

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	
Total RAM Bits	73728
Number of I/O	317
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 125°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-fg484m

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1-7 • I/O Cluster Arrangement

Routing

The AX hierarchical routing structure ties the logic modules, the embedded memory blocks, and the I/O modules together (Figure 1-8 on page 1-6). At the lowest level, in and between SuperClusters, there are three local routing structures: FastConnect, DirectConnect, and CarryConnect routing. DirectConnects provide the highest performance routing inside the SuperClusters by connecting a C-cell to the adjacent R-cell. DirectConnects do not require an antifuse to make the connection and achieve a signal propagation time of less than 0.1 ns.

FastConnects provide high-performance, horizontal routing inside the SuperCluster and vertical routing to the SuperCluster immediately below it. Only one programmable connection is used in a FastConnect path, delivering a maximum routing delay of 0.4 ns.

CarryConnects are used for routing carry logic between adjacent SuperClusters. They connect the FCO output of one two-bit, C-cell carry logic to the FCI input of the two-bit, C-cell carry logic of the SuperCluster below it. CarryConnects do not require an antifuse to make the connection and achieve a signal propagation time of less than 0.1 ns.

The next level contains the core tile routing. Over the SuperClusters within a core tile, both vertical and horizontal tracks run across rows or columns, respectively. At the chip level, vertical and horizontal tracks extend across the full length of the device, both north-to-south and east-to-west. These tracks are composed of highway routing that extend the entire length of the device (segmented at core tile boundaries) as well as segmented routing of varying lengths.

Table 2-4 • Default CLOAD/VCCI

	C _{LOAD} (pF)	VCCI (V)	PLOAD (mw/MHz)	P10 (mw/MHz)	PI/O (mW/MHz)*
Single-Ended without VREF					
LVTTL 24 mA High Slew	35	3.3	381.2	267.5	648.7
LVTTL 16 mA High Slew	35	3.3	381.2	225.1	606.3
LVTTL 12 mA High Slew	35	3.3	381.2	165.9	547.1
LVTTL 8 mA High Slew	35	3.3	381.2	130.3	511.5
LVTTL 24 mA Low Slew	35	3.3	381.2	169.2	550.4
LVTTL 16 mA Low Slew	35	3.3	381.2	150.8	532.0
LVTTL 12 mA Low Slew	35	3.3	381.2	138.6	519.8
LVTTL 8 mA Low Slew	35	3.3	381.2	118.7	499.9
LVCMOS – 25	35	2.5	218.8	148.0	366.8
LVCMOS – 18	35	1.8	113.4	73.4	186.8
LVCMOS – 15 (JESD8-11)	35	1.5	78.8	49.5	128.3
PCI	10	3.3	108.9	218.5	327.4
PCI-X	10	3.3	108.9	162.9	271.8
Single-Ended with VREF			•	•	-
HSTL-I	20	1.5	-	40.9	40.9
SSTL2-I	30	2.5	_	171.2	171.2
SSTL2-II	30	2.5	_	147.8	147.8
SSTL3-I	30	3.3	-	327.2	327.2
SSTL3-II	30	3.3	-	288.4	288.4
GTLP – 25	10	2.5	-	61.5	61.5
GTLP – 33	10	3.3	-	68.5	68.5
Differential			•	• •	-
LVPECL – 33	N/A	3.3		260.6	260.6
LVDS – 25	N/A	2.5	_	145.8	145.8

Note: ${}^{*}P_{I/O} = P10 + C_{LOAD} * VCC_{I}^{2}$

5 V Tolerance

There are two schemes to achieve 5 V tolerance:

1. 3.3 V PCI and 3.3 V PCI-X are the only I/O standards that directly allow 5 V tolerance. To implement this, an internal clamp diode between the input pad and the VCCI pad is enabled so that the voltage at the input pin is clamped, as shown in EQ 3:

EQ 3

The internal VCCI clamp diode is only enabled while the device is powered on, so the voltage at the input will not be clamped if the VCCI or VCCA are powered off. An external series resistor (~100 Ω) is required between the input pin and the 5 V signal source to limit the current to less than 20 mA (Figure 2-3). The 100 Ω resistor was chosen to meet the input Tr/Tf requirement (Table 2-19 on page 2-21). The GND clamp diode is available for all I/O standards and always enabled.

Figure 2-3 • Use of an External Resistor for 5 V Tolerance

5 V tolerance can also be achieved with 3.3 V I/O standards (3.3 V PCI, 3.3 V PCI-X, and LVTTL) using a bus-switch product (e.g. IDTQS32X2384). This will convert the 5 V signal to a 3.3 V signal with minimum delay (Figure 2-4).

Figure 2-4 • Bus Switch IDTQS32X2384

Simultaneous Switching Outputs (SSO)

When multiple output drivers switch simultaneously, they induce a voltage drop in the chip/package power distribution. This simultaneous switching momentarily raises the ground voltage within the device relative to the system ground. This apparent shift in the ground potential to a non-zero value is known as simultaneous switching noise (SSN) or more commonly, ground bounce.

SSN becomes more of an issue in high pin count packages and when using high performance devices such as the Axcelerator family. Based upon testing, Microsemi recommends that users not exceed eight simultaneous switching outputs (SSO) per each VCCI/GND pair. To ease this potential burden on designers, Microsemi has designed all of the Axcelerator BGAs³ to not exceed this limit with the exception of the CS180, which has an I/O to VCCI/GND pair ratio of nine to one.

Please refer to the *Simultaneous Switching Noise and Signal Integrity* application note for more information.

^{3.} The user should note that in Bank 8 of both AX1000-FG484 and AX500-FG484, there are local violations of this 8:1 ratio.

Detailed Specifications

1.8 V LVCMOS

Low-Voltage Complementary Metal-Oxide Semiconductor for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.

Table 2-26 • DC Input and Output Levels

,	VIL	VI	Н	VOL	VOH	IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.2 VCCI	0.7 VCCI	3.6	0.2	VCCI – 0.2	8 mA	–8 mA

AC Loadings

Figure 2-17 • AC Test Loads

Table 2-27 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	1.8	0.5 VCCI	N/A	35

Note: * *Measuring Point* = *VTRIP*

Timing Characteristics

Table 2-32 • 1.5V LVCMOS I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 1.4 V, TJ = 70°C

		-2 S	speed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVCMOS15	JESD8-11) I/O Module Timing							
t _{DP}	Input Buffer		3.59		4.09		4.81	ns
t _{PY}	Output Buffer		6.05		6.89		8.10	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.31		3.34		3.34	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		4.56		4.58		4.59	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		6.37		7.25		8.52	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		6.94		7.90		9.29	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Voltage-Referenced I/O Standards

GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It requires a differential amplifier input buffer and an Open Drain output buffer. The VCCI pin should be connected to 2.5 V or 3.3 V. Note that 2.5 V GTL+ is not supported across the full military temperature range.

Table 2-37 • DC Input and Output Levels

	VIL	VIH		VOL	VOH	IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
N/A	VREF – 0.1	VREF + 0.1	N/A	0.6	NA	NA	NA

AC Loadings

Figure 2-19 • AC Test Loads

Table 2-38 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
VREF – 0.2	VREF + 0.2	VREF	1.0	10

Note: * *Measuring Point* = VTRIP

Timing Characteristics

Table 2-39 • 2.5 V GTL+ I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 2.3 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
2.5 V GTL+	I/O Module Timing							
t _{DP}	Input Buffer		1.71		1.95		2.29	ns
t _{PY}	Output Buffer		1.13		1.29		1.52	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the I/O output register and the I/O enable register	d 0.67			0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23 0.27			0.31	ns	
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Module Specifications

C-Cell

Introduction

The C-cell is one of the two logic module types in the AX architecture. It is the combinatorial logic resource in the Axcelerator device. The AX architecture implements a new combinatorial cell that is an extension of the C-cell implemented in the SX-A family. The main enhancement of the new C-cell is the addition of carry-chain logic.

The C-cell can be used in a carry-chain mode to construct arithmetic functions. If carry-chain logic is not required, it can be disabled.

The C-cell features the following (Figure 2-27):

- Eight-input MUX (data: D0-D3, select: A0, A1, B0, B1). User signals can be routed to any one of these inputs. Any of the C-cell inputs (D0-D3, A0, A1, B0, B1) can be tied to one of the four routed clocks (CLKE/F/G/H).
- Inverter (DB input) can be used to drive a complement signal of any of the inputs to the C-cell.
- A carry input and a carry output. The carry input signal of the C-cell is the carry output from the C-cell directly to the north.
- · Carry connect for carry-chain logic with a signal propagation time of less than 0.1 ns.
- A hardwired connection (direct connect) to the adjacent R-cell (Register Cell) for all C-cells on the east side of a SuperCluster with a signal propagation time of less than 0.1 ns.

This layout of the C-cell (and the C-cell Cluster) enables the implementation of over 4,000 functions of up to five bits. For example, two C-cells can be used together to implement a four-input XOR function in a single cell delay.

The carry-chain configuration is handled automatically for the user with Microsemi's extensive macro library (please see the *Antifuse Macro Library Guide* for a complete listing of available Axcelerator macros).

Figure 2-27 • C-Cell

Note: The carry-chain sequence can end on either C-cell.

Figure 2-30 • Carry-Chain Sequencing of C-Cells

Timing Characteristics

Refer to Table 2-62 on page 2-55 for more information on carry-chain timing.

Timing Models and Waveforms

Figure 2-32 • R-Cell Delays

Timing Characteristics

Table 2-63 • R-Cell

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
R-Cell Prop	agation Delays							
t _{RCO}	Sequential Clock-to-Q		0.67		0.77		0.90	ns
t _{CLR}	Asynchronous Clear-to-Q		0.67		0.77		0.90	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.36		0.36		0.36	ns
t _{SUD}	Flip-Flop Data Input Set-Up		0.34		0.34		0.34	ns
t _{SUE}	Flip-Flop Enable Input Set-Up		0.00		0.00		0.00	ns
t _{HD}	Flip-Flop Data Input Hold		0.67		0.77		0.90	ns
t _{HE}	Flip-Flop Enable Input Hold		0.67		0.77		0.90	ns
t _{WASYN}	Asynchronous Pulse Width	0.48		0.48		0.48		ns
t _{REASYN}	Asynchronous Recovery Time		0.23		0.27		0.31	ns
t _{HASYN}	Asynchronous Removal Time		0.36		0.36		0.36	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.36		0.36		0.36		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.36		0.36		0.36		ns

Clock Skew Minimization

Figure 2-56 indicates how feedback from the clock network can be used to create minimal skew between the distributed clock network and the input clock. The input clock is fed to the reference clock input of the PLL. The output clock (CLK2) feeds a routed clock network. The feedback input to the PLL uses a clock input delayed by a routing network. The PLL then adjusts the phase of the input clock to match the delayed clock, thus providing nearly zero effective skew between the two clocks. Refer to the *Axcelerator Family PLL and Clock Management* application note for more information.

Figure 2-56 • Using the PLL for Clock Deskewing

FIFO Flag Logic

The FIFO is user configurable into various DEPTHs and WIDTHs. Figure 2-62 shows the FIFO address counter details.

- Bits 11 to 5 are active for all modes.
- As the data word size is reduced, more least-significant bits are added to the address.
- As the number of cascaded blocks increases, the number of significant bits in the address increases.

For example, if four blocks are cascaded as a 1kx16 FIFO with each block having a 1kx4 aspect ratio, bits 11 to 2 of the address will be used to specify locations within each RAM block, whereas bits 13 and 12 will be used to specify the RAM block.

Note: Inactive counter bits are set to zero.

Figure 2-62 • FIFO Address Counters

The AFULL and AEMPTY flag threshold values are programmable. The threshold values are AFVAL and AEVAL, respectively. Although the trigger threshold for each flag is defined with eight bits, the effective number of threshold bits in the comparison depends on the configuration. The effective number of threshold bits corresponds to the range of active bits in the FIFO address space (Table 2-94).

Mode	Inactive AEVAL/AFVAL Bits	Inactive DIFF Bits (set to 0)	DIFF Comparison to AFVAL/AEVAL
Non-cascade	[7:4]	[15:12]	DIFF[11:8] withAE/FVAL[3:0]
Cascade 2 blocks	[7:5]	[15:13]	DIFF[12:8] withAE/FVAL[4:0]
Cascade 4 blocks	[7:6]	[15:14]	DIFF[13:8] withAE/FVAL[5:0]
Cascade 8 blocks	[7]	[15]	DIFF[14:8] withAE/FVAL[6:0]
Cascade 16 blocks	None	None	DIFF[15:8] withAE/FVAL[7:0]

Clock

As with RAM configuration, the RCLK and WCLK pins have independent polarity selection.

Figure 2-65 • FIFO Block Diagram

Table 2-97 • FIFO Signal Description

Signal	Direction	Description
WCLK	Input	Write clock (active either edge).
FWEN	Input	FIFO write enable. When this signal is asserted, the WD bus data is latched into the FIFO, and the internal write counters are incremented.
WD[N-1:0]	Input	Write data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
FULL	Output	Active high signal indicating that the FIFO is FULL. When this signal is set, additional write requests are ignored.
AFULL	Output	Active high signal indicating that the FIFO is AFULL.
AFVAL	Input	8-bit input defining the AFULL value of the FIFO.
RCLK	Input	Read clock (active either edge).
FREN	Input	FIFO read enable.
RD[N-1:0]	Output	Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
EMPTY	Output	Empty flag indicating that the FIFO is EMPTY. When this signal is asserted, attempts to read the FIFO will be ignored.
AEMPTY	Output	Active high signal indicating that the FIFO is AEMPTY.
AEVAL	Input	8-bit input defining the almost-empty value of the FIFO.
PIPE	Input	Sets the pipe option on or off.
CLR	Input	Active high clear input.
DEPTH	Input	Determines the depth of the FIFO and the number of FIFOs to be cascaded.
WIDTH	Input	Determines the width of the dataword/FIFO, and the number of the FIFOs to be cascaded.

Detailed Specifications

Table 2-102 • Sixteen FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		-2 Speed -1 Speed		Std Speed				
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module Timing								
t _{WSU}	Write Setup		16.32		18.60		21.86	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		13.40		13.40		13.40	ns
t _{WCKP}	Minimum WCLK Period	14.15		14.15		14.15		ns
t _{RSU}	Read Setup		17.16		19.54		22.97	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		14.41		14.41		14.41	ns
t _{RCKP}	Minimum RCLK period	15.14		15.14		15.14		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		12.08		13.76		16.17	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		12.83		14.62		17.18	ns

Note: Timing data for these sixteen cascaded FIFO blocks uses a depth of 65,536. For all other combinations, use Microsemi's timing software.

Building RAM and FIFO Modules

RAM and FIFO modules can be generated and included in a design in two different ways:

- Using the SmartGen Core Generator where the user defines the depth and width of the FIFO/RAM, and then instantiates this block into the design (refer to the *SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder* User's Guide for more information).
- The alternative is to instantiate the RAM/FIFO blocks manually, using inverters for polarity control and tying all unused data bits to ground.

Other Architectural Features

Low Power Mode

Although designed for high performance, the AX architecture also allows the user to place the device into a low power mode. Each I/O bank in an Axcelerator device can be configured individually, when in low power mode, to tristate all outputs, disable inputs, or both. The low power mode is activated by asserting the LP pin, which is grounded in normal operation.

While in the low power mode, the device is still fully functional and all internal logic states are preserved. This allows a user to disable all but a few signals and operate the part in a low-frequency, watchdog

Microsemi

Package Pin Assignments

BG729		BG729		BG729	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
IO109NB3F10	V24	IO127PB3F11	AC27	IO145PB4F13	AD19
IO109PB3F10	V25	IO128NB3F11	Y20	IO146NB4F13	AC18
IO110NB3F10	T20	IO128PB3F11	W19	IO146PB4F13	AB18
IO110PB3F10	T21	Bank 4	•	IO147NB4F13	Y17
IO111NB3F10	W26	IO129NB4F12	AA20	IO147PB4F13	AA17
IO111PB3F10	W27	IO129PB4F12	Y21	IO148NB4F13	AF19
IO112NB3F10	U22	IO130NB4F12	AB22	IO148PB4F13	AF20
IO112PB3F10	U23	IO130PB4F12	AB23	IO149NB4F13	AC17
IO113NB3F10	Y26	IO131NB4F12	AC22	IO149PB4F13	AB17
IO113PB3F10	Y27	IO131PB4F12	AC23	IO150NB4F13	AE18
IO114NB3F10	U20	IO132NB4F12	AD23	IO150PB4F13	AE19
IO114PB3F10	U21	IO132PB4F12	AD24	IO151NB4F13	AA16
IO115NB3F10	W24	IO133NB4F12	AF23	IO151PB4F13	Y16
IO115PB3F10	W25	IO133PB4F12	AE23	IO152NB4F14	AG18
IO116NB3F10	V22	IO134NB4F12	AC21	IO152PB4F14	AG19
IO116PB3F10	V23	IO134PB4F12	AB21	IO153NB4F14	AC16
IO117NB3F10	Y24	IO135NB4F12	AC20	IO153PB4F14	AB16
IO117PB3F10	Y25	IO135PB4F12	AB20	IO154NB4F14	AF17
IO118NB3F11	V20	IO136NB4F12	AD21	IO154PB4F14	AF18
IO118PB3F11	V21	IO136PB4F12	AD22	IO155NB4F14	AB15
IO119NB3F11	AA26	IO137NB4F12	Y19	IO155PB4F14	AC15
IO119PB3F11	AA27	IO137PB4F12	AA19	IO156NB4F14	AE16
IO120NB3F11	W22	IO138NB4F12	AE21	IO156PB4F14	AE17
IO120PB3F11	W23	IO138PB4F12	AE22	IO157NB4F14	Y15
IO121NB3F11	AA24	IO139NB4F13	AF21	IO157PB4F14	AA15
IO121PB3F11	AA25	IO139PB4F13	AF22	IO158NB4F14	AG16
IO122NB3F11	W20	IO140NB4F13	AG22	IO158PB4F14	AG17
IO122PB3F11	W21	IO140PB4F13	AG23	IO159NB4F14/CLKEN	AF15
IO123NB3F11	AB26	IO141NB4F13	Y18	IO159PB4F14/CLKEP	AF16
IO123PB3F11	AB27	IO141PB4F13	AA18	IO160NB4F14/CLKFN	AD14
IO124NB3F11	Y22	IO142NB4F13	AE20	IO160PB4F14/CLKFP	AD15
IO124PB3F11	Y23	IO142PB4F13	AD20	Bank 5	
IO125NB3F11	AB24	IO143NB4F13	AG20	IO161NB5F15/CLKGN	AE14
IO125PB3F11	AB25	IO143PB4F13	AG21	IO161PB5F15/CLKGP	AE15
IO126NB3F11	AA22	IO144NB4F13	AC19	IO162NB5F15/CLKHN	AC13
IO126PB3F11	AA23	IO144PB4F13	AB19	IO162PB5F15/CLKHP	AD13
IO127NB3F11	AC26	IO145NB4F13	AD18	IO163NB5F15	Y14

Package Pin Assignments

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
Bank 0		IO17NB0F1	F12	IO34PB0F3	D14
IO00NB0F0	D6	IO17PB0F1	F11	IO35NB0F3	A15
IO00PB0F0	C6	IO18NB0F1	E11	IO35PB0F3	B15
IO01NB0F0	H10	IO18PB0F1	E10	IO36NB0F3	B16
IO01PB0F0	H9	IO19NB0F1	F13	IO36PB0F3	A16
IO02NB0F0	F8	IO19PB0F1	G13	IO37NB0F3	G16
IO02PB0F0	G8	IO20NB0F1	A10	IO37PB0F3	G15
IO03NB0F0	A6	IO20PB0F1	A9	IO38NB0F3	D16
IO03PB0F0	B6	IO21NB0F1	K14	IO38PB0F3	C16
IO04NB0F0	C7	IO21PB0F1	K13	IO39NB0F3	K16
IO04PB0F0	D7	IO22NB0F2	B11	IO39PB0F3	L16
IO05NB0F0	K10	IO22PB0F2	B10	IO40NB0F3	D17
IO05PB0F0	J10	IO23NB0F2	C12	IO40PB0F3	C17
IO06NB0F0	F9	IO23PB0F2	C11	IO41NB0F3/HCLKAN	E16
IO06PB0F0	G9	IO24NB0F2	A12	IO41PB0F3/HCLKAP	F16
IO07NB0F0	F10	IO24PB0F2	A11	IO42NB0F3/HCLKBN	G17
IO07PB0F0	G10	IO25NB0F2	H14	IO42PB0F3/HCLKBP	F17
IO08NB0F0	E9	IO25PB0F2	J14	Bank 1	
IO08PB0F0	E8	IO26NB0F2	D13	IO43NB1F4/HCLKCN	G19
IO09NB0F0	J11	IO26PB0F2	D12	IO43PB1F4/HCLKCP	G18
IO09PB0F0	K11	IO27NB0F2	F14	IO44NB1F4/HCLKDN	E19
IO10NB0F0	C8	IO27PB0F2	G14	IO44PB1F4/HCLKDP	F19
IO10PB0F0	D8	IO28NB0F2	E14	IO45NB1F4	C18
IO11NB0F0	K12	IO28PB0F2	E13	IO45PB1F4	D18
IO11PB0F0	J12	IO29NB0F2	B13	IO46NB1F4	A18
IO12NB0F1	G11	IO29PB0F2	B12	IO46PB1F4	B18
IO12PB0F1	H11	IO30NB0F2	C14	IO47NB1F4	K19
IO13NB0F1	G12	IO30PB0F2	C13	IO47PB1F4	L19
IO13PB0F1	H12	IO31NB0F2	H15	IO48NB1F4	C19
IO14NB0F1	A7	IO31PB0F2	J15	IO48PB1F4	D19
IO14PB0F1	B7	IO32NB0F2	A14	IO49NB1F4	K20
IO15NB0F1	H13	IO32PB0F2	B14	IO49PB1F4	L20
IO15PB0F1	J13	IO33NB0F2	K15	IO50NB1F4 A1	
IO16NB0F1	C9	IO33PB0F2	L15	IO50PB1F4	B19
IO16PB0F1	D9	IO34NB0F3	D15	IO51NB1F4	H20

Package Pin Assignments

FG1152		FG1152		FG1152		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
GND	N1	GND	U19	NC	A26	
GND	N13	GND	U20	NC	AB2	
GND	N22	GND	U21	NC	AB33	
GND	N34	GND	U30	NC	AC34	
GND	P14	GND	U5	NC	AD3	
GND	P15	GND	V14	NC	AD34	
GND	P16	GND	V15	NC	AE31	
GND	P17	GND	V16	NC	AE33	
GND	P18	GND	V17	NC	AE34	
GND	P19	GND	V18	NC	AF1	
GND	P20	GND	V19	NC	AF34	
GND	P21	GND	V20	NC	AG2	
GND	R14	GND	V21	NC	AG4	
GND	R15	GND	V30	NC	AH1	
GND	R16	GND	V5	NC	AH2	
GND	R17	GND	W14	NC	AH31	
GND	R18	GND	W15	NC	AH32	
GND	R19	GND	W16	NC	AH34	
GND	R20	GND	W17	NC	AJ1	
GND	R21	GND	W18	NC	AJ2	
GND	R3	GND	W19	NC	AJ3	
GND	R32	GND	W20	NC	AJ31	
GND	T14	GND	W21	NC	AJ32	
GND	T15	GND	Y14	NC	AJ33	
GND	T16	GND	Y15	NC	AJ34	
GND	T17	GND	Y16	NC	AJ4	
GND	T18	GND	Y17	NC	AL29	
GND	T19	GND	Y18	NC	AM19	
GND	T20	GND	Y19	NC	AM7	
GND	T21	GND	Y20	NC	AN13	
GND	U14	GND	Y21	NC	AN17	
GND	U15	GND	Y3	NC	AN25	
GND	U16	GND	Y32	NC	AN27	
GND	U17	GND/LP	G6	NC	AN8	
GND	U18	NC	A17	NC	AP17	

Package Pin Assignments

PQ208

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

CQ208

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

CG624		CG624		CG624		
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number	
VCCA	U17	VCCIB2	D23	VCCIB7	E4	
VCCA	U9	VCCIB2	E22	VCCIB7	К9	
VCCA	Y4	VCCIB2	K17	VCCIB7	L9	
VCCDA	A12	VCCIB2	L17	VCCIB7	M10	
VCCDA	AA13	VCCIB2	M16	VCCPLA	E12	
VCCDA	AA15	VCCIB3	AA22	VCCPLB	J12	
VCCDA	AA7	VCCIB3	AB23	VCCPLC	E14	
VCCDA	AC11	VCCIB3	AC24	VCCPLD	H14	
VCCDA	AD11	VCCIB3	AC25	VCCPLE	Y14	
VCCDA	AE17	VCCIB3	P16	VCCPLF	U14	
VCCDA	B15	VCCIB3	R17	VCCPLG	Y12	
VCCDA	C15	VCCIB3	T17	VCCPLH	U12	
VCCDA	C6	VCCIB4	AB21	VCOMPLA	F12	
VCCDA	D13	VCCIB4	AC22	VCOMPLB	H12	
VCCDA	E13	VCCIB4	AD23	VCOMPLC	F14	
VCCDA	E19	VCCIB4	AE23	VCOMPLD	J14	
VCCDA	G5	VCCIB4	T14	VCOMPLE	AA14	
VCCDA	N21	VCCIB4	U15	VCOMPLF	V14	
VCCDA	N5	VCCIB4	U16	VCOMPLG	AA12	
VCCDA	W21	VCCIB5	AB5	VCOMPLH	V12	
VCCIB0	A3	VCCIB5	AC4	VPUMP	E20	
VCCIB0	B3	VCCIB5	AD3			
VCCIB0	C4	VCCIB5	AE3			
VCCIB0	D5	VCCIB5	T12			
VCCIB0	J10	VCCIB5	U10			
VCCIB0	J11	VCCIB5	U11			
VCCIB0	K12	VCCIB6	AA4			
VCCIB1	A23	VCCIB6	AB3			
VCCIB1	B23	VCCIB6	AC1			
VCCIB1	C22	VCCIB6	AC2			
VCCIB1	D21	VCCIB6	P10			
VCCIB1	J15	VCCIB6	R9			
VCCIB1	J16	VCCIB6	Т9			
VCCIB1	K14	VCCIB7	C1			
VCCIB2	C24	VCCIB7	C2			
VCCIB2	C25	VCCIB7	D3			

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo CA 92656 USA Within the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor solutions for: aerospace, defense and security; enterprise and communications; and industrial and alternative energy markets. Products include high-performance, high-reliability analog and RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at **www.microsemi.com**.

© 2012 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.