E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	317
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

Figure 1-8 • AX Routing Structures

Global Resources

Each family member has three types of global signals available to the designer: HCLK, CLK, and GCLR/GPSET. There are four hardwired clocks (HCLK) per device that can directly drive the clock input of each R-cell. Each of the four routed clocks (CLK) can drive the clock, clear, preset, or enable pin of an R-cell or any input of a C-cell (Figure 1-3 on page 1-2).

Global clear (GCLR) and global preset (GPSET) drive the clear and preset inputs of each R-cell as well as each I/O Register on a chip-wide basis at power-up.

Each HCLK and CLK has an associated analog PLL (a total of eight per chip). Each embedded PLL can be used for clock delay minimization, clock delay adjustment, or clock frequency synthesis. The PLL is capable of operating with input frequencies ranging from 14 MHz to 200 MHz and can generate output frequencies between 20 MHz and 1 GHz. The clock can be either divided or multiplied by factors ranging from 1 to 64. Additionally, multiply and divide settings can be used in any combination as long as the resulting clock frequency is between 20 MHz and 1 GHz. Adjacent PLLs can be cascaded to create complex frequency combinations.

The PLL can be used to introduce either a positive or a negative clock delay of up to 3.75 ns in 250 ps increments. The reference clock required to drive the PLL can be derived from three sources: external input pad (either single-ended or differential), internal logic, or the output of an adjacent PLL.

Low Power (LP) Mode

The AX architecture was created for high-performance designs but also includes a low power mode (activated via the LP pin). When the low power mode is activated, I/O banks can be disabled (inputs disabled, outputs tristated), and PLLs can be placed in a power-down mode. All internal register states are maintained in this mode. Furthermore, individual I/O banks can be configured to opt out of the LP mode, thereby giving the designer access to critical signals while the rest of the chip is in low power mode.

The power can be further reduced by providing an external voltage source (V_{PUMP}) to the device to bypass the internal charge pump (See "Low Power Mode" on page 2-106 for more information).

I/O Banks and Compatibility

Since each I/O bank has its own user-assigned input reference voltage (VREF) and an input/output supply voltage (VCCI), only I/Os with compatible standards can be assigned to the same bank.

Table 2-11 shows the compatible I/O standards for a common VREF (for voltage-referenced standards). Similarly, Table 2-12 shows compatible standards for a common VCCI.

Table 2-11 • Compatible I/O Standards for Different VREF Values

VREF	Compatible Standards
1.5 V	SSTL 3 (Class I and II)
1.25 V	SSTL 2 (Class I and II)
1.0 V	GTL+ (2.5V and 3.3V Outputs)
0.75 V	HSTL (Class I)

Table 2-12 • Compatible I/O Standards for Different VCCI Values

VCCI ¹	Compatible Standards	VREF
3.3 V	LVTTL, PCI, PCI-X, LVPECL, GTL+ 3.3 V	1.0
3.3 V	SSTL 3 (Class I and II), LVTTL, PCI, LVPECL	1.5
2.5 V	LVCMOS 2.5 V, GTL+ 2.5 V, LVDS ²	1.0
2.5 V	LVCMOS 2.5 V, SSTL 2 (Classes I and II), LVDS ²	1.25
1.8 V	LVCMOS 1.8 V	N/A
1.5 V	LVCMOS 1.5 V, HSTL Class I	0.75

Notes:

1. VCCI is used for both inputs and outputs

2. VCCI tolerance is ±5%

Table 2-13 summarizes the different combinations of voltages and I/O standards that can be used together in the same I/O bank.

Table 2-13 • Legal I/O Usage Matrix

I/O Standard	ראדדר 3.3 ע	LVCMOS 2.5 V	LVCMOS1.8 V	LVCMOS1.5 V (JESD8-11)	3.3V PCI/PCI-X	GTL + (3.3 V)	GTL + (2.5 V)	HSTL Class I (1. 5V)	SSTL2 Class I & II (2.5 V)	SSTL3 Class I & II (3.3 V)	LVDS (2.5 V)	LVPECL (3.3 V)
LVTTL 3.3 V (VREF=1.0 V)	\checkmark	I	I	-	\checkmark	\checkmark	Ι	-	-	-	-	\checkmark
LVTTL 3.3 V(VREF=1.5 V)	\checkmark	-	I	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark
LVCMOS 2.5 V (VREF=1.0 V)	-	\checkmark	-	_	-	-	\checkmark	-	-	-	\checkmark	-
LVCMOS 2.5 V (VREF=1.25V)	-	\checkmark	-	_	-	-	-	-	\checkmark	-	\checkmark	-
LVCMOS1.8 V	-	-	\checkmark	_	-	-	-	-	-	-	-	-
LVCMOS1.5 V (VREF = 1.75 V) (JESD8-11)	-	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-
3.3 V PCI/PCI-X (VREF = 1.0 V)	\checkmark	-	-	_	\checkmark	\checkmark	-	-	-	-	-	\checkmark
3.3 V PCI/PCI-X (VREF= 1.5 V)	\checkmark	-	-	_	\checkmark	-	-	-	-	\checkmark	-	\checkmark
GTL + (3.3 V)	\checkmark	-	-	_	\checkmark	\checkmark	-	-	-	-	-	\checkmark
GTL + (2.5 V)	-	\checkmark	-	_	-	-	\checkmark	-	-	-	-	-
HSTL Class I	-	-	-	\checkmark	-	-	-	\checkmark	-	-	-	-
SSTL2 Class I & II	-	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-
SSTL3 Class I & II	\checkmark	-	-	-	\checkmark	-	-	-	-	\checkmark	-	\checkmark
LVDS (VREF = 1.0 V)	-	\checkmark	-	-	-	-	\checkmark	-	-	-	\checkmark	-
LVDS (VREF = 1.25 V)	-	\checkmark	-	-	-	-	-	-	\checkmark	-	\checkmark	-
LVPECL (VREF = 1.0 V)	\checkmark	_	_	_	\checkmark	\checkmark	-	-	-	-	-	\checkmark
LVPECL (VREF = 1.5 V)	\checkmark	-	-	_	\checkmark	-	-	-	-	\checkmark	-	\checkmark

Notes:

1. Note that GTL+ 2.5 V is not supported across the full military temperature range.

2. A "<" indicates whether standards can be used within a bank at the same time.

Examples:

a) LVTTL can be used with 3.3V PCI and GTL+ (3.3V), when $V_{REF} = 1.0V$ (GTL+ requirement). b) LVTTL can be used with 3.3V PCI and SSTL3 Class I and II, when $V_{REF} = 1.5V$ (SSTL3 requirement).

Note that two I/O standards are compatible if:

- Their VCCI values are identical. •
- Their VREF standards are identical (if applicable).

For example, if LVTTL 3.3 V (VREF= 1.0 V) is used, then the other available (i.e. compatible) I/O standards in the same bank are LVTTL 3.3 V PCI/PCI-X, GTL+, and LVPECL.

Also note that when multiple I/O standards are used within a bank, the voltage tolerance will be limited to the minimum tolerance of all I/O standards used in the bank.

I/O Standard Electrical Specifications

Table 2-18 • Input Capacitance

Symbol	Parameter	Conditions	Min.	Max.	Units
C _{IN}	Input Capacitance	VIN = 0, f = 1.0 MHz		10	pF
CINCLK	Input Capacitance on HCLK and RCLK Pin	VIN = 0, f = 1.0 MHz		10	pF

Table 2-19 • I/O Input Rise Time and Fall Time*

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)
LVTTL	No Requirement	50 ns
LVCMOS 2.5V	No Requirement	50 ns
LVCMOS 1.8V	No Requirement	50 ns
LVCMOS 1.5V	No Requirement	50 ns
PCI	No Requirement	50 ns
PCIX	No Requirement	50 ns
GTL+	No Requirement	50 ns
HSTL	No Requirement	50 ns
SSTL2	No Requirement	50 ns
HSTL3	No Requirement	50 ns
LVDS	No Requirement	50 ns
LVPECL	No Requirement	50 ns

Note: *Input Rise/Fall time applies to all inputs, be it clock or data. Inputs have to ramp up/down linearly, in a monotonic way. Glitches or a plateau may cause double clocking. They must be avoided. For output rise/fall time, refer to the IBIS models for extraction.

Figure 2-9 • Input Buffer Delays

Table 2-22 • 3.3 V LVTTL I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C (continued)

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
LVTTL Output Drive Strength = 2 (12 mA) / High Slew Rate								
t _{DP}	Input Buffer		1.68		1.92		2.26	ns
t _{PY}	Output Buffer		3.30		3.76		4.42	ns
t _{ENZL}	Enable to Pad Delay through the Output Buffer—Z to Low		3.74		4.26		5.00	ns
t _{ENZH}	Enable to Pad Delay through the Output Buffer—Z to High		3.06		3.49		4.10	ns
t _{ENLZ}	Enable to Pad Delay through the Output Buffer—Low to Z		1.89		1.91		1.91	ns
t _{ENHZ}	Enable to Pad Delay through the Output Buffer—High to Z		2.29		2.30		2.31	ns
t _{IOCLKQ}	Sequential Clock-to-Q for the I/O Input Register		0.67		0.77		0.90	ns
t _{IOCLKY}	Clock-to-output Y for the I/O Output Register and the I/O Enable Register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Detailed Specifications

2.5 V LVCMOS

Low-Voltage Complementary Metal-Oxide Semiconductor for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.

Table 2-23 • DC Input and Output Levels

, ,	VIL		IH	VOL	VOH	IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	V Min., V		mA
-0.3	0.7	1.7	3.6	0.4	2.0	12	–12

AC Loadings

Figure 2-16 • AC Test Loads

Table 2-24 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	2.5	1.25	N/A	35

Note: * *Measuring Point* = *VTRIP*

Microsemi

Detailed Specifications

Table 2-40 • 3.3 V GTL+ I/O Module

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
3.3 V GTL+	3.3 V GTL+I/O Module Timing							
t _{DP}	Input Buffer		1.71		1.95		2.29	ns
t _{PY}	Output Buffer		1.13		1.29		1.52	ns
t _{ICLKQ}	Clock-to-Q for the I/O input register		0.67		0.77		0.90	ns
t _{oclkq}	Clock-to-Q for the I/O output register and the I/O enable register		0.67		0.77		0.90	ns
t _{SUD}	Data Input Set-Up		0.23		0.27		0.31	ns
t _{SUE}	Enable Input Set-Up		0.26		0.30		0.35	ns
t _{HD}	Data Input Hold		0.00		0.00		0.00	ns
t _{HE}	Enable Input Hold		0.00		0.00		0.00	ns
t _{CPWHL}	Clock Pulse Width High to Low	0.39		0.39		0.39		ns
t _{CPWLH}	Clock Pulse Width Low to High	0.39		0.39		0.39		ns
t _{WASYN}	Asynchronous Pulse Width	0.37		0.37		0.37		ns
t _{REASYN}	Asynchronous Recovery Time		0.13		0.15		0.17	ns
t _{HASYN}	Asynchronous Removal Time		0.00		0.00		0.00	ns
t _{CLR}	Asynchronous Clear-to-Q		0.23		0.27		0.31	ns
t _{PRESET}	Asynchronous Preset-to-Q		0.23		0.27		0.31	ns

Note: The carry-chain sequence can end on either C-cell.

Figure 2-30 • Carry-Chain Sequencing of C-Cells

Timing Characteristics

Refer to Table 2-62 on page 2-55 for more information on carry-chain timing.

Detailed Specifications

Global Resources

One of the most important aspects of any FPGA architecture is its global resources or clocks. The Axcelerator family provides the user with flexible and easy-to-use global resources, without the limitations normally found in other FPGA architectures.

The AX architecture contains two types of global resources, the HCLK (hardwired clock) and CLK (routed clock). Every Axcelerator device is provided with four HCLKs and four CLKs for a total of eight clocks, regardless of device density.

Hardwired Clocks

The hardwired (HCLK) is a low-skew network that can directly drive the clock inputs of all sequential modules (R-cells, I/O registers, and embedded RAM/FIFOs) in the device with no antifuse in the path. All four HCLKs are available everywhere on the chip.

Timing Characteristics

Table 2-70 • AX125 Dedicated (Hardwired) Array Clock Networks

			-2 Speed		-1 Speed		Std Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (Hardwired) Array Clock Networks								
t _{HCKL}	Input Low to High		3.02		3.44		4.05	ns
t _{HCKH}	Input High to Low		3.03		3.46		4.06	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz

Table 2-71 • AX250 Dedicated (Hardwired) Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	peed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Dedicated (I	Hardwired) Array Clock Networks							
t _{HCKL}	Input Low to High		2.57		2.93		3.45	ns
t _{HCKH}	Input High to Low		2.61		2.97		3.50	ns
t _{HPWH}	Minimum Pulse Width High	0.58		0.65		0.77		ns
t _{HPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{HCKSW}	Maximum Skew		0.06		0.07		0.08	ns
t _{HP}	Minimum Period	1.15		1.31		1.54		ns
t _{HMAX}	Maximum Frequency		870		763		649	MHz

Detailed Specifications

Routed Clocks

The routed clock (CLK) is a low-skew network that can drive the clock inputs of all sequential modules in the device (logically equivalent to the HCLK), but has the added flexibility in that it can drive the S0 (Enable), S1, PSET, and CLR input of a register (R-cells and I/O registers) as well as any of the inputs of any C-cell in the device. This allows CLKs to be used not only as clocks, but also for other global signals or high fanout nets. All four CLKs are available everywhere on the chip.

Timing Characteristics

Table 2-75 • AX125 Routed Array Clock Networks Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		3.08		3.50		4.12	ns
t _{RCKH}	Input High to Low		3.13		3.56		4.19	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

Table 2-76 • AX250 Routed Array Clock Networks

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		-2 Speed		-1 Speed		Std Speed		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
Routed Array Clock Networks								
t _{RCKL}	Input Low to High		2.52		2.87		3.37	ns
t _{RCKH}	Input High to Low		2.59		2.95		3.47	ns
t _{RPWH}	Minimum Pulse Width High	0.57		0.64		0.75		ns
t _{RPWL}	Minimum Pulse Width Low	0.52		0.59		0.69		ns
t _{RCKSW}	Maximum Skew		0.35		0.39		0.46	ns
t _{RP}	Minimum Period	1.15		1.31		1.54		ns
t _{RMAX}	Maximum Frequency		870		763		649	MHz

RAM

Each memory block consists of 4,608 bits that can be organized as 128x36, 256x18, 512x9, 1kx4, 2kx2, or 4kx1 and are cascadable to create larger memory sizes. This allows built-in bus width conversion (Table 2-86). Each block has independent read and write ports which enable simultaneous read and write operations.

Data-word (in bits)	Depth	Address Bus	Data Bus
1	4,096	RA/WA[11:0]	RD/WD[0]
2	2,048	RA/WA[10:0]	RD/WD[1:0]
4	1,024	RA/WA[9:0]	RD/WD[3:0]
9	512	RA/WA[8:0]	RD/WD[8:0]
18	256	RA/WA[7:0]	RD/WD[17:0]
36	128	RA/WA[6:0]	RD/WD[35:0]

Table 2-86 • Memory Block WxD Options

Clocks

The RCLK and the WCLK have independent source polarity selection and can be sourced by any global or local signal.

RAM Configurations

The AX architecture allows the read side and write side of RAMs to be organized independently, allowing for bus conversion. For example, the write side can be set to 256x18 and the read side to 512x9.

Both the write width and read width for the RAM blocks can be specified independently and changed dynamically with the WW (write width) and RW (read width) pins. The D x W different configurations are: 128×36 , 256×18 , 512×9 , $1k \times 4$, $2k \times 2$, and $4k \times 1$. The allowable RW and WW values are shown in Table 2-87.

Table 2-87 • Allowabl	le RW and WW Values
-----------------------	---------------------

RW(2:0)	WW(2:0)	D x W
000	000	4k x 1
001	001	2k x 2
010	010	1k x 4
011	011	512 x 9
100	100	256 x 18
101	101	128 x 36
11x	11x	reserved

When widths of one, two, and four are selected, the ninth bit is unused. For example, when writing ninebit values and reading four-bit values, only the first four bits and the second four bits of each nine-bit value are addressable for read operations. The ninth bit is not accessible. Conversely, when writing fourbit values and reading nine-bit values, the ninth bit of a read operation will be undefined.

Note that the RAM blocks employ little-endian byte order for read and write operations.

Table 2-88 • RAM Signal Description	Table	2-88 •	RAM	Signal	Description
-------------------------------------	-------	--------	-----	--------	-------------

Signal	Direction	Description
WCLK	Input	Write clock (can be active on either edge).
WA[J:0]	Input	Write address bus. The value J is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for J is from 6 to15.
WD[M-1:0]	Input	Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
RCLK	Input	Read clock (can be active on either edge).
RA[K:0]	Input	Read address bus. The value K is dependent on the RAM configuration and the number of cascaded memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0]	Output	Read data bus. The value N is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or 36.
REN	Input	Read enable. When this signal is valid on the active edge of the clock, data at location RA will be driven onto RD.
WEN	Input	Write enable. When this signal is valid on the active edge of the clock, WD data will be written at location WA.
RW[2:0]	Input	Width of the read operation dataword.
WW[2:0]	Input	Width of the write operation dataword.
Pipe	Input	Sets the pipe option to be on or off.

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous one clock edge)
- Read Pipelined (synchronous two clock edges)
- Write (synchronous one clock edge)

In the standard read mode, new data is driven onto the RD bus in the clock cycle immediately following RA and REN valid. The read address is registered on the read-port active-clock edge and data appears at read-data after the RAM access time. Setting the PIPE to OFF enables this mode.

The pipelined mode incurs an additional clock delay from address to data, but enables operation at a much higher frequency. The read-address is registered on the read-port active-clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting the PIPE to ON enables this mode.

On the write active-clock edge, the write data are written into the SRAM at the write address when WEN is high. The setup time of the write address, write enables, and write data are minimal with respect to the write clock.

Write and read transfers are described with timing requirements beginning in the "Timing Characteristics" section on page 2-89.

FIFO

Every memory block has its own embedded FIFO controller. Each FIFO block has one read port and one write port. This embedded FIFO controller uses no internal FPGA logic and features:

- Glitch-free FIFO Flags
- · Gray-code address counters/pointers to prevent metastability problems
- Overflow and underflow control

Both ports are configurable in various sizes from 4k x 1 to 128 x 36, similar to the RAM block size. Each port is fully synchronous.

Read and write operations can be completely independent. Data on the appropriate WD pins are written to the FIFO on every active WCLK edge as long as WEN is high. Data is read from the FIFO and output on the appropriate RD pins on every active RCLK edge as long as REN is asserted.

The FIFO block offers programmable almost-empty (AEMPTY) and almost-full (AFULL) flags as well as EMPTY and FULL flags (Figure 2-61):

- The FULL flag is synchronous to WCLK. It allows the FIFO to inhibit writing when full.
- The EMPTY flag is synchronous to RCLK. It allows the FIFO to inhibit reading at the empty condition.

Gray code counters are used to prevent metastability problems associated with flag logic. The depth of the FIFO is dependent on the data width and the number of memory blocks used to create the FIFO. The write operations to the FIFO are synchronous with respect to the WCLK, and the read operations are synchronous with respect to the RCLK.

The FIFO block may be reset to the empty state.

Figure 2-61 • Axcelerator RAM with Embedded FIFO Controller

3 – Package Pin Assignments

BG729

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.microsemi.com/soc/products/rescenter/package/index.html.

FG256		
AX250 Function	Pin Number	AX250 I
VCCA	L9	VC
VCCA	N3	VC
VCCA	P14	VC
VCCPLA	C7	VC
VCCPLB	D6	VC
VCCPLC	A10	VC
VCCPLD	D10	VC
VCCPLE	P10	VC
VCCPLF	N11	VC
VCCPLG	Τ7	VC
VCCPLH	N7	VC
VCCDA	A11	VCO
VCCDA	A2	VCO
VCCDA	C13	VCO
VCCDA	D9	VCO
VCCDA	H1	VCO
VCCDA	J15	VCO
VCCDA	N14	VCO
VCCDA	N8	VCO
VCCDA	P4	VPU
VCCDA	R11	
VCCDA	R5	
VCCIB0	E6	
VCCIB0	E7	
VCCIB0	E8	
VCCIB1	E10	
VCCIB1	E11	
VCCIB1	E9	
VCCIB2	F12	
VCCIB2	G12	
VCCIB2	H12	
VCCIB3	J12	
VCCIB3	K12	
VCCIB3	L12	
VCCIB4	M10	

AX250 Function	Pin Number
VCCIB4	M11
VCCIB4	M9
VCCIB5	M6
VCCIB5	M7
VCCIB5	M8
VCCIB6	J5
VCCIB6	K5
VCCIB6	L5
VCCIB7	F5
VCCIB7	G5
VCCIB7	H5
VCOMPLA	A7
VCOMPLB	D7
VCOMPLC	B9
VCOMPLD	D11
VCOMPLE	T10
VCOMPLF	N10
VCOMPLG	R8
VCOMPLH	N6
VPUMP	A14

FG256

FG896		FG896		FG896		
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number	
GND	W19	VCCA	U11	VCCDA	G16	
GND	Y11	VCCA	U20	VCCDA	T25	
GND	Y20	VCCA	V11	VCCDA	T4	
GND/LP	E4	VCCA	V20	VCCIB0	A3	
PRA	G15	VCCA	W11	VCCIB0	B3	
PRB	D16	VCCA	W20	VCCIB0	J10	
PRC	AB16	VCCA	Y12	VCCIB0	J11	
PRD	AF16	VCCA	Y13	VCCIB0	J12	
ТСК	G7	VCCA	Y14	VCCIB0	K11	
TDI	D5	VCCA	Y15	VCCIB0	K12	
TDO	J8	VCCA	Y16	VCCIB0	K13	
TMS	F6	VCCA	Y17	VCCIB0	K14	
TRST	C4	VCCA	Y18	VCCIB0	K15	
VCCA	AD6	VCCA	Y19	VCCIB1	A28	
VCCA	AH26	VCCDA	AD24	VCCIB1	B28	
VCCA	E28	VCCDA	AD7	VCCIB1	J19	
VCCA	E3	VCCDA	AE15	VCCIB1	J20	
VCCA	L12	VCCDA	AE16	VCCIB1	J21	
VCCA	L13	VCCDA	AF12	VCCIB1	K16	
VCCA	L14	VCCDA	AF13	VCCIB1	K17	
VCCA	L15	VCCDA	AF15	VCCIB1	K18	
VCCA	L16	VCCDA	AF18	VCCIB1	K19	
VCCA	L17	VCCDA	AF19	VCCIB1	K20	
VCCA	L18	VCCDA	AH27	VCCIB2	C29	
VCCA	L19	VCCDA	AH4	VCCIB2	C30	
VCCA	M11	VCCDA	C13	VCCIB2	K22	
VCCA	M20	VCCDA	C27	VCCIB2	L21	
VCCA	N11	VCCDA	C5	VCCIB2	L22	
VCCA	N20	VCCDA	D13	VCCIB2	M21	
VCCA	P11	VCCDA	D19	VCCIB2	M22	
VCCA	P20	VCCDA	D3	VCCIB2	N21	
VCCA	R11	VCCDA	E18	VCCIB2	P21	
VCCA	R20	VCCDA	F15	VCCIB2	R21	
VCCA	T11	VCCDA	F16	VCCIB3	AA22	
VCCA	T20	VCCDA	F26	VCCIB3	AH29	

Note: *Not routed on the same package layer and to adjacent LGA pads as its differential pair complement. Recommended to be used as a single-ended I/O.

FG1152				
AX2000 Function	Pin Number			
VCOMPLD	K18			
VCOMPLE	AH19			
VCOMPLF	AF18			
VCOMPLG	AH16			
VCOMPLH	AD17			
VPUMP	J26			

AX250 Function Pin Number AX250 Function Number AX250 Function Number IO110PB7F7 19 GND 194 VCCIB0 200 IO112NB7F7 16 GND 201 VCCIB1 163 IO112PB7F7 17 GND 201 VCCIB1 163 IO117PB7F7 12 GND/LP 208 VCCIB2 144 IO119PB7F7 10 PRB 183 VCCIB3 112 IO119PB7F7 11 PRC 80 VCCIB4 98 IO122NB7F7 5 TCK 205 VCCIB4 98 IO122NB7F7 6 TDI 204 VCCIB4 98 IO122NB7F7 3 TDO 203 VCCIB4 98 IO123NB7F7 3 TDO 203 VCCIB6 45 GND 9 VCCA 2 VCCIB6 45 GND 15 VCCA 14 VCCIB7 8 GND	CQ208		CQ208		CQ208	
IO110PB7F7 19 GND 194 VCCIB0 200 IO112NB7F7 16 GND 196 VCCIB1 163 IO112PB7F7 17 GND 201 VCCIB1 172 IO117PB7F7 12 GNDLP 208 VCCIB2 149 IO117PB7F7 10 PRA 184 VCCIB3 112 IO112PB7F7 10 PRB 183 VCCIB3 124 IO12PB7F7 7 PRD 79 VCCIB4 89 IO122NB7F7 5 TCK 205 VCCIB4 98 IO122PB7F7 6 TDI 204 VCCIB5 68 IO123PB7F7 3 TDO 203 VCCIB6 45 GND 9 VCCA 2 VCCIB6 45 GND 9 VCCA 14 VCCIB7 8 GND 15 VCCA 14 VCCIB7 8 GND 39 VCCA	AX250 Function	Pin Number	AX250 Function	Pin Number	AX250 Function	Pin Numbe
IO112NB7F7 16 GND 196 VCCIB1 163 IO112PB7F7 17 GND/LP 208 VCCIB1 172 IO117NB7F7 12 GND/LP 208 VCCIB1 172 IO117PB7F7 13 PRA 184 VCCIB2 135 IO119NB7F7 10 PRB 183 VCCIB3 112 IO12PB7F7 11 PRC 80 VCCIB3 124 IO12PB7F7 7 PRD 79 VCCIB4 98 IO122PB7F7 6 TDI 204 VCCIB5 68 IO122PB7F7 6 TDI 204 VCCIB6 31 Dedicated I/O TRST 207 VCCIB6 45 GND 15 VCCA 14 VCCIB7 8 GND 32 VCCA 52 VCCIB7 8 GND 32 VCCA 52 VCCPLD 176 GND 34 VCCA 184<	IO110PB7F7	19	GND	194	VCCIB0	200
IO112PB7F7 17 GND 201 VCCIB1 172 IO117NB7F7 12 GND/LP 208 VCCIB2 135 IO117PB7F7 13 PRA 184 VCCIB2 149 IO119PB7F7 10 PRB 183 VCCIB2 149 IO119PB7F7 11 PRC 80 VCCIB3 112 IO12PB7F7 7 PRD 79 VCCIB4 89 IO122PB7F7 6 TDI 204 VCCIB5 58 IO123PB7F7 3 TDO 203 VCCIB6 48 IO123PB7F7 4 TMS 206 VCCIB5 58 GND 9 VCCA 2 VCCIB6 45 GND 15 VCCA 14 VCCIB7 20 GND 32 VCCA 52 VCCIB7 8 GND 39 VCCA 64 VCCPL0 176 GND 59 VCCA	IO112NB7F7	16	GND	196	VCCIB1	163
IO117NB7F7 12 GND/LP 208 VCCIB2 135 IO117PB7F7 13 PRA 184 VCCIB2 149 IO119PB7F7 10 PRB 183 VCCIB2 149 IO119PB7F7 11 PRC 80 VCCIB3 112 IO12PB7F7 7 PRD 79 VCCIB4 89 IO122PB7F7 6 TDI 204 VCCIB5 58 IO123PB7F7 4 TMS 206 VCCIB5 58 IO123PB7F7 4 TMS 206 VCCIB6 31 Dedicated IO TRST 207 VCCIB5 58 GND 9 VCCA 2 VCCIB6 31 GND 15 VCCA 14 VCCIB7 20 GND 39 VCCA 2 VCCIB7 8 GND 39 VCCA 18 VCCPLE 185 GND 59 VCCA 184 <t< td=""><td>IO112PB7F7</td><td>17</td><td>GND</td><td>201</td><td>VCCIB1</td><td>172</td></t<>	IO112PB7F7	17	GND	201	VCCIB1	172
IO117PB7F7 13 PRA 184 VCCIB2 149 IO119NB7F7 10 PRB 183 VCCIB3 112 IO119PB7F7 11 PRC 80 VCCIB3 124 IO12PB7F7 7 PRD 79 VCCIB4 89 IO122PB7F7 6 TDI 204 VCCIB5 58 IO122PB7F7 6 TDI 204 VCCIB5 58 IO123PB7F7 4 TMS 206 VCCIB5 68 IO123PB7F7 4 TMS 206 VCCIB5 68 GND 15 VCCA 2 VCCIB6 45 GND 15 VCCA 14 VCCIB7 8 GND 32 VCCA 52 VCCIB7 8 GND 39 VCCA 64 VCCPLA 189 GND 51 VCCA 142 VCCPLE 83 GND 59 VCCA 168	IO117NB7F7	12	GND/LP	208	VCCIB2	135
IO119NB7F7 10 PRB 183 VCCIB3 112 IO119PB7F7 11 PRC 80 VCCIB3 124 IO121PB7F7 7 PRD 79 VCCIB4 89 IO122NB7F7 6 TDI 204 VCCIB5 58 IO122NB7F7 3 TDO 203 VCCIB5 58 IO123PB7F7 4 TMS 206 VCCIB5 58 IO123PB7F7 4 TMS 206 VCCIB5 68 IO123PB7F7 4 TMS 206 VCCIB5 68 IO123PB7F7 4 TMS 206 VCCIB5 68 IO123PB7F7 4 TMS 207 VCCIB5 88 GND 15 VCCA 14 VCCIB7 20 GND 32 VCCA 52 VCCIB7 8 GND 39 VCCA 142 VCCPLC 178 GND 59 VCCA <td< td=""><td>IO117PB7F7</td><td>13</td><td>PRA</td><td>184</td><td>VCCIB2</td><td>149</td></td<>	IO117PB7F7	13	PRA	184	VCCIB2	149
IO119PB7F7 11 PRC 80 VCCIB3 124 IO121PB7F7 7 PRD 79 VCCIB4 89 IO122PB7F7 6 TDI 204 VCCIB5 58 IO123PB7F7 4 TMS 206 VCCIB5 68 IO123PB7F7 4 TMS 206 VCCIB5 68 GND 9 VCCA 2 VCCIB6 31 GND 9 VCCA 2 VCCIB6 31 GND 15 VCCA 14 VCCIB7 8 GND 32 VCCA 52 VCCIB7 8 GND 39 VCCA 18 VCCPLC 178 GND 46 VCCA 93 VCCPLC 178 GND 46 VCCA 118 VCCPLC 178 GND 65 VCCA 142 VCCPLE 83 GND 90 VCCA 142 VCCPLE	IO119NB7F7	10	PRB	183	VCCIB3	112
IO121PB7F7 7 PRD 79 VCCIB4 89 IO122NB7F7 5 TCK 205 VCCIB4 98 IO122PB7F7 6 TDI 204 VCCIB5 58 IO123NB7F7 3 TDO 203 VCCIB5 68 IO123PB7F7 4 TMS 206 VCCIB6 31 Dedicated I/O TRST 207 VCCIB6 45 GND 9 VCCA 2 VCCIB7 8 GND 21 VCCA 14 VCCIB7 20 GND 32 VCCA 52 VCCPLA 189 GND 39 VCCA 64 VCCPLC 178 GND 59 VCCA 184 VCCPLC 178 GND 65 VCCA 142 VCCPLE 85 GND 90 VCCA 188 VCCPLE 83 GND 90 VCCA 195 VCOMPLA	IO119PB7F7	11	PRC	80	VCCIB3	124
IO122NB7F7 5 TCK 205 IO122PB7F7 6 TDI 204 VCCIB5 58 IO123NB7F7 3 TDO 203 VCCIB5 68 IO123NB7F7 4 TMS 206 VCCIB5 68 GND 9 VCCA 2 VCCIB6 31 GND 15 VCCA 2 VCCIB6 45 GND 15 VCCA 14 VCCIB7 20 GND 32 VCCA 38 VCCPLA 189 GND 32 VCCA 64 VCCPLC 178 GND 39 VCCA 142 VCCPLC 178 GND 51 VCCA 142 VCCPLE 85 GND 59 VCCA 142 VCCPLE 85 GND 69 VCCA 168 VCCPLF 83 GND 90 VCCA 168 VCOMPLA 190	IO121PB7F7	7	PRD	79	VCCIB4	89
IO122PB7F7 6 TDI 204 IO123NB7F7 3 TDO 203 IO123PB7F7 4 TMS 206 Dedicated I/O TRST 207 VCCIB6 31 GND 9 VCCA 2 VCCIB6 45 GND 9 VCCA 2 VCCIB7 8 GND 15 VCCA 38 VCCPLB 189 GND 32 VCCA 52 VCCPLB 189 GND 32 VCCA 64 VCCPLD 178 GND 46 VCCA 93 VCCPL 189 GND 59 VCCA 142 VCCPLC 178 GND 69 VCCA 168 VCCPLC 178 GND 90 VCCA 168 VCCPLF 83 GND 94 VCCDA 168 VCOPLB 188 GND 104 VCCDA 53 VCOMPLB <td>IO122NB7F7</td> <td>5</td> <td>ТСК</td> <td>205</td> <td>VCCIB4</td> <td>98</td>	IO122NB7F7	5	ТСК	205	VCCIB4	98
IO123NB7F7 3 TDO 203 IO123PB7F7 4 TMS 206 Dedicated I/O TRST 207 VCCIB6 31 GND 9 VCCA 2 VCCIB6 45 GND 15 VCCA 2 VCCIB7 8 GND 21 VCCA 38 VCCIB7 8 GND 32 VCCA 52 VCCPLA 189 GND 32 VCCA 64 VCCPLA 189 GND 32 VCCA 52 VCCPLA 189 GND 46 VCCA 93 VCCPLC 178 GND 51 VCCA 142 VCCPLC 178 GND 59 VCCA 168 VCCPLE 85 GND 90 VCCA 195 VCOPLE 190 GND 94 VCCDA 168 VCOPLE 190 GND 104 VCCDA	IO122PB7F7	6	TDI	204	VCCIB5	58
IO123PB7F7 4 TMS 206 Dedicated I/O TRST 207 VCCIB6 31 GND 9 VCCA 2 VCCIB6 45 GND 15 VCCA 2 VCCIB7 8 GND 21 VCCA 38 VCCIB7 20 GND 32 VCCA 52 VCCPLA 189 GND 39 VCCA 64 VCCPLC 178 GND 46 VCCA 93 VCCPLC 178 GND 51 VCCA 142 VCCPLC 176 GND 59 VCCA 142 VCCPLC 176 GND 69 VCCA 168 VCCPLF 83 GND 90 VCCA 195 VCCPLF 83 GND 90 VCCA 195 VCOMPLA 190 GND 104 VCCDA 53 VCOMPLB 188 GND	IO123NB7F7	3	TDO	203	VCCIB5	68
Dedicated I/O TRST 207 VCCIB6 45 GND 9 VCCA 2 VCCIB7 8 GND 21 VCCA 38 VCCIB7 20 GND 32 VCCA 52 VCCIB7 189 GND 32 VCCA 52 VCCPLB 187 GND 39 VCCA 64 VCCPLD 176 GND 51 VCCA 93 VCCPLE 185 GND 59 VCCA 142 VCCPLE 85 GND 65 VCCA 142 VCCPLE 83 GND 69 VCCA 168 VCCPLF 83 GND 90 VCCA 195 VCCPLF 83 GND 90 VCCA 195 VCCPLF 190 GND 90 VCCDA 16 VCOMPLA 190 GND 104 VCCDA 53 VCOMPLE 86 </td <td>IO123PB7F7</td> <td>4</td> <td>TMS</td> <td>206</td> <td>VCCIB6</td> <td>31</td>	IO123PB7F7	4	TMS	206	VCCIB6	31
GND 9 VCCA 2 GND 15 VCCA 14 GND 21 VCCA 38 GND 21 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 GND 46 VCCA 93 GND 51 VCCA 148 GND 59 VCCA 142 GND 59 VCCA 142 GND 65 VCCA 142 GND 65 VCCA 168 GND 69 VCCA 168 GND 90 VCCA 195 GND 94 VCCDA 168 GND 94 VCCDA 168 GND 94 VCCDA 179 GND 104 VCCDA 53 GND 113 VCCDA 78 GND 125 VCCDA 163 </td <td>Dedicated I/O</td> <td></td> <td>TRST</td> <td>207</td> <td>VCCIB6</td> <td>45</td>	Dedicated I/O		TRST	207	VCCIB6	45
GND 15 VCCA 14 GND 21 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 GND 39 VCCA 64 GND 46 VCCA 93 GND 46 VCCA 93 GND 51 VCCA 118 GND 59 VCCA 142 GND 65 VCCA 156 GND 69 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 195 GND 90 VCCA 195 GND 94 VCCDA 105 GND 104 VCCDA 53 GND 113 VCCDA 63 GND 125 VCCDA 75 GND 136 VCCDA 167 GND 164 VCCDA 16	GND	9	VCCA	2	VCCIB7	8
GND 21 VCCA 38 GND 32 VCCA 52 GND 39 VCCA 64 GND 46 VCCA 93 GND 46 VCCA 93 GND 51 VCCA 118 GND 59 VCCA 118 GND 65 VCCA 142 GND 69 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 168 GND 94 VCCDA 168 GND 99 VCCDA 16 GND 104 VCCDA 53 VCOMPLB 188 VCOMPLB 188 GND 113 VCCDA 63 GND 113 VCCDA 75 GND 136 VCCDA 130 GND 164 VCCDA	GND	15	VCCA	14	VCCIB7	20
GND 32 VCCA 52 VCCPLB 187 GND 39 VCCA 64 VCCPLC 178 GND 46 VCCA 93 VCCPLD 176 GND 51 VCCA 118 VCCPLC 178 GND 59 VCCA 142 VCCPLE 85 GND 65 VCCA 156 VCCPLE 83 GND 69 VCCA 168 VCCPLF 83 GND 90 VCCA 168 VCCPLF 190 GND 90 VCCA 168 VCCPLH 72 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 13 VCOMPLA 190 GND 104 VCCDA 53 VCOMPLB 188 GND 113 VCCDA 63 VCOMPLE 86 GND 136 VCCDA 157 VCOMPLF	GND	21	VCCA	38	VCCPLA	189
GND 39 VCCA 64 GND 46 VCCA 93 GND 51 VCCA 118 GND 59 VCCA 142 GND 65 VCCA 168 GND 69 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 195 GND 90 VCCA 195 GND 94 VCCDA 168 GND 94 VCCDA 1 VCOMPLB 188 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLE 86 VCOMPLE 86 GND 113 VCCDA 75 GND 136 VCCDA 130 VCOMPLE 167 VCOMPLH 73 GND 164 V	GND	32	VCCA	52	VCCPLB	187
GND 46 VCCA 93 GND 51 VCCA 118 GND 59 VCCA 142 GND 65 VCCA 168 GND 69 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 168 GND 90 VCCA 195 GND 90 VCCA 195 GND 94 VCCDA 1 GND 94 VCCDA 1 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLC 179 GND 113 VCCDA 63 GND 113 VCCDA 78 VCOMPLF 84 GND 136 VCCDA 157 GND 136 VCCDA 157 GND 164 VCCDA 182 GND 169 VCCDA 202 <td>GND</td> <td>39</td> <td>VCCA</td> <td>64</td> <td>VCCPLC</td> <td>178</td>	GND	39	VCCA	64	VCCPLC	178
GND 51 VCCA 118 VCCPLE 85 GND 59 VCCA 142 VCCPLF 83 GND 65 VCCA 156 VCCPLF 83 GND 69 VCCA 168 VCCPLF 83 GND 69 VCCA 168 VCCPLF 83 GND 90 VCCA 195 VCCPLH 72 GND 90 VCCA 195 VCCMPLA 190 GND 94 VCCDA 1 VCOMPLA 190 GND 99 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLD 177 GND 113 VCCDA 78 VCOMPLE 86 GND 125 VCCDA 105 VCOMPLF 84 GND 136 VCCDA 130 VPUMP 158 GND 155 VCCDA 182 QND	GND	46	VCCA	93	VCCPLD	176
GND 59 VCCA 142 VCCPLF 83 GND 65 VCCA 156 VCCPLF 83 GND 69 VCCA 168 VCCPLF 83 GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 1 VCOMPLB 188 GND 99 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLC 179 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLE 86 GND 125 VCCDA 105 VCOMPLH 73 GND 143 VCCDA 130 VPUMP 158 GND 150 VCCDA 167 VPUMP 158 GND 169 VCCDA 202 VCOB <td>GND</td> <td>51</td> <td>VCCA</td> <td>118</td> <td>VCCPLE</td> <td>85</td>	GND	51	VCCA	118	VCCPLE	85
GND 65 VCCA 156 VCCPLG 74 GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 1 VCOMPLA 190 GND 94 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLD 177 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 105 VCOMPLF 84 GND 136 VCCDA 130 VPUMP 158 GND 143 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 VPUMP 158 GND 169 VCCDA 202 193 193	GND	59	VCCA	142	VCCPLF	83
GND 69 VCCA 168 VCCPLH 72 GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 1 VCOMPLA 190 GND 94 VCCDA 1 VCOMPLB 188 GND 99 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 53 VCOMPLC 179 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 105 VCOMPLF 84 GND 136 VCCDA 105 VCOMPLH 73 GND 143 VCCDA 130 VPUMP 158 GND 164 VCCDA 182 VPUMP 158 GND 169 VCCDA 202 193 193	GND	65	VCCA	156	VCCPLG	74
GND 90 VCCA 195 VCOMPLA 190 GND 94 VCCDA 1 VCOMPLB 188 GND 99 VCCDA 26 VCOMPLB 188 GND 104 VCCDA 26 VCOMPLC 179 GND 104 VCCDA 53 VCOMPLD 177 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 105 VCOMPLF 84 GND 136 VCCDA 105 VCOMPLH 73 GND 143 VCCDA 157 VCOMPLH 73 GND 155 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 193 193	GND	69	VCCA	168	VCCPLH	72
GND 94 VCCDA 1 VCOMPLB 188 GND 99 VCCDA 26 VCOMPLC 179 GND 104 VCCDA 53 VCOMPLD 177 GND 113 VCCDA 63 VCOMPLD 177 GND 119 VCCDA 78 VCOMPLE 86 GND 125 VCCDA 95 VCOMPLF 84 GND 136 VCCDA 105 VCOMPLH 73 GND 143 VCCDA 130 VPUMP 158 GND 150 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 VPUMP 158 GND 169 VCCDA 202 193 193	GND	90	VCCA	195	VCOMPLA	190
GND 99 VCCDA 26 VCOMPLC 179 GND 104 VCCDA 53 VCOMPLC 179 GND 104 VCCDA 53 VCOMPLD 177 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 95 VCOMPLG 75 GND 136 VCCDA 105 VCOMPLH 73 GND 143 VCCDA 150 VCOMPLH 73 GND 150 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 VCMPL 173 GND 169 VCCDA 202 193 193	GND	94	VCCDA	1	VCOMPLB	188
GND 104 VCCDA 53 VCOMPLD 177 GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLE 86 GND 125 VCCDA 95 VCOMPLG 75 GND 136 VCCDA 105 VCOMPLG 75 GND 143 VCCDA 130 VPUMP 158 GND 150 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 VCOMPL 193	GND	99	VCCDA	26	VCOMPLC	179
GND 113 VCCDA 63 VCOMPLE 86 GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 95 VCOMPLF 84 GND 136 VCCDA 105 VCOMPLF 84 GND 136 VCCDA 105 VCOMPLF 117 GND 143 VCCDA 130 VCOMPLH 73 GND 150 VCCDA 157 VPUMP 158 GND 164 VCCDA 182 VCOMPL 193 GND 173 VCCIB0 193 193 193	GND	104	VCCDA	53	VCOMPLD	177
GND 119 VCCDA 78 VCOMPLF 84 GND 125 VCCDA 95 VCOMPLG 75 GND 136 VCCDA 105 VCOMPLH 73 GND 143 VCCDA 130 VCOMPLH 73 GND 143 VCCDA 130 VPUMP 158 GND 150 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 VCOM 193 GND 173 VCCIB0 193 193 193	GND	113	VCCDA	63	VCOMPLE	86
GND 125 VCCDA 95 VCOMPLG 75 GND 136 VCCDA 105 VCOMPLG 73 GND 143 VCCDA 130 VCOMPLH 73 GND 143 VCCDA 130 VPUMP 158 GND 150 VCCDA 167 VPUMP 158 GND 164 VCCDA 182 VCOM 164 GND 169 VCCDA 202 193 193	GND	119	VCCDA	78	VCOMPLF	84
GND 136 VCCDA 105 GND 143 VCCDA 130 GND 143 VCCDA 130 GND 150 VCCDA 157 GND 155 VCCDA 167 GND 164 VCCDA 182 GND 169 VCCIB0 193	GND	125	VCCDA	95	VCOMPLG	75
GND 143 VCCDA 130 VPUMP 158 GND 150 VCCDA 157 GND 155 VCCDA 167 GND 164 VCCDA 182 GND 169 VCCDA 202 GND 173 VCCIB0 193	GND	136	VCCDA	105	VCOMPLH	73
GND 150 VCCDA 157 GND 155 VCCDA 167 GND 164 VCCDA 182 GND 169 VCCDA 202 GND 173 VCCIB0 193	GND	143	VCCDA	130	VPUMP	158
GND 155 VCCDA 167 GND 164 VCCDA 182 GND 169 VCCDA 202 GND 173 VCCIB0 193	GND	150	VCCDA	157		
GND 164 VCCDA 182 GND 169 VCCDA 202 GND 173 VCCIB0 193	GND	155	VCCDA	167		
GND 169 VCCDA 202 GND 173 VCCIB0 193	GND	164	VCCDA	182		
GND 173 VCCIB0 193	GND	169	VCCDA	202		
	GND	173	VCCIB0	193		

Package Pin Assignments

CQ352		
AX250 Function	Pin Number	
VCCDA	346	
VCCIB0	321	
VCCIB0	333	
VCCIB0	344	
VCCIB1	273	
VCCIB1	285	
VCCIB1	297	
VCCIB2	227	
VCCIB2	239	
VCCIB2	245	
VCCIB2	257	
VCCIB3	185	
VCCIB3	197	
VCCIB3	203	
VCCIB3	215	
VCCIB4	144	
VCCIB4	156	
VCCIB4	168	
VCCIB5	96	
VCCIB5	108	
VCCIB5	120	
VCCIB6	50	
VCCIB6	62	
VCCIB6	68	
VCCIB6	80	
VCCIB7	8	
VCCIB7	20	
VCCIB7	26	
VCCIB7	38	
VCCPLA	317	
VCCPLB	315	
VCCPLC	303	
VCCPLD	301	
VCCPLE	140	
VCCPLF	138	

CQ352			
AX250 Function	Pin Number		
VCCPLG	126		
VCCPLH	124		
VCOMPLA	318		
VCOMPLB	316		
VCOMPLC	304		
VCOMPLD	302		
VCOMPLE	141		
VCOMPLF	139		
VCOMPLG	127		
VCOMPLH	125		
VPUMP	267		

3-102

Package Pin Assignments

CQ352		
AX500 Function	Pin Number	
VCCDA	346	
VCCIB0	321	
VCCIB0	333	
VCCIB0	344	
VCCIB1	273	
VCCIB1	285	
VCCIB1	297	
VCCIB2	227	
VCCIB2	239	
VCCIB2	245	
VCCIB2	257	
VCCIB3	185	
VCCIB3	197	
VCCIB3	203	
VCCIB3	215	
VCCIB4	144	
VCCIB4	156	
VCCIB4	168	
VCCIB5	96	
VCCIB5	108	
VCCIB5	120	
VCCIB6	50	
VCCIB6	62	
VCCIB6	68	
VCCIB6	80	
VCCIB7	8	
VCCIB7	20	
VCCIB7	26	
VCCIB7	38	
VCCPLA	317	
VCCPLB	315	
VCCPLC	303	
VCCPLD	301	
VCCPLE	140	
VCCPLF	138	

CQ352				
AX500 Function	Pin Number			
VCCPLG	126			
VCCPLH	124			
VCOMPLA	318			
VCOMPLB	316			
VCOMPLC	304			
VCOMPLD	302			
VCOMPLE	141			
VCOMPLF	139			
VCOMPLG	127			
VCOMPLH	125			
VPUMP	267			