see the *Antifuse Macro Library Guide* for a complete listing of available Axcelerator macros).

Figure 2-27 • C-Cell

Buffer Module

Introduction

An additional resource inside each SuperCluster is the Buffer (B) module (Figure 1-4 on page 1-3). When a fanout constraint is applied to a design, the synthesis tool inserts buffers as needed. The buffer module has been added to the AX architecture to avoid logic duplication resulting from the hard fanout constraints. The router utilizes this logic resource to save area and reduce loading and delays on medium-to-high-fanout nets.

Timing Models and Waveforms

Figure 2-33 • Buffer Module Timing Model

Figure 2-34 • Buffer Module Waveform

Timing Characteristics

Table 2-64 • Buffer Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 Speed		Std Speed		
Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units	
Buffer Module Propagation Delays								
t _{BFPD}	Any input to output Y		0.12		0.14		0.16	ns

Microsemi

Detailed Specifications

Implementation Example:

Figure 2-47 shows a complex clock distribution example. The reference clock (RefCLK) of PLLE is being sourced from non-clock signal pins (INBUF to PLLINT). The CLK1 output of PLLE is being fed to the RefCLK input of PLLF. The CLK2 output of PLLE is driving logic (via PLLOUT). In turn, this logic is driving the global resource CLKE. PLLF is driving both CLKF and CLKG global resources.

Figure 2-47 • Complex Clock Distribution Example

single-ended, or voltage-referenced standard. The [H]CLKxN pad can only be used as a differential pair with [H]CLKxP.

The block marked "/i Delay Match" is a fixed delay equal to that of the i divider. The "/j Delay Match" block has the same function as its j divider counterpart.

Functional Description

Figure 2-48 on page 2-75 illustrates a block diagram of the PLL. The PLL contains two dividers, i and j, that allow frequency scaling of the clock signal:

- The i divider in the feedback path allows multiplication of the input clock by integer factors ranging from 1 to 64, and the resultant frequency is available at the output of the PLL block.
- The j divider divides the PLL output by integer factors ranging from 1 to 64, and the divided clock is available at CLK1.
- The two dividers together can implement any combination of multiplication and division up to a maximum frequency of 1 GHz on CLK1. Both the CLK1 and CLK2 outputs have a fixed 50/50 duty cycle.
- The output frequencies of the two clocks are given by the following formulas (f_{REF} is the reference clock frequency):

 $f_{CLK1} = f_{REF} * (DividerI) / (DividerJ)$

 $f_{CLK2} = f_{REF} * (DividerI)$

FQ 5

EQ 4

CLK2 provides the PLL output directly—without division

The input and output frequency ranges are selected by LowFreq and Osc(2:0), respectively. These functions and their possible values are detailed in Table 2-80 on page 2-77.

The delay lines shown in Figure 2-48 on page 2-75 are programmable. The feedback clock path can be delayed (using the five DelayLine bits) relative to the reference clock (or vice versa) by up to 3.75 ns in increments of 250 ps. Table 2-80 on page 2-77 describes the usage of these bits. The delay increments are independent of frequency, so this results in phase changes that vary with frequency. The delay value is highly dependent on V_{CC} and the speed grade.

Figure 2-49 is a logical diagram of the various control signals to the PLL and shows how the PLL interfaces with the global and routing networks of the FPGA. Note that not all signals are user-accessible. These non-user-accessible signals are used by the place-and-route tool to control the configuration of the PLL. The user gains access to these control signals either based upon the connections built in the user's design or through the special macros (Table 2-84 on page 2-81) inserted into the design. For example, connecting the macro PLLOUT to CLK2 will control the OUTSEL signal.

Note: Not all signals are available to the user.

Figure 2-49 • PLL Logical Interface

Clock Skew Minimization

Figure 2-56 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (CLK2) feeds a routed clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to the *Axcelerator Family PLL and Clock Management* application note for more information.

Figure 2-56 • Using the PLL for Clock Deskewing

RAM

Each memory block consists of 4,608 bits that can be organized as 128x36, 256x18, 512x9, 1kx4, 2kx2, or 4kx1 and are cascadable to create larger memory sizes. This allows built-in bus width conversion (Table 2-86). Each block has independent read and write ports which enable simultaneous read and write operations.

Data-word (in bits)	Depth	Address Bus	Data Bus
1	4,096	RA/WA[11:0]	RD/WD[0]
2	2,048	RA/WA[10:0]	RD/WD[1:0]
4	1,024	RA/WA[9:0]	RD/WD[3:0]
9	512	RA/WA[8:0]	RD/WD[8:0]
18 256		RA/WA[7:0]	RD/WD[17:0]
36	128	RA/WA[6:0]	RD/WD[35:0]

Table 2-86 • Memory Block WxD Options

Clocks

The RCLK and the WCLK have independent source polarity selection and can be sourced by any global or local signal.

RAM Configurations

The AX architecture allows the read side and write side of RAMs to be organized independently, allowing for bus conversion. For example, the write side can be set to 256x18 and the read side to 512x9.

Both the write width and read width for the RAM blocks can be specified independently and changed dynamically with the WW (write width) and RW (read width) pins. The D x W different configurations are: 128×36 , 256×18 , 512×9 , $1k \times 4$, $2k \times 2$, and $4k \times 1$. The allowable RW and WW values are shown in Table 2-87.

Table 2-87 • Allowabl	le RW and WW Values
-----------------------	---------------------

RW(2:0)	WW(2:0)	D x W
000	000	4k x 1
001	001	2k x 2
010	010	1k x 4
011	011	512 x 9
100	100	256 x 18
101	101	128 x 36
11x	11x	reserved

When widths of one, two, and four are selected, the ninth bit is unused. For example, when writing ninebit values and reading four-bit values, only the first four bits and the second four bits of each nine-bit value are addressable for read operations. The ninth bit is not accessible. Conversely, when writing fourbit values and reading nine-bit values, the ninth bit of a read operation will be undefined.

Detailed Specifications

Table 2-91 • Four RAM Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Write Mode								
t _{WDASU}	Write Data Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WDAHD}	Write Data Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WADSU}	Write Address Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WADHD}	Write Address Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WENSU}	Write Enable Setup vs. WCLK		2.37		2.70		3.17	ns
t _{WENHD}	Write Enable Hold vs. WCLK		0.00		0.00		0.00	ns
t _{WCKH}	WCLK Minimum High Pulse Width	0.75		0.75		0.75		ns
t _{WCLK}	WCLK Minimum Low Pulse Width	2.51		2.51		2.51		ns
t _{WCKP}	WCLK Minimum Period	3.26		3.26		3.26		ns
Read Mode								
t _{RADSU}	Read Address Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RADHD}	Read Address Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RENSU}	Read Enable Setup vs. RCLK		3.08		3.51		4.13	ns
t _{RENHD}	Read Enable Hold vs. RCLK		0.00		0.00		0.00	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		2.36		2.69		3.16	ns
t _{RCK2RD2}	RCLK-To-OUT (Non-Pipelined)		2.83		3.23		3.79	ns
t _{RCLKH}	RCLK Minimum High Pulse Width	0.73		0.73		0.73		ns
t _{RCLKL}	RCLK Minimum Low Pulse Width	2.96		2.96		2.96		ns
t _{RCKP}	RCLK Minimum Period	3.69		3.69		3.69		ns

Note: Timing data for these four cascaded RAM blocks uses a depth of 16,384. For all other combinations, use Microsemi's timing software.

		–2 S	peed	–1 S	peed	Std S	speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		13.75		15.66		18.41	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		1.76		1.76		1.76	ns
t _{WCKP}	Minimum WCLK Period	2.51		2.51		2.51		ns
t _{RSU}	Read Setup		14.33		16.32		19.19	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		1.89		1.89		1.89	ns
t _{RCKP}	Minimum RCLK period	2.62		2.62		2.62		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		1.43		1.63		1.92	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		2.26		2.58		3.03	ns

Table 2-99 • Two FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

Note: Timing data for these two cascaded FIFO blocks uses a depth of 8,192. For all other combinations, use Microsemi's timing software.

mode if desired. Please note, if the I/O bank is not disabled, differential I/Os belonging to the I/O bank will still consume normal power, even when operating in the low power mode.

The Axcelerator device will resume normal operation $10\mu s$ after the LP pin is pulled Low.

To further reduce power consumption, the internal charge pump can be bypassed and an external power supply voltage can be used instead. This saves the internal charge-pump operating current, resulting in no DC current draw. The Axcelerator family devices have a dedicated " V_{PUMP} " pin that can be used to access an external charge pump device. In normal chip operation, when using the internal charge pump, V_{PUMP} should be tied to GND. When the voltage level on V_{PUMP} is set to 3.3V, the internal charge pump is turned off, and the V_{PUMP} voltage will be used as the charge pump voltage. Adequate voltage regulation (i.e. high drive, low output impedance, and good decoupling) should be used at V_{PUMP} .

In addition, any PLL in use can be powered down to further reduce power consumption. This can be done with the PowerDown pin driven Low. Driving this pin High restarts the PLL with the output clock(s) being stable once lock is restored.

JTAG

Axcelerator offers a JTAG interface that is compliant with the IEEE 1149.1 standard. The user can employ the JTAG interface for probing a design and performing any JTAG Public Instructions as defined in the Table 2-103.

Instruction (IR4:IR0)	Binary Code
Extest	00000
Preload / Sample	00001
Intest	00010
USERCODE	00011
IDCODE	00100
HIGHZ	01110
CLAMP	01111
Diagnostic	10000
Reserved	All others
Bypass	11111

Table 2-103 • JTAG Instruction Code

Interface

The interface consists of four inputs: Test Mode Select (TMS), Test Data In (TDI), Test Clock (TCK), TAP Controller Reset (TRST), and an output, Test Data Out (TDO). TMS, TDI, and TRST have on-chip pull-up resistors.

TRST

TRST (Test-Logic Reset) is an active-low, asynchronous reset signal to the TAP controller. The TRST input can be used to reset the Test Access Port (TAP) Controller to the TRST state. The TAP Controller can be held at this state permanently by grounding the TRST pin. To hold the JTAG TAP controller in the TRST state, it is recommended to connect TRST to ground via a 1 k Ω resistor.

There is an optional internal pull-up resistor available for the TRST input that can be set by the user at programming. Care should be exercised when using this option in combination with an external tie-off to ground.

An on-chip power-on-reset (POWRST) circuit is included. POWRST has the same function as "TRST," but it only occurs at power-up or during recovery from a VCCA and/or VCCDA voltage drop.

Detailed Specifications

TDO

TDO is normally tristated, and it is active only when the TAP controller is in the "Shift_DR" state or "Shift_IR" state. The least significant bit of the selected register (i.e. IR or DR) is clocked out to TDO first by the falling edge of TCK.

TAP Controller

The TAP Controller is compliant with the IEEE Standard 1149.1. It is a state machine of 16 states that controls the Instruction Register (IR) and the Data Registers (such as BSR, IDCODE, USRCODE, BYPASS, etc.). The TAP Controller steps into one of the states depending on the sequence of TMS at the rising edges of TCK.

Instruction Register (IR)

The IR has five bits (IR4 to IR0). At the TRST state, IR is reset to IDCODE. Each time when IR is selected, it goes through "select IR-Scan," "Capture-IR," "Shift-IR," all the way through "Update-IR." When there is no test error, the first five data bits coming out of TDO during the "Shift-IR" will be "10111". If a test error occurs, the last three bits will contain one to three zeroes corresponding to negatively asserted signals: "TDO_ERRORB," "PROBA_ERRORB," and "PROBB_ERRORB." The error(s) will be erased when the TAP is at the "Update-IR" or the TRST state. When in user mode start-up sequence, if the micro-probe has not been used, the "PROBA_ERRORB" is used as a "Power-up done successfully" flag.

Data Registers (DRs)

Data registers are distributed throughout the chip. They store testing/programming vectors. The MSB of a data register is connected to TDI, while the LSB is connected to TDO. There are different types of data registers. Descriptions of the main registers are as follow:

1. IDCODE:

The IDCODE is a 20-bit hard coded JTAG Silicon Signature. It is a hardwired device ID code, which contains the Microsemi identity, part number, and version number in a specific JTAG format.

2. USERCODE:

The USERCODE is a 33-bit programmable register. However, only 20 bits are allocated to use as JTAG Silicon Signature. It is a supplementary identity code for the user to program information to distinguish different programmed parts. USERCODE fuses will read out as "zeroes" when not programmed, so only the "1" bits need to be programmed.

3. Boundary-Scan Register (BSR):

Each I/O contains three Boundary-Scan Cells. Each cell has a shift register bit, a latch, and two MUXes. The boundary-scan cells are used for the Output-enable (E), Output (O), and Input (I) registers. The bit order of the boundary-scan cells for each of them is E-O-I. The boundary-scan cells are then chained serially to form the Boundary-Scan Register (BSR). The length of the BSR is the number of I/Os in the die multiplied by three.

4. Bypass Register (BYR):

This is the "1-bit" register. It is used to shorten the TDI-TDO serial chain in board-level testing to only one bit per device not being tested. It is also selected for all "reserved" or unused instructions.

Probing

Internal activities of the JTAG interface can be observed via the Silicon Explorer II probes: "PRA," "PRB," "PRC," and "PRD."

Special Fuses

Security

Microsemi antifuse FPGAs, with FuseLock technology, offer the highest level of design security available in a programmable logic device. Since antifuse FPGAs are live-at power-up, there is no bitstream that can be intercepted, and no bitstream or programming data is ever downloaded to the device during power-up, thus protecting against device cloning. In addition, special security fuses are hidden

FG484	FG484			FG484	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO54PB2F5	H22	IO72PB3F6	P20	IO90NB4F8	Y17
IO55NB2F5	L17	IO73PB3F6	R19	IO90PB4F8	Y18
IO55PB2F5	K17	IO74NB3F7	V21	IO91NB4F8	V15
IO56NB2F5	K21	IO74PB3F7	U21	IO91PB4F8	V16
IO56PB2F5	K22	IO75NB3F7	V22	IO92PB4F8	AB17
IO58NB2F5	L20	IO75PB3F7	U22	IO93NB4F8	Y15
IO58PB2F5	K20	IO76NB3F7	U20	IO93PB4F8	Y16
IO59NB2F5	L18	IO76PB3F7	T20	IO94NB4F9	AA16
IO59PB2F5	K18	IO77NB3F7	R17	IO94PB4F9	AA17
IO60NB2F5	M21	IO77PB3F7	P17	IO95NB4F9	AB14
IO60PB2F5	L21	IO78NB3F7	W21	IO95PB4F9	AB15
IO61NB2F5	L16	IO78PB3F7	W22	IO96NB4F9	W15
IO61PB2F5	K16	IO79NB3F7	T18	IO96PB4F9	W16
IO62NB2F5	M19	IO79PB3F7	R18	IO97NB4F9	AA13
IO62PB2F5	L19	IO80NB3F7	W20	IO97PB4F9	AB13
Bank 3		IO80PB3F7	V20	IO98NB4F9	AA14
IO63NB3F6	N16	IO81NB3F7	U19	IO98PB4F9	AA15
IO63PB3F6	M16	IO81PB3F7	T19	IO100NB4F9	Y14
IO64NB3F6	P22	IO82NB3F7	U18	IO100PB4F9	W14
IO64PB3F6	N22	IO82PB3F7	V19	IO101NB4F9	Y12
IO65NB3F6	N20	IO83NB3F7	R16	IO101PB4F9	Y13
IO65PB3F6	M20	IO83PB3F7	P16	IO102NB4F9	AA11
IO66NB3F6	P21	Bank 4		IO102PB4F9	AA12
IO66PB3F6	N21	IO84NB4F8	AB18	IO103NB4F9/CLKEN	V12
IO67NB3F6	N18	IO84PB4F8	AB19	IO103PB4F9/CLKEP	V13
IO67PB3F6	N19	IO85NB4F8	T15	IO104NB4F9/CLKFN	W11
IO68NB3F6	T22	IO85PB4F8	T16	IO104PB4F9/CLKFP	W12
IO68PB3F6	R22	IO86NB4F8	AA18	Bank 5	
IO69NB3F6	N17	IO86PB4F8	AA19	IO105NB5F10/CLKGN	U10
IO69PB3F6	M17	IO87NB4F8	W17	IO105PB5F10/CLKGP	U11
IO70NB3F6	T21	IO87PB4F8	V17	IO106NB5F10/CLKHN	V9
IO70PB3F6	R21	IO88NB4F8	Y19	IO106PB5F10/CLKHP	V10
IO71NB3F6	P18	IO88PB4F8	W18	IO107NB5F10	Y10
IO71PB3F6	P19	IO89NB4F8	U14	IO107PB5F10	Y11
IO72NB3F6	R20	IO89PB4F8	U15	IO108NB5F10	AA9

FG484		FG484		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	
VCCPLA	F10	VCCIB2	C22	
VCCPLB	G9	VCCIB2	J15	
VCCPLC	D13	VCCIB2	K15	
VCCPLD	G13	VCCIB2	L15	
VCCPLE	U13	VCCIB3	M15	
VCCPLF	T14	VCCIB3	N15	
VCCPLG	W10	VCCIB3	P15	
VCCPLH	T10	VCCIB3	Y21	
VCCDA	AB16	VCCIB3	Y22	
VCCDA	AB8	VCCIB4	AA20	
VCCDA	C10	VCCIB4	AB20	
VCCDA	C11	VCCIB4	R12	
VCCDA	C14	VCCIB4	R13	
VCCDA	D14	VCCIB4	R14	
VCCDA	D5	VCCIB5	AA3	
VCCDA	F16	VCCIB5	AB3	
VCCDA	G12	VCCIB5	R10	
VCCDA	L4	VCCIB5	R11	
VCCDA	M18	VCCIB5	R9	
VCCDA	T11	VCCIB6	M8	
VCCDA	T17	VCCIB6	N8	
VCCDA	U7	VCCIB6	P8	
VCCDA	V14	VCCIB6	Y1	
VCCDA	V8	VCCIB6	Y2	
VCCIB0	A3	VCCIB7	C1	
VCCIB0	B3	VCCIB7	C2	
VCCIB0	H10	VCCIB7	J8	
VCCIB0	H11	VCCIB7	K8	
VCCIB0	H9	VCCIB7	L8	
VCCIB1	A20	VCOMPLA	D10	
VCCIB1	B20	VCOMPLB	G10	
VCCIB1	H12	VCOMPLC	E12	
VCCIB1	H13	VCOMPLD	G14	
VCCIB1	H14	VCOMPLE	W13	
VCCIB2	C21	VCOMPLF	T13	

FG484					
AX1000 Function	Pin Number				
VCOMPLG	V11				
VCOMPLH	Т9				
VPUMP	D17				

CQ208		CQ208		CQ208	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	
Bank 0		IO61PB2F5	134	IO105PB5F10/CLKGP	
IO03NB0F0	198	IO62NB2F5	131	IO106NB5F10/CLKHN	
IO03PB0F0	199	IO62PB2F5	133	IO106PB5F10/CLKHP	
IO04NB0F0	197	Bank 3		IO107NB5F10	
IO19NB0F1/HCLKAN	191	IO63NB3F6	127	IO107PB5F10	
IO19PB0F1/HCLKAP	192	IO63PB3F6	129	IO119NB5F11	
IO20NB0F1/HCLKBN	185	IO64NB3F6	126	IO121NB5F11	
IO20PB0F1/HCLKBP	186	IO64PB3F6	128	IO121PB5F11	
Bank 1	•	IO66NB3F6	122	IO123NB5F11	
IO21NB1F2/HCLKCN	180	IO66PB3F6	123	IO123PB5F11	
IO21PB1F2/HCLKCP	181	IO68NB3F6	120	IO125NB5F11	
IO22NB1F2/HCLKDN	174	IO68PB3F6	121	IO125PB5F11	
IO22PB1F2/HCLKDP	175	IO77NB3F7	116	Bank 6	
IO23NB1F2	170	IO77PB3F7	117	IO127NB6F12	
IO23PB1F2	171	IO79NB3F7	114	IO127PB6F12	
IO37NB1F3	165	IO79PB3F7	115	IO128NB6F12	
IO37PB1F3	166	IO81NB3F7	110	IO128PB6F12	
IO39NB1F3	161	IO81PB3F7	111	IO129NB6F12	
IO39PB1F3	162	IO82NB3F7	108	IO129PB6F12	
IO41NB1F3	159	IO82PB3F7	109	IO130PB6F12	
IO41PB1F3	160	IO83NB3F7	106	IO132NB6F12	
Bank 2		IO83PB3F7 107		IO132PB6F12	
IO43NB2F4	151	Bank 4		IO141NB6F13	
IO43PB2F4	153	IO84PB4F8	103	IO141PB6F13	
IO44NB2F4	152	IO85NB4F8	100	IO142PB6F13	
IO44PB2F4	154	IO86NB4F8	101	IO143NB6F13	
IO45PB2F4	148	IO86PB4F8	102	IO143PB6F13	
IO46NB2F4	146	IO87NB4F8	96	IO145NB6F13	
IO46PB2F4	147	IO87PB4F8	97	IO145PB6F13	
IO48NB2F4	144	IO101NB4F9	91	IO146NB6F13	
IO48PB2F4	145	IO101PB4F9	92	IO146PB6F13	
IO57NB2F5	139	IO103NB4F9/CLKEN	87	Bank 7	
IO57PB2F5	140	IO103PB4F9/CLKEP	88	IO147NB7F14	
IO58PB2F5	141	IO104NB4F9/CLKFN	81	IO147PB7F14	
IO59NB2F5	137	IO104PB4F9/CLKFP	82	IO148NB7F14	
IO59PB2F5	138	Bank 5		IO148PB7F14	
IO61NB2F5	132	IO105NB5F10/CLKGN	76	IO150NB7F14	

Pin Number

CQ352		CQ352		CQ352	
AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Number
GND	21	GND	240	TDI	348
GND	27	GND	246	TDO	347
GND	33	GND	252	TMS	350
GND	39	GND	258	TRST	351
GND	45	GND	264	VCCA	3
GND	51	GND	265	VCCA	14
GND	57	GND	274	VCCA	32
GND	63	GND	280	VCCA	56
GND	69	GND	286	VCCA	74
GND	75	GND	292	VCCA	87
GND	81	GND	298	VCCA	102
GND	88	GND	310	VCCA	114
GND	89	GND	322	VCCA	150
GND	97	GND	330	VCCA	162
GND	103	GND	334	VCCA	175
GND	109	GND	340	VCCA	191
GND	115	GND	345	VCCA	209
GND	121	GND	352	VCCA	233
GND	133	NC	91	VCCA	251
GND	145	NC	117	VCCA	263
GND	151	NC	130	VCCA	279
GND	157	NC	131	VCCA	291
GND	163	NC	148	VCCA	329
GND	169	NC	174	VCCA	339
GND	176	NC	268	VCCDA	2
GND	177	NC	294	VCCDA	44
GND	186	NC	307	VCCDA	90
GND	192	NC	308	VCCDA	116
GND	198	NC	327	VCCDA	132
GND	204	NC	328	VCCDA	149
GND	210	PRA	312	VCCDA	178
GND	216	PRB	311	VCCDA	221
GND	222	PRC	135	VCCDA	266
GND	228	PRD	134	VCCDA	293
GND	234	ТСК	349	VCCDA	309

CQ352		CQ352		CQ352		
AX500 Function	Pin Number	AX500 Function	Pin Number	Pin AX500 Function Number		
IO87PB4F8	171	IO119PB5F11	101	IO146NB6F13 46		
IO89NB4F8	166	IO121NB5F11	98	IO146PB6F13 47		
IO89PB4F8	167	IO121PB5F11	99	Bank 7		
IO94NB4F9	164	IO123NB5F11	94	IO147NB7F14 40		
IO94PB4F9	165	IO123PB5F11	95	IO147PB7F14 41		
IO95NB4F9	160	IO125NB5F11	92	IO148NB7F14 42		
IO95PB4F9	161	IO125PB5F11	93	IO148PB7F14 43		
IO97NB4F9	158	Bank 6		IO149NB7F14 36		
IO97PB4F9	159	IO126PB6F12	86	IO149PB7F14 37		
IO99NB4F9	154	IO127NB6F12	84	IO151NB7F14 30		
IO99PB4F9	155	IO127PB6F12	85	IO151PB7F14 31		
IO100NB4F9	146	IO129NB6F12	82	IO152NB7F14 34		
IO100PB4F9	147	IO129PB6F12	83	IO152PB7F14 35		
IO101NB4F9	152	IO131NB6F12	78	IO153NB7F14 28		
IO101PB4F9	153	IO131PB6F12	79	IO153PB7F14 29		
IO103NB4F9/CLKEN	142	IO133NB6F12	76	IO155NB7F14 24		
IO103PB4F9/CLKEP	143	IO133PB6F12	77	IO155PB7F14 25		
IO104NB4F9/CLKFN	136	IO134NB6F12	72	IO157NB7F14 22		
IO104PB4F9/CLKFP	137	IO134PB6F12	73	IO157PB7F14 23		
Bank 5		IO135NB6F12	70	IO159NB7F15 16		
IO105NB5F10/CLKGN	128	IO135PB6F12	71	IO159PB7F15 17		
IO105PB5F10/CLKGP	129	IO137NB6F13	66	IO160NB7F15 18		
IO106NB5F10/CLKHN	122	IO137PB6F13	67	IO160PB7F15 19		
IO106PB5F10/CLKHP	123	IO138NB6F13	64	IO161NB7F15 12		
IO107NB5F10	118	IO138PB6F13	65	IO161PB7F15 13		
IO107PB5F10	119	IO139NB6F13	60	IO163NB7F15 10		
IO114NB5F11	112	IO139PB6F13	61	IO163PB7F15 11		
IO114PB5F11	113	IO141NB6F13	54	IO165NB7F15 6		
IO115NB5F11	110	IO141PB6F13	55	IO165PB7F15 7		
IO115PB5F11	111	IO142NB6F13	58	IO167NB7F15 4		
IO116NB5F11	106	IO142PB6F13	59	IO167PB7F15 5		
IO116PB5F11	107	IO143NB6F13	52	Dedicated I/O		
IO117NB5F11	104	IO143PB6F13	53	GND 1		
IO117PB5F11	105	IO145NB6F13	48	GND 9		
IO119NB5F11	100	IO145PB6F13	49	GND 15		

CQ352		CQ352		CQ352		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
IO131PB4F12	171	IO187PB5F17	99	IO224NB6F20	46	
IO132NB4F12	166	IO188NB5F17	100	IO224PB6F20	47	
IO132PB4F12	167	IO188PB5F17	101	Bank 7		
IO133NB4F12	164	IO190NB5F17	94	IO225NB7F21	40	
IO133PB4F12	165	IO190PB5F17	95	IO225PB7F21	41	
IO134NB4F12	160	IO192NB5F17	92	IO226NB7F21	42	
IO134PB4F12	161	IO192PB5F17	93	IO226PB7F21	43	
IO136NB4F12	158	Bank 6		IO237NB7F22	34	
IO136PB4F12	159	IO193PB6F18	86	IO237PB7F22	35	
IO137NB4F12	154	IO194NB6F18	84	IO238NB7F22	36	
IO137PB4F12	155	IO194PB6F18	85	IO238PB7F22	37	
IO138NB4F12	152	IO196NB6F18	78	IO240NB7F22	30	
IO138PB4F12	153	IO196PB6F18	79	IO240PB7F22	31	
IO153NB4F14	146	IO197NB6F18	82	IO241NB7F22	28	
IO153PB4F14	147	IO197PB6F18	83	IO241PB7F22	29	
IO159NB4F14/CLKEN	142	IO198NB6F18	76	IO242NB7F22	24	
IO159PB4F14/CLKEP	143	IO198PB6F18	77	IO242PB7F22	25	
IO160NB4F14/CLKFN	136	IO203NB6F19	72	IO244NB7F22	22	
IO160PB4F14/CLKFP	137	IO203PB6F19	73	IO244PB7F22	23	
Bank 5	Bank 5		70	IO245NB7F22	18	
IO161NB5F15/CLKGN	128	IO204PB6F19	71	IO245PB7F22	19	
IO161PB5F15/CLKGP	129	IO205NB6F19	66	IO246NB7F22	16	
IO162NB5F15/CLKHN	122	IO205PB6F19	67	IO246PB7F22	17	
IO162PB5F15/CLKHP	123	IO206NB6F19	64	IO249NB7F23	12	
IO167NB5F15	118	IO206PB6F19	65	IO249PB7F23	13	
IO167PB5F15	119	IO207NB6F19	60	IO250NB7F23	10	
IO183NB5F17	110	IO207PB6F19	61	IO250PB7F23	11	
IO183PB5F17	111	IO208NB6F19	58	IO256NB7F23	4	
IO184NB5F17	112	IO208PB6F19	59	IO256PB7F23	5	
IO184PB5F17	113	IO211NB6F19	54	IO257NB7F23	6	
IO185NB5F17	104	IO211PB6F19	55	IO257PB7F23	7	
IO185PB5F17	105	IO212NB6F19	52	Dedicated I/O		
IO186NB5F17	106	IO212PB6F19	53	GND	1	
IO186PB5F17	107	IO223NB6F20	48	GND	9	
IO187NB5F17	98	IO223PB6F20	49	GND	15	

CG624		CG624		CG624		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
Bank 0		IO23NB0F2	E11	IO42NB1F4	G21	
IO00NB0F0	F8	IO23PB0F2	F11	IO42PB1F4	G20	
IO00PB0F0	F7	IO24NB0F2	D7	IO43NB1F4	A16	
IO02NB0F0	G7	IO24PB0F2	E7	IO43PB1F4	A15	
IO02PB0F0	G6	IO25PB0F2	B12	IO44NB1F4	A20	
IO04NB0F0	E9	IO26NB0F2	H11	IO44PB1F4	A19	
IO04PB0F0	D8	IO26PB0F2	G11	IO45NB1F4	B17	
IO06NB0F0	G9	IO27NB0F2	C11	IO45PB1F4	B16	
IO06PB0F0	G8	IO27PB0F2	B8	IO46NB1F4	G17	
IO07PB0F0	B6	IO28NB0F2	J13	IO46PB1F4	H17	
IO08NB0F0	F10	IO28PB0F2	K13	IO47NB1F4	A17	
IO08PB0F0	F9	IO29NB0F2	J8	IO48NB1F4	C19	
IO09PB0F0	C7	IO29PB0F2	J7	IO48PB1F4	C18	
IO10NB0F0	H8	IO30NB0F2/HCLKAN	G13	IO49NB1F4	B20	
IO10PB0F0	H7	IO30PB0F2/HCLKAP	G12	IO49PB1F4	B19	
IO11NB0F0	D10	IO31NB0F2/HCLKBN	C13	IO50NB1F4	H20	
IO11PB0F0	D9	IO31PB0F2/HCLKBP	C12	IO50PB1F4	H19	
IO12NB0F1	B5	Bank 1		IO51NB1F4	A22	
IO12PB0F1	B4	IO32NB1F3/HCLKCN	G15	IO51PB1F4	A21	
IO13NB0F1	A7	IO32PB1F3/HCLKCP	G14	IO52NB1F4	C21	
IO13PB0F1	A6	IO33NB1F3/HCLKDN	B14	IO52PB1F4	C20	
IO14NB0F1	C9	IO33PB1F3/HCLKDP	B13	IO53NB1F4	B22	
IO14PB0F1	C8	IO34NB1F3	G16	IO53PB1F4	B21	
IO15PB0F1	B7	IO34PB1F3	H16	IO54NB1F5	J18	
IO16NB0F1	A5	IO35NB1F3	C17	IO54PB1F5	J19	
IO16PB0F1	A4	IO35PB1F3	B18	IO55NB1F5	D18	
IO17NB0F1	A9	IO36NB1F3	H18	IO55PB1F5	D17	
IO17PB0F1	B9	IO36PB1F3	H15	IO56NB1F5	F20	
IO18NB0F1	D12	IO37NB1F3	H13	IO56PB1F5	F19	
IO18PB0F1	D11	IO38NB1F3	E15	IO58NB1F5	E17	
IO20NB0F1	B11	IO38PB1F3	F15	IO58PB1F5	F17	
IO20PB0F1	B10	IO39NB1F3	D14	IO60NB1F5	D20	
IO21NB0F1	A11	IO39PB1F3	C14	IO60PB1F5	D19	
IO21PB0F1	A10	IO40NB1F3	D16	IO62NB1F5	E18	
IO22NB0F2	H10	IO40PB1F3	D15	IO62PB1F5	F18	
IO22PB0F2	H9	IO41NB1F4	F16	IO63NB1F5	G19	