

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Active
Active
Dual Core
CAN, EBI/EMI, Ethernet, I ² C, SPI, SPORT, UART/USART, USB OTG
500MHz
ROM (64kB)
808K × 8
1.8V, 3.3V
1.25V
-40°C ~ 85°C (TA)
Surface Mount
349-LFBGA, CSPBGA
349-CSPBGA (19x19)
https://www.e-xfl.com/product-detail/analog-devices/adsp-bf607bbcz-5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. Blackfin Processor Core

The 40-bit shifter can perform shifts and rotates and is used to support normalization, field extract, and field deposit instructions.

The program sequencer controls the flow of instruction execution, including instruction alignment and decoding. For program flow control, the sequencer supports PC relative and indirect conditional jumps (with static branch prediction), and subroutine calls. Hardware supports zero-overhead looping. The architecture is fully interlocked, meaning that the programmer need not manage the pipeline when executing instructions with data dependencies.

The address arithmetic unit provides two addresses for simultaneous dual fetches from memory. It contains a multiported register file consisting of four sets of 32-bit index, modify, length, and base registers (for circular buffering), and eight additional 32-bit pointer registers (for C-style indexed stack manipulation).

Blackfin processors support a modified Harvard architecture in combination with a hierarchical memory structure. Level 1 (L1) memories are those that typically operate at the full processor speed with little or no latency. At the L1 level, the instruction memory holds instructions only. The data memory holds data, and a dedicated scratchpad data memory stores stack and local variable information. In addition, multiple L1 memory blocks are provided, offering a configurable mix of SRAM and cache. The memory management unit (MMU) provides memory protection for individual tasks that may be operating on the core and can protect system registers from unintended access.

The architecture provides three modes of operation: user mode, supervisor mode, and emulation mode. User mode has restricted access to certain system resources, thus providing a protected software environment, while supervisor mode has unrestricted access to the system and core resources.

INSTRUCTION SET DESCRIPTION

The Blackfin processor instruction set has been optimized so that 16-bit opcodes represent the most frequently used instructions, resulting in excellent compiled code density. Complex DSP instructions are encoded into 32-bit opcodes, representing fully featured multifunction instructions. Blackfin processors support a limited multi-issue capability, where a 32-bit instruction can be issued in parallel with two 16-bit instructions, allowing the programmer to use many of the core resources in a single instruction cycle.

The Blackfin processor family assembly language instruction set employs an algebraic syntax designed for ease of coding and readability. The instructions have been specifically tuned to provide a flexible, densely encoded instruction set that compiles to

Internal (Core-Accessible) Memory

The L1 memory system is the highest-performance memory available to the Blackfin processor cores.

Each core has its own private L1 memory. The modified Harvard architecture supports two concurrent 32-bit data accesses along with an instruction fetch at full processor speed which provides high bandwidth processor performance. In each core a 64K-byte block of data memory partners with an 80K-byte memory block for instruction storage. Each data block is multibanked for efficient data exchange through DMA and can be configured as SRAM. Alternatively, 16K bytes of each block can be configured in L1 cache mode. The four-way set-associative instruction cache and the 2 two-way set-associative data caches greatly accelerate memory access performance, especially when accessing external memories.

The L1 memory domain also features a 4K-byte scratchpad SRAM block which is ideal for storing local variables and the software stack. All L1 memory is protected by a multi-parity bit concept, regardless of whether the memory is operating in SRAM or cache mode.

Outside of the L1 domain, L2 and L3 memories are arranged using a Von Neumann topology. The L2 memory domain is a unified instruction and data memory and can hold any mixture of code and data required by the system design. The L2 memory domain is accessible by both Blackfin cores through a dedicated 64-bit interface. It operates at SYSCLK frequency.

The processor features up to 256K bytes of L2 SRAM which is ECC-protected and organized in eight banks. Individual banks can be made private to any of the cores or the DMA subsystem. There is also a 32K-byte single-bank ROM in the L2 domain. It contains boot code and safety functions.

Static Memory Controller (SMC)

The SMC can be programmed to control up to four banks of external memories or memory-mapped devices, with very flexible timing parameters. Each bank occupies a 64M byte segment regardless of the size of the device used, so that these banks are only contiguous if each is fully populated with 64M bytes of memory.

Dynamic Memory Controller (DMC)

The DMC includes a controller that supports JESD79-2E compatible double data rate (DDR2) SDRAM and JESD209A low power DDR (LPDDR) SDRAM devices.

I/O Memory Space

The processor does not define a separate I/O space. All resources are mapped through the flat 32-bit address space. Onchip I/O devices have their control registers mapped into memory-mapped registers (MMRs) at addresses near the top of the 4G byte address space. These are separated into two smaller blocks, one which contains the control MMRs for all core functions, and the other which contains the registers needed for setup and control of the on-chip peripherals outside of the core. The MMRs are accessible only in supervisor mode and appear as reserved space to on-chip peripherals.

Booting

The processor has several mechanisms for automatically loading internal and external memory after a reset. The boot mode is defined by the SYS_BMODE input pins dedicated for this purpose. There are two categories of boot modes. In master boot modes, the processor actively loads data from parallel or serial memories. In slave boot modes, the processor receives data from external host devices.

The boot modes are shown in Table 2. These modes are implemented by the SYS_BMODE bits of the reset configuration register and are sampled during power-on resets and softwareinitiated resets.

SYS_BMODE Setting	Boot Mode
000	No boot/Idle
001	Memory
010	RSI0 Master
011	SPI0 Master
100	SPI0 Slave
101	Reserved
110	LP0 Slave
111	UARTO Slave

Table 2. Boot Modes

VIDEO SUBSYSTEM

The following sections describe the components of the processor's video subsystem. These blocks are shown with blue shading in Figure 1 on Page 1.

Video Interconnect (VID)

The Video Interconnect provides a connectivity matrix that interconnects the Video Subsystem: three PPIs, the PIXC, and the PVP. The interconnect uses a protocol to manage data transfer among these video peripherals.

Pipelined Vision Processor (PVP)

The PVP engine provides hardware implementation of signal and image processing algorithms that are required for co-processing and pre-processing of monochrome video frames in ADAS applications, robotic systems, and other machine applications.

The PVP works in conjunction with the Blackfin cores. It is optimized for convolution and wavelet based object detection and classification, and tracking and verification algorithms. The PVP has the following processing blocks.

- + Four 5×5 16-bit convolution blocks optionally followed by down scaling
- A 16-bit cartesian-to-polar coordinate conversion block
- A pixel edge classifier that supports 1st and 2nd derivative modes
- An arithmetic unit with 32-bit addition, multiply and divide

NOTE: VALUES MARKED WITH * MUST BE CUSTOMIZED, DEPENDING ON THE CRYSTAL AND LAYOUT. PLEASE ANALYZE CAREFULLY. FOR FREQUENCIES ABOVE 33 MHz, THE SUGGESTED CAPACITOR VALUE OF 18pF SHOULD BE TREATED AS A MAXIMUM, AND THE SUGGESTED RESISTOR VALUE SHOULD BE REDUCED TO 0 Ω.

Figure 6. External Crystal Connection

The two capacitors and the series resistor shown in Figure 6 fine tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 6 are typical values only. The capacitor values are dependent upon the crystal manufacturers' load capacitance recommendations and the PCB physical layout. The resistor value depends on the drive level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over temperature range.

A third-overtone crystal can be used for frequencies above 25 MHz. The circuit is then modified to ensure crystal operation only at the third overtone by adding a tuned inductor circuit as shown in Figure 6. A design procedure for third-overtone operation is discussed in detail in application note (EE-168) Using Third Overtone Crystals with the ADSP-218x DSP on the Analog Devices website (www.analog.com)—use site search on "EE-168."

USB Crystal Oscillator

The USB can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must not be halted, changed, or operated below the specified frequency during normal operation. This signal is connected to the processor's USB_CLKIN pin. Alternatively, because the processor includes an on-chip oscillator circuit, an external crystal may be used.

For fundamental frequency operation, use the circuit shown in Figure 7. A parallel-resonant, fundamental frequency, microprocessor grade crystal is connected between the USB_CLKIN pin and ground. A load capacitor is placed in parallel with the crystal. The combined capacitive value of the board trace parasitic, the case capacitance of the crystal (from crystal manufacturer) and the parallel capacitor in the diagram should be in the range of 8 pF to 15 pF.

Figure 7. External USB Crystal Connection

The crystal should be chosen so that its rated load capacitance matches the nominal total capacitance on this node. A series resistor may be added between the USB_CLKIN pin and the parallel crystal and capacitor combination, in order to further reduce the drive level of the crystal.

The parallel capacitor and the series resistor shown in Figure 7 fine tune phase and amplitude of the sine frequency. The capacitor and resistor values shown in Figure 7 are typical values only. The capacitor values are dependent upon the crystal manufacturers' load capacitance recommendations and the PCB physical layout. The resistor value depends on the drive level specified by the crystal manufacturer. The user should verify the customized values based on careful investigations on multiple devices over temperature range.

Clock Generation

The clock generation unit (CGU) generates all on-chip clocks and synchronization signals. Multiplication factors are programmed to the PLL to define the PLLCLK frequency. Programmable values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK, SCLK0 and SCLK1), the LPDDR or DDR2 clock (DCLK) and the output clock (OCLK). This is illustrated in Figure 8 on Page 54.

Writing to the CGU control registers does not affect the behavior of the PLL immediately. Registers are first programmed with a new value, and the PLL logic executes the changes so that it transitions smoothly from the current conditions to the new ones.

SYS_CLKIN oscillations start when power is applied to the $V_{DD_{EXT}}$ pins. The rising edge of $\overline{SYS_HWRST}$ can be applied after all voltage supplies are within specifications (see Operating Conditions on Page 52), and SYS_CLKIN oscillations are stable.

Clock Out/External Clock

The SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_ CLKIN input. Clock generation faults (for example PLL unlock) may trigger a reset by hardware. The clocks shown in Table 3 can be outputs from SYS_CLKOUT.

Table 7. ADSP-BF60x 349-Ball CSP_BGA Signal Descriptions (Continued)

Signal Name	Description	Port	Pin Name
DMC0 DO00	DMC Data 0	Not Muxed	DMC0 DO00
DMC0 DO01	DMC Data 1	Not Muxed	DMC0 DO01
DMC0 DO02	DMC Data 2	Not Muxed	DMC0 DO02
DMC0 DQ03	DMC Data 3	Not Muxed	DMC0 DQ03
DMC0 DQ04	DMC Data 4	Not Muxed	DMC0 DQ04
DMC0 DO05	DMC Data 5	Not Muxed	DMC0 DO05
DMC0 DQ06	DMC Data 6	Not Muxed	DMC0 DQ06
DMC0_DQ07	DMC Data 7	Not Muxed	DMC0_DQ07
DMC0_DQ08	DMC Data 8	Not Muxed	DMC0_DQ08
DMC0_DQ09	DMC Data 9	Not Muxed	DMC0_DQ09
DMC0_DQ10	DMC Data 10	Not Muxed	DMC0_DQ10
DMC0_DQ11	DMC Data 11	Not Muxed	DMC0_DQ11
DMC0_DQ12	DMC Data 12	Not Muxed	DMC0_DQ12
DMC0_DQ13	DMC Data 13	Not Muxed	DMC0_DQ13
DMC0_DQ14	DMC Data 14	Not Muxed	DMC0_DQ14
DMC0_DQ15	DMC Data 15	Not Muxed	DMC0_DQ15
DMC0_LDM	DMC Data Mask for Lower Byte	Not Muxed	DMC0_LDM
DMC0_LDQS	DMC Data Strobe for Lower Byte	Not Muxed	DMC0_LDQS
DMC0_LDQS	DMC Data Strobe for Lower Byte (complement)	Not Muxed	DMC0_LDQS
DMC0_ODT	DMC On-die Termination	Not Muxed	DMC0_ODT
DMC0_RAS	DMC Row Address Strobe	Not Muxed	DMC0_RAS
DMC0_UDM	DMC Data Mask for Upper Byte	Not Muxed	DMC0_UDM
DMC0_UDQS	DMC Data Strobe for Upper Byte	Not Muxed	DMC0_UDQS
DMC0_UDQS	DMC Data Strobe for Upper Byte (complement)	Not Muxed	DMC0_UDQS
DMC0_WE	DMC Write Enable	Not Muxed	DMC0_WE
ETH0_CRS	EMAC0 Carrier Sense/RMII Receive Data Valid	с	PC_05
ETH0_MDC	EMAC0 Management Channel Clock	с	PC_06
ETH0_MDIO	EMAC0 Management Channel Serial Data	с	PC_07
ETH0_PTPPPS	EMAC0 PTP Pulse-Per-Second Output	В	PB_15
ETH0_REFCLK	EMAC0 Reference Clock	В	PB_14
ETH0_RXD0	EMAC0 Receive Data 0	С	PC_00
ETH0_RXD1	EMAC0 Receive Data 1	С	PC_01
ETH0_TXD0	EMAC0 Transmit Data 0	С	PC_02
ETH0_TXD1	EMAC0 Transmit Data 1	С	PC_03
ETH0_TXEN	EMAC0 Transmit Enable	В	PB_13
ETH1_CRS	EMAC1 Carrier Sense/RMII Receive Data Valid	E	PE_13
ETH1_MDC	EMAC1 Management Channel Clock	E	PE_10
ETH1_MDIO	EMAC1 Management Channel Serial Data	E	PE_11
ETH1_PTPPPS	EMAC1 PTP Pulse-Per-Second Output	С	PC_09
ETH1_REFCLK	EMAC1 Reference Clock	G	PG_06
ETH1_RXD0	EMAC1 Receive Data 0	G	PG_00
ETH1_RXD1	EMAC1 Receive Data 1	E	PE_15
ETH1_TXD0	EMAC1 Transmit Data 0	G	PG_03
ETH1_TXD1	EMAC1 Transmit Data 1	G	PG_02
ETH1_TXEN	EMAC1 Transmit Enable	G	PG_05
ETH_PTPAUXIN	EMAC0/EMAC1 PTP Auxiliary Trigger Input	С	PC_11

Table 7.	ADSP-BF60x 349-Ba	ll CSP_BGA	Signal Description	ons (Continued)
----------	-------------------	------------	--------------------	-----------------

Signal Name	Description	Port	Pin Name
SPI1_CLK	SPI1 Clock	D	PD_05
SPI1_D2	SPI1 Data 2	E	PE_01
SPI1_D3	SPI1 Data 3	E	PE_00
SPI1_MISO	SPI1 Master In, Slave Out	D	PD_14
SPI1_MOSI	SPI1 Master Out, Slave In	D	PD_13
SPI1_RDY	SPI1 Ready	E	PE_02
SPI1_SEL1	SPI1 Slave Select Output 1	D	PD_12
SPI1_SEL2	SPI1 Slave Select Output 2	D	PD_15
SPI1_SEL3	SPI1 Slave Select Output 3	D	PD_10
SPI1_SEL4	SPI1 Slave Select Output 4	D	PD_09
SPI1_SEL5	SPI1 Slave Select Output 5	F	PF_08
SPI1_SEL6	SPI1 Slave Select Output 6	F	PF_09
SPI1_SEL7	SPI1 Slave Select Output 7	с	PC_14
SPI1_SS	SPI1 Slave Select Input	D	PD_12
SPT0_ACLK	SPORT0 Channel A Clock	В	PB_05
SPT0_AD0	SPORT0 Channel A Data 0	В	PB_09
SPT0_AD1	SPORT0 Channel A Data 1	В	PB_12
SPT0_AFS	SPORT0 Channel A Frame Sync	В	PB_04
SPT0_ATDV	SPORT0 Channel A Transmit Data Valid	В	PB_06
SPT0_BCLK	SPORT0 Channel B Clock	В	PB_08
SPT0_BD0	SPORT0 Channel B Data 0	В	PB_11
SPT0_BD1	SPORT0 Channel B Data 1	В	PB_10
SPT0_BFS	SPORT0 Channel B Frame Sync	В	PB_07
SPT0_BTDV	SPORT0 Channel B Transmit Data Valid	В	PB_12
SPT1_ACLK	SPORT1 Channel A Clock	E	PE_02
SPT1_AD0	SPORT1 Channel A Data 0	D	PD_15
SPT1_AD1	SPORT1 Channel A Data 1	D	PD_12
SPT1_AFS	SPORT1 Channel A Frame Sync	E	PE_05
SPT1_ATDV	SPORT1 Channel A Transmit Data Valid	E	PE_06
SPT1_BCLK	SPORT1 Channel B Clock	E	PE_04
SPT1_BD0	SPORT1 Channel B Data 0	E	PE_01
SPT1_BD1	SPORT1 Channel B Data 1	E	PE_00
SPT1_BFS	SPORT1 Channel B Frame Sync	E	PE_03
SPT1_BTDV	SPORT1 Channel B Transmit Data Valid	E	PE_07
SPT2_ACLK	SPORT2 Channel A Clock	G	PG_04
SPT2_AD0	SPORT2 Channel A Data 0	G	PG_09
SPT2_AD1	SPORT2 Channel A Data 1	G	PG_08
SPT2_AFS	SPORT2 Channel A Frame Sync	G	PG_01
SPT2_ATDV	SPORT2 Channel A Transmit Data Valid	E	PE_14
SPT2_BCLK	SPORT2 Channel B Clock	G	PG_10
SPT2_BD0	SPORT2 Channel B Data 0	G	PG_12
SPT2_BD1	SPORT2 Channel B Data 1	G	PG_11
SPT2_BFS	SPORT2 Channel B Frame Sync	G	PG_07
SPT2_BTDV	SPORT2 Channel B Transmit Data Valid	G	PG_06
SYS_BMODE0	Boot Mode Control 0	Not Muxed	SYS_BMODE0
SYS_BMODE1	Boot Mode Control 1	Not Muxed	SYS_BMODE1

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PD_12	1/0	A	wk	wk	none	wk	none	VDD_EXT	Desc: PD Position 12 SPI1 Slave Select Output b EPPI0 Data 20 SPORT1 Channel A Data 1 SPI1 Slave Select Input. Notes: No notes.
PD_13	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PD Position 13 SPI1 Master Out, Slave In TIMER0 Alternate Clock 5. Notes: No notes.
PD_14	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PD Position 14 SPI1 Master In, Slave Out TIMER0 Alternate Clock 6. Notes: No notes.
PD_15	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PD Position 15 SPI1 Slave Select Output b EPPI0 Data 21 SPORT1 Channel A Data 0.
PE_00	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 0 SPI1 Data 3 EPPI0 Data 18 SPORT1 Channel B Data 1.
PE_01	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 1 SPI1 Data 2 EPPI0 Data 19 SPORT1 Channel B Data 0.
PE_02	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 2 SPI1 Ready EPPI0 Data 22 SPORT1 Channel A Clock. Notes: No notes.
PE_03	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 3 EPPI0 Data 16 SPORT1 Channel B Frame Sync ACM0 Frame Sync.
PE_04	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 4 EPPI0 Data 17 SPORT1 Channel B Clock ACM0 Clock.
PE_05	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 5 EPPI0 Data 23 SPORT1 Channel A Frame Sync. Notes: No notes.
PE_06	1/0	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 6 SPORT1 Channel A Transmit Data Valid EPPI0 Frame Sync 3 (FIELD) LP3 Clock.
PE_07	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 7 SPORT1 Channel B Transmit Data Valid EPPI0 Frame Sync 2 (VSYNC) LP3 Acknowledge.
PE_08	1/0	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 8 PWM0 Sync EPPI0 Frame Sync 1 (HSYNC) LP2 Acknowledge ACM0 External Trigger 0. Notes: No notes.
PE_09	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PE Position 9 EPPI0 Clock LP2 Clock PWM0 Shutdown Input. Notes: No notes.

Table 15. ADSP-BF60x Designer Quick Reference (Continued)

		Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
Signal Name	Туре	Туре	Term	Term	Drive	Term	Drive	Domain	and Notes
PG_12	1/0	A	wk	wk	none	wk	none	VDD_EXT	Desc: PG Position 12 SPORT2 Channel B Data 0 TIMER0 Timer 7 CNT0 Count Down and Gate. Notes: No notes.
PG_13	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: PG Position 13 UART1 Clear to Send TIMER0 Clock.
PG_14	1/0	A	wk	wk	none	wk	none	VDD_EXT	Desc: PG Position 14 UART1 Receive SYS Core 1 Idle Indicator TIMER0 Alternate Capture Input 1.
PG_15	1/0	A	wk	wk	none	wk	none	VDD_EXT	Desc: PG Position 15 UART1 Transmit SYS Core 0 Idle Indicator SYS Processor Sleep Indicator TIMER0 Alternate Capture Input 4. Notes: No notes.
SMC0_A01	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Address 1. Notes: No notes.
SMC0_A02	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Address 2. Notes: No notes.
SMC0_AMS0	I/O	A	pu	pu	none	pu	none	VDD_EXT	Desc: SMC0 Memory Select 0. Notes: No notes.
SMC0_AOE_ NORDV	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 NOR Data Valid SMC0 Output Enable. Notes: No notes.
SMC0_ARDY_ NORWT	I/O	na	none	none	none	none	none	VDD_EXT	Desc: SMC0 NOR Wait SMC0 Asynchronous Ready. Notes: Requires an external pull-up resistor.
SMC0_ARE	I/O	A	pu	pu	none	pu	none	VDD_EXT	Desc: SMC0 Read Enable. Notes: No notes.
SMC0_AWE	I/O	A	pu	pu	none	pu	none	VDD_EXT	Desc: SMC0 Write Enable. Notes: No notes.
SMC0_BR	I/O	na	none	none	none	none	none	VDD_EXT	Desc: SMC0 Bus Request. Notes: Requires an external pull-up resistor.
SMC0_D00	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Data 0. Notes: No notes.
SMC0_D01	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Data 1. Notes: No notes.
SMC0_D02	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Data 2. Notes: No notes.
SMC0_D03	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Data 3.
SMC0_D04	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Data 4. Notes: No notes
SMC0_D05	I/O	A	wk	wk	none	wk	none	VDD_EXT	Desc: SMC0 Data 5. Notes: No notes.

Table 15. ADSP-BF60x Designer Quick Reference (Continued)

Circuit Norma	Turne	Driver	Int	Reset	Reset	Hiber	Hiber	Power	Description
	Туре	туре	Term	Term	Drive	Term	Drive		
0380_04	1/0	F	none	none	none	none	none	VD_028	Notes: Pull low if not using USB. For complete documentation of hibernate behavior when USB is used, see the USB chapter in the processor hardware reference.
USB0_ID	1/0	na	none	none	none	pu	none	VDD_USB	Desc: USB0 OTG ID. Notes: If USB is not used, connect to ground. When USB is being used, the internal pull-up resistor that is present during hibernate is programmable. See the USB chapter in the processor hardware reference. Active during reset.
USB0_VBC	I/O	E	none	none	none	wk	none	VDD_USB	Desc: USB0 VBUS Control. Notes: If USB is not used, pull low.
USB0_VBUS	I/O	G	none	none	none	none	none	VDD_USB	Desc: USB0 Bus Voltage. Notes: If USB is not used, connect to ground.
VDD_DMC	s	na	none	none	none	none	none	na	Desc: VDD for DMC. Notes: If the DMC is not used, connect to VDD_INT.
VDD_EXT	s	na	none	none	none	none	none	na	Desc: External VDD. Notes: Must be powered.
VDD_INT	s	na	none	none	none	none	none	na	Desc: Internal VDD. Notes: Must be powered
VDD_TD	s	na	none	none	none	none	none	na	Desc: VDD for Thermal Diode. Notes: If the thermal diode is not used, connect to ground.
VDD_USB	s	na	none	none	none	none	none	na	Desc: VDD for USB. Notes: If USB is not used, connect to VDD_ EXT.
VREF_DMC	s	na	none	none	none	none	none	na	Desc: VREF for DMC. Notes: If the DMC is not used, connect to VDD_INT.

Table 15. ADSP-BF60x Designer Quick Reference (Continued)

Power-Up Reset Timing

In Figure 11, $V_{DD_SUPPLIES}$ are $V_{DD_INT}, V_{DD_EXT}, V_{DD_DMC}, V_{DD_USB}$, and V_{DD_TD} .

Table 27. Power-Up Reset Timing

Parameter	r	Min	Max	Unit
Timing Req	uirement			
t _{rst_in_pwr}	SYS_HWRST Deasserted after V_{DD_INT} , V_{DD_EXT} , V_{DD_DMC} , V_{DD_USB} , V_{DD_TD} , and SYS_CLKIN are Stable and Within Specification	$11 \times t_{CKIN}$		ns

Figure 11. Power-Up Reset Timing

Asynchronous Page Mode Read

Table 30. Asynchronous Page Mode Read

		V _{DD_EXT} 1.8 V /3.3 V Nominal		
Paramete	r	Min	Max	Unit
Switching (Characteristics			
t _{AV}	SMC0_Ax (Address) Valid for First Address Min Width ¹	$(PREST + RST + PREAT + RAT) \times t_{SCLK0} - 2$		ns
t _{AV1}	SMC0_Ax (Address) Valid for Subsequent SMC0_Ax (Address) Min Width	$PGWS \times t_{SCLK0} - 2$		ns
t _{WADV}	SMC0_NORDV Active Low Width ²	$RST \times t_{SCLK0} - 2$		ns
t _{HARE}	Output ³ Hold After SMC0_ARE High ⁴	$RHT \times t_{SCLK0} - 2$		ns
t _{WARE} 5	SMC0_ARE Active Low Width ^{6, 7}	$(RAT + (Nw - 1) \times PGWS) \times t_{SCLK0} - 2$		ns

¹ PREST, RST, PREAT and RAT values set using the SMC_BXETIM.PREST bits, SMC_BXTIM.RST bits, SMC_BXETIM.PREAT bits, and the SMC_BXTIM.RAT bits. ² RST value set using the SMC_BXTIM.RST bits.

³Output signals are SMC0_Ax, <u>SMC0_AMSx</u>, <u>SMC0_AOE</u>.

⁴ RHT value set using the SMC_BxTIM.RHT bits.

 5 SMC_BxCTL.ARDYEN bit = 0.

⁶RAT value set using the SMC_BxTIM.RAT bits.

⁷ Nw = Number of 16-bit data words read.

Figure 14. Asynchronous Page Mode Read

NOTE: SMC0_NORCLK dotted line represents a free running version of SMC0_NORCLK that is not visible on the SMC0_NORCLK pin.

Figure 15. Synchronous Burst AC Interface Timing

Bus Request/Bus Grant

Table 35. Bus Request/Bus Grant

		V _{DD_EX} 1.8V/3.3V N		
Parameter		Min	Max	Unit
Switching Cha	racteristics			
t _{DBGBR}	SMC0_BG Delay After SMC0_BR	$2.5 \times t_{SCLK0}$	$3.5 \times t_{SCLK0} + 17.5$	ns
t _{ENGDAT}	DATA Enable After SMC0_BG Deassertion	-3		ns
t _{DBGDAT}	DATA Disable After SMC0_BG Assertion		3	ns

Figure 18. Bus Request/Bus Grant

DDR2 SDRAM Clock and Control Cycle Timing

Table 36. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			250 MHz				
Parameter		Min	Max	Unit			
Switching Chara	cteristics						
t _{CK}	Clock Cycle Time (CL = 2 Not Supported)	4		ns			
t _{CH}	Minimum Clock Pulse Width	0.45	0.55	t _{CK}			
t _{CL}	Maximum Clock Pulse Width	0.45	0.55	t _{CK}			
t _{IS}	Control/Address Setup Relative to DMC0_CK Rise	350		ps			
t _{IH}	Control/Address Hold Relative to DMC0_CK Rise	475		ps			

NOTE: CONTROL = DMC0_CS0, DMC0_CKE, DMC0_RAS, DMC0_CAS, AND DMC0_WE. ADDRESS = DMC0_A00-13, AND DMC0_BA0-1.

Figure 19. DDR2 SDRAM Clock and Control Cycle Timing

DDR2 SDRAM Read Cycle Timing

Table 37. DDR2 SDRAM Read Cycle Timing, V_{DD_DMC} Nominal 1.8 V

		25	0 MHz ¹	
Parameter		Min	Max	Unit
Timing Requirements				
t _{DQSQ}	DMC0_DQS-DMC0_DQ Skew for DMC0_DQS and Associated DMC0_ DQ Signals		0.35	ns
t _{QH}	DMC0_DQ, DMC0_DQS Output Hold Time From DMC0_DQS	1.6		ns
t _{RPRE}	Read Preamble	0.9		t _{CK}
t _{RPST}	Read Postamble	0.4		t _{CK}

¹ In order to ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed.

Figure 20. DDR2 SDRAM Controller Input AC Timing

DDR2 SDRAM Write Cycle Timing

Table 38. DDR2 SDRAM Write Cycle Timing, V_{DD_DMC} Nominal 1.8 V

			250 MHz ¹	
Parameter		Min	Max	Unit
Switching Chara	icteristics			
t _{DQSS} ²	DMC0_DQS Latching Rising Transitions to Associated Clock Edges	-0.15	0.15	t _{CK}
t _{DS}	Last Data Valid to DMC0_DQS Delay	0.15		ns
t _{DH}	DMC0_DQS to First Data Invalid Delay	0.3		ns
t _{DSS}	DMC0_DQS Falling Edge to Clock Setup Time	0.25		t _{CK}
t _{DSH}	DMC0_DQS Falling Edge Hold Time From DMC0_CK	0.25		t _{CK}
t _{DQSH}	DMC0_DQS Input High Pulse Width	0.35		t _{CK}
t _{DQSL}	DMC0_DQS Input Low Pulse Width	0.35		t _{CK}
t _{WPRE}	Write Preamble	0.35		t _{CK}
t _{WPST}	Write Postamble	0.4		t _{CK}
t _{IPW}	Address and Control Output Pulse Width	0.6		t _{cK}
t _{DIPW}	DMC0_DQ and DMC0_DM Output Pulse Width	0.35		t _{CK}

¹ In order to ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed.

² Write command to first DMC0_DQS delay = WL × t_{CK} + t_{DQSS} .

Figure 21. DDR2 SDRAM Controller Output AC Timing

Mobile DDR SDRAM Write Cycle Timing

Table 41. M	lobile DDR SDRAM V	Write Cycle Timing,	V _{DD DMC} Nominal 1.8 V
-------------	--------------------	---------------------	-----------------------------------

			200 MHz	
Parameter		Min	Max	Unit
Switching Chai	racteristics			
t _{DQSS} ¹	DMC0_DQS Latching Rising Transitions to Associated Clock Edges	0.75	1.25	t _{CK}
t _{DS}	Last Data Valid to DMC0_DQS Delay (Slew > 1 V/ns)	0.48		ns
t _{DH}	DMC0_DQS to First Data Invalid Delay (Slew > 1 V/ns)	0.48		ns
t _{DSS}	DMC0_DQS Falling Edge to Clock Setup Time	0.2		t _{CK}
t _{DSH}	DMC0_DQS Falling Edge Hold Time From DMC0_CK	0.2		t _{CK}
t _{DQSH}	DMC0_DQS Input High Pulse Width	0.4		t _{CK}
t _{DQSL}	DMC0_DQS Input Low Pulse Width	0.4		t _{CK}
t _{WPRE}	Write Preamble	0.25		t _{CK}
t _{WPST}	Write Postamble	0.4		t _{CK}
t _{IPW}	Address and Control Output Pulse Width	2.3		ns
t _{DIPW}	DMC0_DQ and DMC0_DM Output Pulse Width	1.8		ns

 1 Write command to first DMC0_DQS delay = WL \times t_{CK} + t_{DQSS}.

Figure 24. Mobile DDR SDRAM Controller Output AC Timing

		۷ _۲ 1.8۷	DD_EXT Nominal	\ 3.3\	/ _{DD_EXT} / Nominal	
Param	eter	Min	Max	Min	Max	Unit
Timing	Requirements					
t _{PCLKW}	EPPI_CLK Width ¹	$(0.5 \times t_{PCLKEXT}) - 1$.25	$(0.5 \times t_{PCLKEXT}) - 1$.25	ns
t _{PCLK}	EPPI_CLK Period ¹	t _{PCLKEXT} – 1.25		t _{PCLKEXT} – 1.25		ns
t _{SFSPE}	External FS Setup Before EPPI_CLK	2		2		ns
t _{HFSPE}	External FS Hold After EPPI_CLK	3.7		3.7		ns
t _{SDRPE}	Receive Data Setup Before EPPI_CLK	2		2		ns
t _{HDRPE}	Receive Data Hold After EPPI_CLK	3.7		3.7		ns
Switchi	ng Characteristics					
t _{DFSPE}	Internal FS Delay After EPPI_CLK		20.1		15.3	ns
t _{HOFSPE}	Internal FS Hold After EPPI_CLK	2.4		2.4		ns
t _{DDTPE}	Transmit Data Delay After EPPI_CLK		20.1		15.3	ns
t _{HDTPE}	Transmit Data Hold After EPPI_CLK	2.4		2.4		ns

Table 43. Enhanced Parallel Peripheral Interface—External Clock

¹This specification indicates the minimum instantaneous width or period that can be tolerated due to duty cycle variation or jitter on the external EPPI_CLK. For the external EPPI_CLK ideal maximum frequency see the f_{PCLKEXT} specification in Table 17 on Page 53.

Figure 30. PPI External Clock GP Receive Mode with Internal Frame Sync Timing

Figure 31. PPI External Clock GP Transmit Mode with Internal Frame Sync Timing

Figure 40. Serial Peripheral Interface (SPI) Port—Master Timing

Serial Peripheral Interface (SPI) Port—Open Drain Mode Timing

In Figure 44 and Figure 45, the outputs can be SPI_MOSI SPI_ MISO, SPI_D2, and/or SPI_D3 depending on the mode of operation.

Table 54. SPI Port ODM Master Mode Timing

		V _{DD_ЕХТ} 1.8 V/3.3 V Nominal		
Parameter		Min	Max	Unit
Switching Chard	acteristics			
t _{hdspiodmm}	SPI_CLK Edge to High Impedance from Data Out Valid	-1		ns
t _{DDSPIODMM}	SPI_CLK Edge to Data Out Valid from High Impedance	0	6	ns

Figure 44. ODM Master

Table 55. SPI Port—ODM Slave Mode

		1.8	V _{DD_EXT} 3 V/3.3 V Nominal	
Parameter		Min	Мах	Unit
Timing Require	ments			
t _{hdspiodms}	SPI_CLK Edge to High Impedance from Data Out Valid	0		ns
t _{DDSPIODMS}	SPI_CLK Edge to Data Out Valid from High Impedance		11.5	ns

Figure 45. ODM Slave

ADC Controller Module (ACM) Timing

Table 61 and Figure 53 describe ACM operations.

When internally generated, the programmed ACM clock ($f_{ACLKPROG}$) frequency in MHz is set by the following equation where CKDIV is a field in the ACM_TC0 register and ranges from 1 to 255:

$$f_{ACLKPROG} = \frac{f_{SCLK1}}{CKDIV + 1}$$

 $t_{ACLKPROG} = \frac{1}{f_{ACLKPROG}}$

Setup cycles (SC) in Table 61 is also a field in the ACM_TC0 register and ranges from 0 to 4095. Hold Cycles (HC) is a field in the ACM_TC1 register that ranges from 0 to 15.

Table 61. ACM Timing

		1.8	V _{DD_EXT} //3.3 V Nominal	
Paramete	er	Min	Max	Unit
Timing Re	quirements			
t _{sDR}	SPORT DRxPRI/DRxSEC Setup Before ACMx_CLK	3		ns
t _{HDR}	SPORT DRxPRI/DRxSEC Hold After ACMx_CLK	1.5		ns
Switching	Characteristics			
t _{sctlcs}	ACM Controls (ACMx_A[4:0]) Setup Before Assertion of $\overline{\text{CS}}$	$(SC + 1) \times t_{SCLK1} - 3$		ns
t _{HCTLCS}	ACM Control (ACMx_A[4:0]) Hold After De-assertion of \overline{CS}	$HC \times t_{ACLK} + 0.1$		ns
t _{ACLKW}	ACM Clock Pulse Width ¹	$(0.5 \times t_{ACLKPROG}) - 1.5$		ns
t _{ACLK}	ACM Clock Period ¹	t _{ACLKPROG} – 1.5		ns
t _{HCSACLK}	CS Hold to ACMx_CLK Edge	-0.1		ns
t _{SCSACLK}	CS Setup to ACMx_CLK Edge	t _{ACLK} – 3.5		ns

¹See Table 17 on Page 53 in Clock Related Operating Conditions for details on the minimum period that may be programmed for t_{ACLKPROG}.

Figure 53. ACM Timing

AUTOMOTIVE PRODUCTS

The models in the following table are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models and designers should review the product specifications section of this data sheet carefully. Contact your local ADI account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

		Temperature		Package
Model ¹	Max. Core Clock	Range ²	Package Description	Option
ADBF606WCBCZ4xx	400 MHz	-40°C to +105°C	349-Ball CSP_BGA	BC-349-1
ADBF607WCBCZ5xx	500 MHz	–40°C to +105°C	349-Ball CSP_BGA	BC-349-1
ADBF608WCBCZ5xx	500 MHz	–40°C to +105°C	349-Ball CSP_BGA	BC-349-1
ADBF609WCBCZ5xx	500 MHz	–40°C to +105°C	349-Ball CSP_BGA	BC-349-1

¹Z =RoHS compliant part.

 2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 52 for the junction temperature (T_j) specification which is the only temperature specification.

ORDERING GUIDE

		Temperature		Package
Model ¹	Max. Core Clock	Range ²	Package Description	Option
ADSP-BF606KBCZ-4	400 MHz	0°C to +70°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF606BBCZ-4	400 MHz	–40°C to +85°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF607KBCZ-5	500 MHz	0°C to +70°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF607BBCZ-5	500 MHz	–40°C to +85°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF608KBCZ-5	500 MHz	0°C to +70°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF608BBCZ-5	500 MHz	–40°C to +85°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF609KBCZ-5	500 MHz	0°C to +70°C	349-Ball CSP_BGA	BC-349-1
ADSP-BF609BBCZ-5	500 MHz	–40°C to +85°C	349-Ball CSP_BGA	BC-349-1

¹Z =RoHS compliant part.

 2 Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 52 for the junction temperature (T_j) specification which is the only temperature specification.

©2014 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D10659-0-02/14(A)

www.analog.com