E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	8064
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	115
Number of Gates	500000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/ax500-pq208i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – General Description

Axcelerator devices offer high performance at densities of up to two million equivalent system gates. Based upon the Microsemi AX architecture, Axcelerator has several system-level features such as embedded SRAM (with complete FIFO control logic), PLLs, segmentable clocks, chip-wide highway routing, and carry logic.

Device Architecture

AX architecture, derived from the highly-successful SX-A sea-of-modules architecture, has been designed for high performance and total logic module utilization (Figure 1-1). Unlike in traditional FPGAs, the entire floor of the Axcelerator device is covered with a grid of logic modules, with virtually no chip area lost to interconnect elements or routing.

Programmable Interconnect Element

The Axcelerator family uses a patented metal-to-metal antifuse programmable interconnect element that resides between the upper two layers of metal (Figure 1-2 on page 1-2). This completely eliminates the channels of routing and interconnect resources between logic modules (as implemented on traditional FPGAs) and enables the efficient sea-of-modules architecture. The antifuses are normally open circuit and, when programmed, form a permanent, passive, low-impedance connection, leading to the fastest signal propagation in the industry. In addition, the extremely small size of these interconnect elements gives the Axcelerator family abundant routing resources.

The very nature of Microsemi's nonvolatile antifuse technology provides excellent protection against design pirating and cloning (FuseLock technology). Typical cloning attempts are impossible (even if the security fuse is left unprogrammed) as no bitstream or programming file is ever downloaded or stored in the device. Reverse engineering is virtually impossible due to the difficulty of trying to distinguish between programmed and unprogrammed antifuses and also due to the programming methodology of antifuse devices (see "Security" on page 2-108).

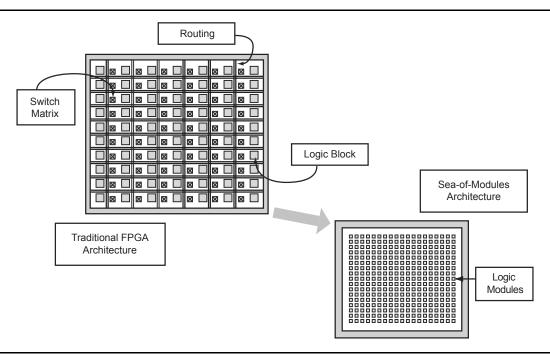


Figure 1-1 • Sea-of-Modules Comparison

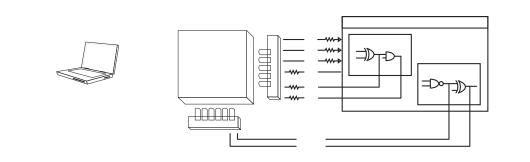
Design Environment

The Axcelerator family of FPGAs is fully supported by both Microsemi's Libero[®] Integrated Design Environment and Designer FPGA Development software. Libero IDE is an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment (see the *Libero IDE Flow* diagram located on the Microsemi SoC Products Group website). Libero IDE includes Synplify[®] Actel Edition (AE) from Synplicity[®], ViewDraw[®] AE from Mentor Graphics[®], Model*Sim[®]* HDL Simulator from Mentor Graphics, WaveFormer Lite[™] AE from SynaptiCAD[®], and Designer software from Microsemi.

Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes the following:

- Timer a world-class integrated static timing analyzer and constraints editor which support timing-driven place-and-route
- NetlistViewer a design netlist schematic viewer
- · ChipPlanner a graphical floorplanner viewer and editor
- SmartPower allows the designer to quickly estimate the power consumption of a design
- PinEditor a graphical application for editing pin assignments and I/O attributes
- I/O Attribute Editor displays all assigned and unassigned I/O macros and their attributes in a spreadsheet format

With the Designer software, a user can lock the design pins before layout while minimally impacting the results of place-and-route. Additionally, Microsemi's back-annotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Microsemi's integrated verification and logic analysis tool. Another tool included in the Designer software is the SmartGen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design.


Designer software is compatible with the most popular FPGA design entry and verification tools from EDA vendors, such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Programming

Programming support is provided through Silicon Sculptor II, a single-site programmer driven via a PCbased GUI. In addition, BP Microsystems offers multi-site programmers that provide qualified support for Microsemi devices. Factory programming is available for high-volume production needs.

In-System Diagnostic and Debug Capabilities

The Axcelerator family of FPGAs includes internal probe circuitry, allowing the designer to dynamically observe and analyze any signal inside the FPGA without disturbing normal device operation (Figure 1-9).

General Description

Up to four individual signals can be brought out to dedicated probe pins (PRA/B/C/D) on the device. The probe circuitry is accessed and controlled via Silicon Explorer II, Microsemi's integrated verification and logic analysis tool that attaches to the serial port of a PC and communicates with the FPGA via the JTAG port (See "Silicon Explorer II Probe Interface" on page 2-109).

Summary

Microsemi's Axcelerator family of FPGAs extends the successful SX-A architecture, adding embedded RAM/FIFOs, PLLs, and high-speed I/Os. With the support of a suite of robust software tools, design engineers can incorporate high gate counts and fixed pins into an Axcelerator design yet still achieve high performance and efficient device utilization.

Related Documents

Application Notes

Simultaneous Switching Noise and Signal Integrity http://www.microsemi.com/soc/documents/SSN_AN.pdf Axcelerator Family PLL and Clock Management http://www.microsemi.com/soc/documents/AX_PLL_AN.pdf Implementation of Security in Actel Antifuse FPGAs http://www.microsemi.com/soc/documents/Antifuse_Security_AN.pdf

User's Guides and Manuals

Antifuse Macro Library Guide http://www.microsemi.com/soc/documents/libguide_UG.pdf SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder http://www.microsemi.com/soc/documents/genguide_ug.pdf Silicon Sculptor II User's Guide http://www.microsemi.com/soc/documents/silisculptII_sculpt3_ug.pdf

White Paper

Design Security in Nonvolatile Flash and Antifuse FPGAs http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf Understanding Actel Antifuse Device Security http://www.microsemi.com/soc/documents/DesignSecurity_WP.pdf

Miscellaneous

Libero IDE flow diagram http://www.microsemi.com/soc/products/tools/libero/flow.html

Thermal Characteristics

Introduction

The temperature variable in Microsemi's Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction temperature to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature.

$$T_J = Junction Temperature = \Delta T + T_a$$

Where:

 T_a = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient

 $\Delta T = \theta_{ia} * P$

Where:

- P = Power
- θ_{ia} = Junction to ambient of package. θ_{ia} numbers are located under Table 2-6 on page 2-7.

Package Thermal Characteristics

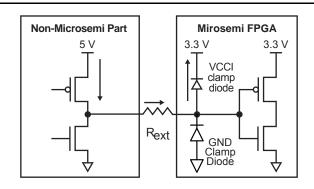
The device junction-to-case thermal characteristic is θ_{jc} , and the junction-to-ambient air characteristic is θ_{ja} . The thermal characteristics for θ_{ja} are shown with two different air flow rates. θ_{jc} values are provided for reference. The absolute maximum junction temperature is 125°C.

The maximum power dissipation allowed for commercial- and industrial-grade devices is a function of θ_{ja} . A sample calculation of the absolute maximum power dissipation allowed for an 896-pin FBGA package at commercial temperature and still air is as follows:

Maximum Power Allowed =
$$\frac{\text{Max. junction temp. } (^{\circ}\text{C}) - \text{Max. ambient temp. } (^{\circ}\text{C})}{\theta_{ja}(^{\circ}\text{C/W})} = \frac{125^{\circ}\text{C} - 70^{\circ}\text{C}}{13.6^{\circ}\text{C/W}} = 4.04 \text{ W}$$

EQ 2

EQ 1


5 V Tolerance

There are two schemes to achieve 5 V tolerance:

1. 3.3 V PCI and 3.3 V PCI-X are the only I/O standards that directly allow 5 V tolerance. To implement this, an internal clamp diode between the input pad and the VCCI pad is enabled so that the voltage at the input pin is clamped, as shown in EQ 3:

EQ 3

The internal VCCI clamp diode is only enabled while the device is powered on, so the voltage at the input will not be clamped if the VCCI or VCCA are powered off. An external series resistor (~100 Ω) is required between the input pin and the 5 V signal source to limit the current to less than 20 mA (Figure 2-3). The 100 Ω resistor was chosen to meet the input Tr/Tf requirement (Table 2-19 on page 2-21). The GND clamp diode is available for all I/O standards and always enabled.

Figure 2-3 • Use of an External Resistor for 5 V Tolerance

5 V tolerance can also be achieved with 3.3 V I/O standards (3.3 V PCI, 3.3 V PCI-X, and LVTTL) using a bus-switch product (e.g. IDTQS32X2384). This will convert the 5 V signal to a 3.3 V signal with minimum delay (Figure 2-4).

Figure 2-4 • Bus Switch IDTQS32X2384

Simultaneous Switching Outputs (SSO)

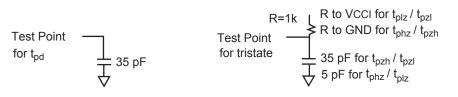
When multiple output drivers switch simultaneously, they induce a voltage drop in the chip/package power distribution. This simultaneous switching momentarily raises the ground voltage within the device relative to the system ground. This apparent shift in the ground potential to a non-zero value is known as simultaneous switching noise (SSN) or more commonly, ground bounce.

SSN becomes more of an issue in high pin count packages and when using high performance devices such as the Axcelerator family. Based upon testing, Microsemi recommends that users not exceed eight simultaneous switching outputs (SSO) per each VCCI/GND pair. To ease this potential burden on designers, Microsemi has designed all of the Axcelerator BGAs³ to not exceed this limit with the exception of the CS180, which has an I/O to VCCI/GND pair ratio of nine to one.

Please refer to the *Simultaneous Switching Noise and Signal Integrity* application note for more information.

^{3.} The user should note that in Bank 8 of both AX1000-FG484 and AX500-FG484, there are local violations of this 8:1 ratio.

Detailed Specifications


1.8 V LVCMOS

Low-Voltage Complementary Metal-Oxide Semiconductor for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 3.3 V tolerant CMOS input buffer and a push-pull output buffer.

Table 2-26 • DC Input and Output Levels

	VIL	VI	Н	VOL	VOH	IOL	IOH
Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
-0.3	0.2 VCCI	0.7 VCCI	3.6	0.2	VCCI – 0.2	8 mA	–8 mA

AC Loadings

Figure 2-17 • AC Test Loads

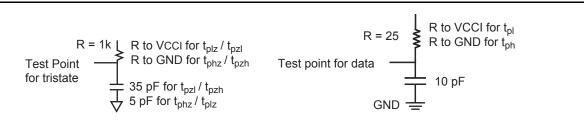
Table 2-27 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
0	1.8	0.5 VCCI	N/A	35

Note: * *Measuring Point* = *VTRIP*

Detailed Specifications

3.3 V PCI, 3.3 V PCI-X


Peripheral Component Interface for 3.3 V standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. The input and output buffers are 5 V tolerant with the aid of external components. Axcelerator 3.3 V PCI and 3.3 V PCI-X buffers are compliant with the PCI Local Bus Specification Rev. 2.1.

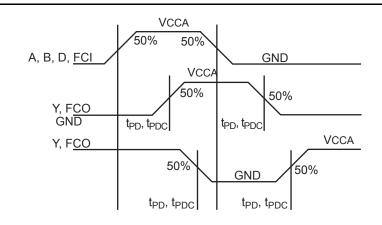
The PCI Compliance Specification requires the clamp diodes to be able to withstand for 11 ns, -3.5 V in undershoot, and 7.1 V in overshoot.

Table 2-33 • DC Input and Output Levels

		VIL	VIH		VOL VOH		IOL	IOH
	Min., V	Max., V	Min., V	Max., V	Max., V	Min., V	mA	mA
PCI	-0.3	0.3 VCCI	0.5 VCCI	VCCI + 0.5	(per PCI specification)			
PCI-X	-0.5	0.35 VCCI	0.5 VCCI	VCCI + 0.5	(per PCI specification)			

AC Loadings

Figure 2-18 • AC Test Loads


Table 2-34 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ) (V)	C _{load} (pF)
(Pe	r PCI Spec and PCI-X Sp	pec)	N/A	10

Note: * *Measuring Point* = *VTRIP*

Timing Model and Waveforms

Timing Characteristics

Table 2-62 • C-Cell

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70° C

		–2 S	peed	–1 S	peed	Std S	Speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
C-Cell Propagation Delays								
t _{PD}	Any input to output Y		0.74		0.84		0.99	ns
t _{PDC}	Any input to carry chain output (FCO)		0.57		0.64		0.76	ns
t _{PDB}	Any input through DB when one input is used		0.95		1.09		1.28	ns
t _{CCY}	Input to carry chain (FCI) to Y		0.61		0.69		0.82	ns
tcc	Input to carry chain (FCI) to carry chain output (FCO)		0.08		0.09		0.11	ns

Timing Characteristics

Table 2-65 • AX125 Predicted Routing Delays Worst-Case Commercial Conditions VCCA = 1.425 V, T_J = 70°C

		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted R	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.35	0.40	0.47	ns
t _{RD2}	Routing delay for FO2	0.38	0.43	0.51	ns
t _{RD3}	Routing delay for FO3	0.43	0.48	0.57	ns
t _{RD4}	Routing delay for FO4	0.48	0.55	0.64	ns
t _{RD5}	Routing delay for FO5	0.55	0.62	0.73	ns
t _{RD6}	Routing delay for FO6	0.64	0.72	0.85	ns
t _{RD7}	Routing delay for FO7	0.79	0.89	1.05	ns
t _{RD8}	Routing delay for FO8	0.88	0.99	1.17	ns
t _{RD16}	Routing delay for FO16	1.49	1.69	1.99	ns
t _{RD32}	Routing delay for FO32	2.32	2.63	3.10	ns

Table 2-66 • AX250 Predicted Routing Delays

Worst-Case Commercial Conditions VCCA = $1.425 \text{ V}, \text{ T}_{\text{J}} = 70^{\circ}\text{C}$

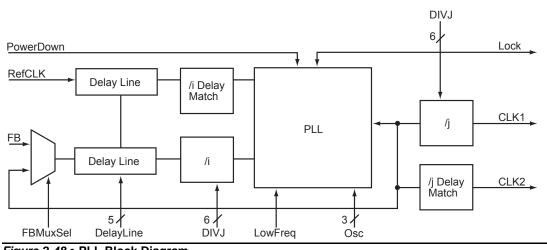
		-2 Speed	-1 Speed	Std Speed	
Parameter	Description	Typical	Typical	Typical	Units
Predicted F	Routing Delays				
t _{DC}	DirectConnect Routing Delay, FO1	0.11	0.12	0.15	ns
t _{FC}	FastConnect Routing Delay, FO1	0.35	0.39	0.46	ns
t _{RD1}	Routing delay for FO1	0.39	0.45	0.53	ns
t _{RD2}	Routing delay for FO2	0.41	0.46	0.54	ns
t _{RD3}	Routing delay for FO3	0.48	0.55	0.64	ns
t _{RD4}	Routing delay for FO4	0.56	0.63	0.75	ns
t _{RD5}	Routing delay for FO5	0.60	0.68	0.80	ns
t _{RD6}	Routing delay for FO6	0.84	0.96	1.13	ns
t _{RD7}	Routing delay for FO7	0.90	1.02	1.20	ns
t _{RD8}	Routing delay for FO8	1.00	1.13	1.33	ns
t _{RD16}	Routing delay for FO16	2.17	2.46	2.89	ns
t _{RD32}	Routing delay for FO32	3.55	4.03	4.74	ns

Axcelerator Clock Management System

Introduction

Each member of the Axcelerator family⁶ contains eight phase-locked loop (PLL) blocks which perform the following functions:

- Programmable Delay (32 steps of 250 ps)
- Clock Skew Minimization
- Clock Frequency Synthesis


Each PLL has the following key features:

- Input Frequency Range 14 to 200 MHz
- Output Frequency Range 20 MHz to 1 GHz
- Output Duty Cycle Range 45% to 55%
- Maximum Long-Term Jitter 1% or 100ps (whichever is greater)
- Maximum Short-Term Jitter 50ps + 1% of Output Frequency
- Maximum Acquisition Time (lock) 20µs

Physical Implementation

The eight PLL blocks are arranged in two groups of four. One group is located in the center of the northern edge of the chip, while the second group is centered on the southern edge. The northern group is associated with the four HCLK networks (e.g. PLLA can drive HCLKA), while the southern group is associated with the four CLK networks (e.g. PLLE can drive CLKE).

Each PLL cell is connected to two I/O pads and a PLL Cluster that interfaces with the FPGA core. Figure 2-48 illustrates a PLL block. The VCCPLL pin should be connected to a 1.5V power supply through a 250 Ω resistor. Furthermore, 0.1 μF and 10 μF decoupling capacitors should be connected across the VCCPLL and VCOMPPLL pins.

Note: The VCOMPPLL pin should never be grounded (Figure 2-2 on page 2-9)!

The I/O pads associated with the PLL can also be configured for regular I/O functions except when it is used as a clock buffer. The I/O pads can be configured in all the modes available to the regular I/O pads in the same I/O bank. In particular, the [H]CLKxP pad can be configured as a differential pair,

^{6.} AX2000-CQ256 does not support operation of the phase-locked loops. This is in order to support full pin compatibility with RTAX2000S/SL-CQ256.

Sample Implementations

Frequency Synthesis

Figure 2-53 illustrates an example where the PLL is used to multiply a 155.5 MHz external clock up to 622 MHz. Note that the same PLL schematic could use an external 350 MHz clock, which is divided down to 155 MHz by the FPGA internal logic.

Figure 2-54 illustrates the PLL using both dividers to synthesize a 133 MHz output clock from a 155 MHz input reference clock. The input frequency of 155 MHz is multiplied by 6 and divided by 7, giving a CLK1 output frequency of 132.86 MHz. When dividers are used, a given ratio can be generated in multiple ways, allowing the user to stay within the operating frequency ranges of the PLL.

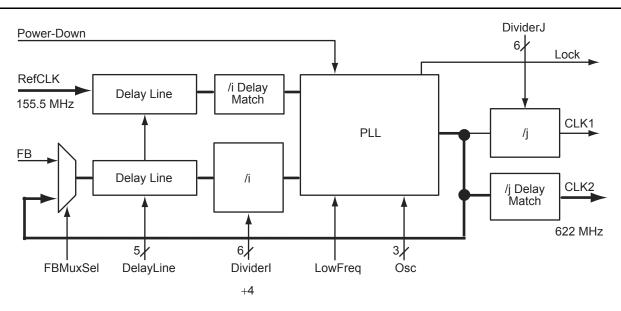


Figure 2-53 • Using the PLL 155.5 MHz In, 622 MHz Out

Adjustable Clock Delay

Figure 2-55 illustrates using the PLL to delay the reference clock by employing one of the adjustable delay lines. In this case, the output clock is delayed relative to the reference clock. Delaying the reference clock relative to the output clock is accomplished by using the delay line in the feedback path.

Detailed Specifications

Table 2-102 • Sixteen FIFO Blocks Cascaded

Worst-Case Commercial Conditions VCCA = 1.425 V, VCCI = 3.0 V, T_J = 70°C

		–2 S	peed	–1 S	peed	Std S	speed	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
FIFO Module	Timing							
t _{WSU}	Write Setup		16.32		18.60		21.86	ns
t _{WHD}	Write Hold		0.00		0.00		0.00	ns
t _{WCKH}	WCLK High		0.75		0.75		0.75	ns
t _{WCKL}	WCLK Low		13.40		13.40		13.40	ns
t _{WCKP}	Minimum WCLK Period	14.15		14.15		14.15		ns
t _{RSU}	Read Setup		17.16		19.54		22.97	ns
t _{RHD}	Read Hold		0.00		0.00		0.00	ns
t _{RCKH}	RCLK High		0.73		0.73		0.73	ns
t _{RCKL}	RCLK Low		14.41		14.41		14.41	ns
t _{RCKP}	Minimum RCLK period	15.14		15.14		15.14		ns
t _{CLRHF}	Clear High		0.00		0.00		0.00	ns
t _{CLR2FF}	Clear-to-flag (EMPTY/FULL)		1.92		2.18		2.57	ns
t _{CLR2AF}	Clear-to-flag (AEMPTY/AFULL)		4.39		5.00		5.88	ns
t _{CK2FF}	Clock-to-flag (EMPTY/FULL)		2.13		2.42		2.85	ns
t _{CK2AF}	Clock-to-flag (AEMPTY/AFULL)		5.04		5.75		6.75	ns
t _{RCK2RD1}	RCLK-To-OUT (Pipelined)		12.08		13.76		16.17	ns
t _{RCK2RD2}	RCLK-To-OUT (Nonpipelined)		12.83		14.62		17.18	ns

Note: Timing data for these sixteen cascaded FIFO blocks uses a depth of 65,536. For all other combinations, use Microsemi's timing software.

Building RAM and FIFO Modules

RAM and FIFO modules can be generated and included in a design in two different ways:

- Using the SmartGen Core Generator where the user defines the depth and width of the FIFO/RAM, and then instantiates this block into the design (refer to the *SmartGen, FlashROM, Analog System Builder, and Flash Memory System Builder* User's Guide for more information).
- The alternative is to instantiate the RAM/FIFO blocks manually, using inverters for polarity control and tying all unused data bits to ground.

Other Architectural Features

Low Power Mode

Although designed for high performance, the AX architecture also allows the user to place the device into a low power mode. Each I/O bank in an Axcelerator device can be configured individually, when in low power mode, to tristate all outputs, disable inputs, or both. The low power mode is activated by asserting the LP pin, which is grounded in normal operation.

While in the low power mode, the device is still fully functional and all internal logic states are preserved. This allows a user to disable all but a few signals and operate the part in a low-frequency, watchdog

BG729		BG729		BG729	
	Pin		Pin		Pin
AX1000 Function	Number	AX1000 Function	Number	AX1000 Function	Number
IO54PB1F5	E20	IO72PB2F6	J23	IO91NB2F8	N25
IO55NB1F5	E21	IO73NB2F6	H24	IO91PB2F8	N24
IO55PB1F5	D21	IO73PB2F6	H23	IO92NB2F8	N27
IO56NB1F5	H19	IO74NB2F7	L21	IO92PB2F8	N26
IO56PB1F5	G19	IO74PB2F7	K21	IO93NB2F8	P26
IO57NB1F5	D22	IO75NB2F7	G27	IO93PB2F8	P27
IO57PB1F5	C22	IO75PB2F7	F27	IO94NB2F8	N19
IO58NB1F5	B23	IO76NB2F7	K23	IO94PB2F8	N20
IO58PB1F5	A23	IO76PB2F7	K22	IO95NB2F8	P23
IO59NB1F5	D23	IO77NB2F7	H26	IO95PB2F8	P22
IO59PB1F5	C23	IO77PB2F7	H25	Bank 3	
IO60NB1F5	G21	IO78NB2F7	K25	IO96NB3F9	P25
IO60PB1F5	G20	IO78PB2F7	K24	IO96PB3F9	P24
IO61NB1F5	E23	IO79NB2F7	J26	IO97NB3F9	R26
IO61PB1F5	E22	IO79PB2F7	J25	IO97PB3F9	R27
IO62NB1F5	F22	IO80NB2F7	M20	IO98NB3F9	P21
IO62PB1F5	F21	IO80PB2F7	L20	IO98PB3F9	P20
IO63NB1F5	H20	IO81NB2F7	J27	IO99NB3F9	R24
IO63PB1F5	J19	IO81PB2F7	H27	IO99PB3F9	R25
Bank 2		IO82NB2F7	L23	IO100NB3F9	T26
IO64NB2F6	J21	IO82PB2F7	L22	IO100PB3F9	T27
IO64PB2F6	H21	IO83NB2F7	L25	IO101NB3F9	T24
IO65NB2F6	F24	IO83PB2F7	L24	IO101PB3F9	T25
IO65PB2F6	F23	IO84NB2F7	N21	IO102NB3F9	R20
IO66NB2F6	F26	IO84PB2F7	M21	IO102PB3F9	R21
IO66PB2F6	F25	IO85NB2F8	K27	IO103NB3F9	R23
IO67NB2F6	E26	IO85PB2F8	K26	IO103PB3F9	R22
IO67PB2F6	E25	IO86NB2F8	M23	IO104NB3F9	U26
IO68NB2F6	J22	IO86PB2F8	M22	IO104PB3F9	U27
IO68PB2F6	H22	IO87NB2F8	M25	IO105NB3F9	U24
IO69NB2F6	G24	IO87PB2F8	M24	IO105PB3F9	U25
IO69PB2F6	G23	IO88NB2F8	L27	IO106NB3F9	R19
IO70NB2F6	K20	IO88PB2F8	L26	IO106PB3F9	P19
IO70PB2F6	J20	IO89NB2F8	M27	IO107NB3F10	V26
IO71NB2F6	G26	IO89PB2F8	M26	IO107PB3F10	V27
IO71PB2F6	G25	IO90NB2F8	N23	IO108NB3F10	T23
IO72NB2F6	J24	IO90PB2F8	N22	IO108PB3F10	T22

Package Pin Assignments

FG484		FG484		FG484	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
IO54PB2F5	H22	IO72PB3F6	P20	IO90NB4F8	Y17
IO55NB2F5	L17	IO73PB3F6	R19	IO90PB4F8	Y18
IO55PB2F5	K17	IO74NB3F7	V21	IO91NB4F8	V15
IO56NB2F5	K21	IO74PB3F7	U21	IO91PB4F8	V16
IO56PB2F5	K22	IO75NB3F7	V22	IO92PB4F8	AB17
IO58NB2F5	L20	IO75PB3F7	U22	IO93NB4F8	Y15
IO58PB2F5	K20	IO76NB3F7	U20	IO93PB4F8	Y16
IO59NB2F5	L18	IO76PB3F7	T20	IO94NB4F9	AA16
IO59PB2F5	K18	IO77NB3F7	R17	IO94PB4F9	AA17
IO60NB2F5	M21	IO77PB3F7	P17	IO95NB4F9	AB14
IO60PB2F5	L21	IO78NB3F7	W21	IO95PB4F9	AB15
IO61NB2F5	L16	IO78PB3F7	W22	IO96NB4F9	W15
IO61PB2F5	K16	IO79NB3F7	T18	IO96PB4F9	W16
IO62NB2F5	M19	IO79PB3F7	R18	IO97NB4F9	AA13
IO62PB2F5	L19	IO80NB3F7	W20	IO97PB4F9	AB13
Bank 3	1	IO80PB3F7	V20	IO98NB4F9	AA14
IO63NB3F6	N16	IO81NB3F7	U19	IO98PB4F9	AA15
IO63PB3F6	M16	IO81PB3F7	T19	IO100NB4F9	Y14
IO64NB3F6	P22	IO82NB3F7	U18	IO100PB4F9	W14
IO64PB3F6	N22	IO82PB3F7	V19	IO101NB4F9	Y12
IO65NB3F6	N20	IO83NB3F7	R16	IO101PB4F9	Y13
IO65PB3F6	M20	IO83PB3F7	P16	IO102NB4F9	AA11
IO66NB3F6	P21	Bank 4		IO102PB4F9	AA12
IO66PB3F6	N21	IO84NB4F8	AB18	IO103NB4F9/CLKEN	V12
IO67NB3F6	N18	IO84PB4F8	AB19	IO103PB4F9/CLKEP	V13
IO67PB3F6	N19	IO85NB4F8	T15	IO104NB4F9/CLKFN	W11
IO68NB3F6	T22	IO85PB4F8	T16	IO104PB4F9/CLKFP	W12
IO68PB3F6	R22	IO86NB4F8	AA18	Bank 5	
IO69NB3F6	N17	IO86PB4F8	AA19	IO105NB5F10/CLKGN	U10
IO69PB3F6	M17	IO87NB4F8	W17	IO105PB5F10/CLKGP	U11
IO70NB3F6	T21	IO87PB4F8	V17	IO106NB5F10/CLKHN	V9
IO70PB3F6	R21	IO88NB4F8	Y19	IO106PB5F10/CLKHP	V10
IO71NB3F6	P18	IO88PB4F8	W18	IO107NB5F10	Y10
IO71PB3F6	P19	IO89NB4F8	U14	IO107PB5F10	Y11
IO72NB3F6	R20	IO89PB4F8	U15	IO108NB5F10	AA9

FG676		FG676		FG676	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
GND	A8	GND	L12	GND	R12
GND	AC23	GND	L13	GND	R13
GND	AC4	GND	L14	GND	R14
GND	AD24	GND	L15	GND	R15
GND	AD3	GND	L16	GND	R16
GND	AE2	GND	L17	GND	R17
GND	AE25	GND	M10	GND	T10
GND	AF1	GND	M11	GND	T11
GND	AF13	GND	M12	GND	T12
GND	AF14	GND	M13	GND	T13
GND	AF19	GND	M14	GND	T14
GND	AF26	GND	M15	GND	T15
GND	AF8	GND	M16	GND	T16
GND	B2	GND	M17	GND	T17
GND	B25	GND	N1	GND	U10
GND	B26	GND	N10	GND	U11
GND	C24	GND	N11	GND	U12
GND	C3	GND	N12	GND	U13
GND	G20	GND	N13	GND	U14
GND	G7	GND	N14	GND	U15
GND	H1	GND	N15	GND	U16
GND	H19	GND	N16	GND	U17
GND	H26	GND	N17	GND	V18
GND	H8	GND	N26	GND	V9
GND	J18	GND	P1	GND	W1
GND	J9	GND	P10	GND	W19
GND	K10	GND	P11	GND	W26
GND	K11	GND	P12	GND	W8
GND	K12	GND	P13	GND	Y20
GND	K13	GND	P14	GND	Y7
GND	K14	GND	P15	GND/LP	C2
GND	K15	GND	P16	NC	A25
GND	K16	GND	P17	NC	AC13
GND	K17	GND	P26	NC	AC14
GND	L10	GND	R10	NC	AF2
GND	L11	GND	R11	NC	AF25

Package Pin Assignments

FG896		FG896		FG896	
AX1000 Function	Pin Number	AX1000 Function	Pin Number	AX1000 Function	Pin Number
NC	K1	VCCA	N20	VCCDA	AF19
NC	K2	VCCA	P11	VCCDA	C13
NC	L30	VCCA	P20	VCCDA	C5
NC	M30	VCCA	R11	VCCDA	D13
NC	N29	VCCA	R20	VCCDA	D19
NC	T1	VCCA	T11	VCCDA	D3
NC	U1	VCCA	T20	VCCDA	E18
NC	W30	VCCA	U11	VCCDA	F26
NC	Y1	VCCA	U20	VCCDA	G16
NC	Y2	VCCA	V11	VCCDA	T25
NC	Y30	VCCA	V20	VCCDA	T4
PRA	G15	VCCA	W11	VCCIB0	A3
PRB	D16	VCCA	W20	VCCIB0	B3
PRC	AB16	VCCA	Y12	VCCIB0	J10
PRD	AF16	VCCA	Y13	VCCIB0	J11
ТСК	G7	VCCA	Y14	VCCIB0	J12
TDI	D5	VCCA	Y15	VCCIB0	K11
TDO	J8	VCCA	Y16	VCCIB0	K12
TMS	F6	VCCA	Y17	VCCIB0	K13
TRST	C4	VCCA	Y18	VCCIB0	K14
VCCA	AD6	VCCA	Y19	VCCIB0	K15
VCCA	AH26	VCCPLA	G14	VCCIB1	A28
VCCA	E28	VCCPLB	H15	VCCIB1	B28
VCCA	E3	VCCPLC	G17	VCCIB1	J19
VCCA	L12	VCCPLD	J16	VCCIB1	J20
VCCA	L13	VCCPLE	AH17	VCCIB1	J21
VCCA	L14	VCCPLF	AC16	VCCIB1	K16
VCCA	L15	VCCPLG	AH14	VCCIB1	K17
VCCA	L16	VCCPLH	AD15	VCCIB1	K18
VCCA	L17	VCCDA	AD24	VCCIB1	K19
VCCA	L18	VCCDA	AD7	VCCIB1	K20
VCCA	L19	VCCDA	AF12	VCCIB2	C29
VCCA	M11	VCCDA	AF13	VCCIB2	C30
VCCA	M20	VCCDA	AF15	VCCIB2	K22
VCCA	N11	VCCDA	AF18	VCCIB2	L21

Package Pin Assignments

FG896		FG896		FG896	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
Bank 0		IO19NB0F1	D11	Bank 1	
IO00NB0F0	B4	IO19PB0F1	E11	IO43NB1F4/HCLKCN	E17
IO00PB0F0	A4	IO20PB0F1	B8	IO43PB1F4/HCLKCP	E16
IO01NB0F0	F8	IO21NB0F1	H12	IO44NB1F4/HCLKDN	C17
IO01PB0F0	F7	IO21PB0F1	H11	IO44PB1F4/HCLKDP	D17
IO02NB0F0	D6	IO23NB0F2	A10	IO45NB1F4	A16
IO02PB0F0	E6	IO23PB0F2	A9	IO45PB1F4	B16
IO04NB0F0	A5	IO25NB0F2	F12	IO47NB1F4	H17
IO04PB0F0	B5	IO25PB0F2	G12	IO47PB1F4	J17
IO05NB0F0	H8	IO26NB0F2	B11	IO48NB1F4	A17
IO05PB0F0	G8	IO26PB0F2	B10	IO48PB1F4	B17
IO06NB0F0	D7	IO27NB0F2	D12	IO49NB1F4	H18
IO06PB0F0	E7	IO27PB0F2	E12	IO49PB1F4	J18
IO07NB0F0	D8	IO28NB0F2	C12	IO51NB1F4	F18
IO07PB0F0	E8	IO28PB0F2	C11	IO51PB1F4	G18
IO08NB0F0	C7	IO30NB0F2	A12	IO52NB1F4	B18
IO08PB0F0	C6	IO30PB0F2	A11	IO53NB1F4	D18
IO09NB0F0	G9	IO31NB0F2	F13	IO53PB1F4	C18
IO09PB0F0	H9	IO31PB0F2	G13	IO55NB1F5	H19
IO10NB0F0	A6	IO33NB0F2	H13	IO55PB1F5	G19
IO10PB0F0	B6	IO33PB0F2	J13	IO56NB1F5	B19
IO11NB0F0	H10	IO34NB0F3	B13	IO56PB1F5	A19
IO11PB0F0	G10	IO34PB0F3	B12	IO57NB1F5	E20
IO12NB0F1	E9	IO37NB0F3	E14	IO57PB1F5	E19
IO12PB0F1	F9	IO37PB0F3	E13	IO58NB1F5	C20
IO13NB0F1	E10	IO38NB0F3	B14	IO58PB1F5	C19
IO13PB0F1	F10	IO38PB0F3	A14	IO59NB1F5	B20
IO15NB0F1	F11	IO39NB0F3	H14	IO59PB1F5	A20
IO15PB0F1	G11	IO39PB0F3	J14	IO61NB1F5	F20
IO16NB0F1	A7	IO40NB0F3	B15	IO61PB1F5	F19
IO16PB0F1	B7	IO40PB0F3	A15	IO62NB1F5	A22
IO17NB0F1	D10	IO41NB0F3/HCLKAN	C14	IO62PB1F5	A21
IO17PB0F1	D9	IO41PB0F3/HCLKAP	D14	IO63NB1F5	D21
IO18NB0F1	C9	IO42NB0F3/HCLKBN	E15	IO63PB1F5	D20
IO18PB0F1	C8	IO42PB0F3/HCLKBP	D15	IO65NB1F6	G20

FG1152		FG1152		FG1152	
AX2000 Function	Pin Number	AX2000 Function	Pin Number	AX2000 Function	Pin Number
IO155PB3F14	AC29	IO172PB4F16	AH27	IO190NB4F17	AH22
IO156NB3F14	AE30	IO173NB4F16	AJ27	IO190PB4F17	AH23
IO156PB3F14	AD30	IO173PB4F16	AJ28	IO191NB4F17	AJ23
IO157NB3F14	AC26	IO174NB4F16	AL27	IO191PB4F17	AJ24
IO157PB3F14	AB26	IO174PB4F16	AL28	IO192NB4F17	AG21
IO158NB3F14	AH33	IO175NB4F16	AM28	IO192PB4F17	AG22
IO158PB3F14	AG33	IO175PB4F16	AM29	IO193NB4F18	AP23
IO159NB3F14	AD27	IO176NB4F16	AG25	IO193PB4F18	AP24
IO159PB3F14	AC27	IO176PB4F16	AG26	IO194NB4F18	AN22
IO160NB3F14	AG32	IO177NB4F16	AK26	IO194PB4F18	AN23
IO160PB3F14	AF32	IO177PB4F16	AK27	IO195NB4F18	AM23
IO161NB3F15	AG31	IO178NB4F16	AF25	IO195PB4F18	AL23
IO161PB3F15	AF31	IO178PB4F16	AE25	IO196NB4F18	AF21
IO162NB3F15	AF29	IO179NB4F16	AP28	IO196PB4F18	AF22
IO162PB3F15	AE29	IO179PB4F16	AN28	IO197NB4F18	AL22
IO163NB3F15	AE28	IO180NB4F16	AJ25	IO197PB4F18	AM22
IO163PB3F15	AD28	IO180PB4F16	AJ26	IO198NB4F18	AE21
IO164NB3F15	AG30	IO181NB4F17	AM26	IO198PB4F18	AE22
IO164PB3F15	AF30	IO181PB4F17	AM27	IO199NB4F18	AJ21
IO165NB3F15	AE26	IO182NB4F17	AF24	IO199PB4F18	AJ22
IO165PB3F15	AD26	IO182PB4F17	AE24	IO200NB4F18	AK21
IO166NB3F15	AJ30	IO183NB4F17	AH24	IO200PB4F18	AK22
IO166PB3F15	AH30	IO183PB4F17	AH25	IO201NB4F18	AM21
IO167NB3F15	AG28	IO184NB4F17	AG23	IO201PB4F18	AL21
IO167PB3F15	AF28	IO184PB4F17	AG24	IO202NB4F18	AE20
IO168NB3F15	AF27	IO185NB4F17	AL25	IO202PB4F18	AD20
IO168PB3F15	AE27	IO185PB4F17	AL26	IO203NB4F19	AN21
IO169NB3F15	AH29	IO186NB4F17	AP25	IO203PB4F19	AP21
IO169PB3F15	AG29	IO186PB4F17	AP26	IO204NB4F19	AP20
IO170NB3F15	AD25	IO187NB4F17	AK24	IO204PB4F19	AN20
IO170PB3F15	AC25	IO187PB4F17	AK25	IO205NB4F19	AN19
Bank 4	Bank 4		AF23	IO205PB4F19	AP19
IO171NB4F16	AP29	IO188PB4F17	AE23	IO206NB4F19	AG20
IO171PB4F16	AN29	IO189NB4F17	AN24	IO206PB4F19	AF20
IO172NB4F16	AH26	IO189PB4F17	AM24	IO207NB4F19	AL19

PQ208		
AX250 Function	Pin Number	A
Bank 0		
IO02NB0F0	197	
IO03NB0F0	198	
IO03PB0F0	199	
IO12NB0F0/HCLKAN	191	F
IO12PB0F0/HCLKAP	192	
IO13NB0F0/HCLKBN	185	F
IO13PB0F0/HCLKBP	186	
Bank 1		F
IO14NB1F1/HCLKCN	180	F
IO14PB1F1/HCLKCP	181	F
IO15NB1F1/HCLKDN	174	\vdash
IO15PB1F1/HCLKDP	175	F
IO16NB1F1	170	F
IO16PB1F1	171	F
IO24NB1F1	165	F
IO24PB1F1	166	F
IO26NB1F1	161	F
IO26PB1F1	162	
IO27NB1F1	159	
IO27PB1F1	160	
Bank 2		
IO29NB2F2	151	
IO29PB2F2	153	
IO30NB2F2	152	
IO30PB2F2	154	
IO31PB2F2	148	
IO32NB2F2	146	
IO32PB2F2	147	
IO34NB2F2	144	
IO34PB2F2	145	
IO39NB2F2	139	
IO39PB2F2	140	
IO40PB2F2	141	
IO41NB2F2	137	
IO41PB2F2	138	
IO43NB2F2	132	F

PQ208	
AX250 Function	Pin Number
IO43PB2F2	134
IO44NB2F2	131
IO44PB2F2	133
Bank 3	
IO45NB3F3	127
IO45PB3F3	129
IO46NB3F3	126
IO46PB3F3	128
IO48NB3F3	122
IO48PB3F3	123
IO50NB3F3	120
IO50PB3F3	121
IO55NB3F3	116
IO55PB3F3	117
IO57NB3F3	114
IO57PB3F3	115
IO59NB3F3	110
IO59PB3F3	111
IO60NB3F3	108
IO60PB3F3	109
IO61NB3F3	106
IO61PB3F3	107
Bank 4	
IO62NB4F4	100
IO62PB4F4	103
IO63NB4F4	101
IO63PB4F4	102
IO64NB4F4	96
IO64PB4F4	97
IO72NB4F4	91
IO72PB4F4	92
IO74NB4F4/CLKEN	87
IO74PB4F4/CLKEP	88
IO75NB4F4/CLKFN	81
IO75PB4F4/CLKFP	82
Bank 5	
IO76NB5F5/CLKGN	76

PQ208					
PQ200					
AX250 Function	Number				
IO76PB5F5/CLKGP	77				
IO77NB5F5/CLKHN	70				
IO77PB5F5/CLKHP	71				
IO78NB5F5	66				
IO78PB5F5	67				
IO86NB5F5	62				
IO87NB5F5	60				
IO87PB5F5	61				
IO88NB5F5	56				
IO88PB5F5	57				
IO89NB5F5	54				
IO89PB5F5	55				
Bank 6	•				
IO91NB6F6	47				
IO91PB6F6	49				
IO92NB6F6	48				
IO92PB6F6	50				
IO93NB6F6	42				
IO93PB6F6	43				
IO94PB6F6	44				
IO96NB6F6	40				
IO96PB6F6	41				
IO101NB6F6	35				
IO101PB6F6	36				
IO102PB6F6	37				
IO103NB6F6	33				
IO103PB6F6	34				
IO105NB6F6	28				
IO105PB6F6	30				
IO106NB6F6	27				
IO106PB6F6	29				
Bank 7					
IO107NB7F7	23				
IO107PB7F7	25				
IO108NB7F7	22				
IO108PB7F7	24				
IO110NB7F7	18				

CQ352	CQ352			CQ352	
AX500 Function	Pin Number	AX500 Function	Pin Number	AX500 Function	Pin Number
GND	21	GND	240	TDI	348
GND	27	GND	246	TDO	347
GND	33	GND	252	TMS	350
GND	39	GND	258	TRST	351
GND	45	GND	264	VCCA	3
GND	51	GND	265	VCCA	14
GND	57	GND	274	VCCA	32
GND	63	GND	280	VCCA	56
GND	69	GND	286	VCCA	74
GND	75	GND	292	VCCA	87
GND	81	GND	298	VCCA	102
GND	88	GND	310	VCCA	114
GND	89	GND	322	VCCA	150
GND	97	GND	330	VCCA	162
GND	103	GND	334	VCCA	175
GND	109	GND	340	VCCA	191
GND	115	GND	345	VCCA	209
GND	121	GND/LP	352	VCCA	233
GND	133	NC	91	VCCA	251
GND	145	NC	117	VCCA	263
GND	151	NC	130	VCCA	279
GND	157	NC	131	VCCA	291
GND	163	NC	148	VCCA	329
GND	169	NC	174	VCCA	339
GND	176	NC	268	VCCDA	2
GND	177	NC	294	VCCDA	44
GND	186	NC	307	VCCDA	90
GND	192	NC	308	VCCDA	116
GND	198	NC	327	VCCDA	132
GND	204	NC	328	VCCDA	149
GND	210	PRA	312	VCCDA	178
GND	216	PRB	311	VCCDA	221
GND	222	PRC	135	VCCDA	266
GND	228	PRD	134	VCCDA	293
GND	234	ТСК	349	VCCDA	309