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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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XRAMB (XRAM Base Address) 56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MIF Control and Configuration Registers 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

MIFCNTL (SFR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MIFBTRL (Memory Interface Bus Timing Register Low, MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
MIFBTRH (Memory Interface Bus Timing Register High, MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Bus Arbitration 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPI Port 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SPICFG (MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPIDATA (MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
SPICS (MMR) 57. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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PIN CONFIGURATIONS

44-Pin PLCC Package

Figure 1.  44-pin PLCC package

Table 2.  44-pin PLCC package pin functions
Pin Function (see Note) Pin Function (see Note)

1 VSS 23 VDD

2 P1.0 ; WRH/ 4 P2.0 ; A12D8

3 P1.1 ; A1 25 P2.1 ; A13D9

4 P1.2 ; A2 26 P2.2 ; A14D10

5 P1.3 ; A3 27 P2.3 ; A15D11

6 P1.4 ; SPIRx 28 P2.4 ; A16D12

7 P1.5 ; SPITx 29 P2.5 ; A17D13

8 P1.6 ; T2 ; SPICLK 30 P2.6 ; A18D14

9 P1.7 ; T2EX 31 P2.7 ; A19D15

10 RST/ 32 PSEN/

11 P3.0 ; RxD0 33 ALE ; PROG/

12 CAN RxD 34 CAN TxD

13 P3.1 ; TxD0 35 EA/ ; Vpp ; WAIT

14 P3.2 ; INT0/ 36 P0.7 ; A11D7

15 P3.3 ; INT1/ 37 P0.6 ; A10D6

16 P3.4 ; T0 38 P0.5 ; A9D5

17 P3.5 ; T1 39 P0.4 ; A8D4

18 P3.6 ; WRL/ 40 P0.3 ; A7D3

19 P3.7 ; RD/ 41 P0.2 ; A6D2

20 XTAL2 42 P0.1 ; A5D1

21 XTAL1 43 P0.0 ; A4D0

22 VSS 44 VDD

NOTE:
1. All active–low signals are indicated by a “/” symbol
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44-pin LQFP package

Figure 2.  44-pin PLCC package

Table 3.  44-pin LQFP package pin functions
Pin Function (see Note) Pin Function (see Note)

1 P1.5 ; SPITx 23 P2.5 ; A17D13

2 P1.6 ; T2 ; SPICLK 4 P2.6 ; A18D14

3 P1.7 ; T2EX 25 P2.7 ; A19D15

4 RST/ 26 PSEN/

5 P3.0 ; RxD0 27 ALE ; PROG/

6 CAN RxD 28 CAN TxD

7 P3.1 ; TxD0 29 EA/ ; Vpp ; WAIT

8 P3.2 ; INT0/ 30 P0.7 ; A11D7

9 P3.3 ; INT1/ 31 P0.6 ; A10D6

10 P3.4 ; T0 32 P0.5 ; A9D5

11 P3.5 ; T1 33 P0.4 ; A8D4

12 P3.6 ; WRL/ 34 P0.3 ; A7D3

13 P3.7 ; RD/ 35 P0.2 ; A6D2

14 XTAL2 36 P0.1 ; A5D1

15 XTAL1 37 P0.0 ; A4D0

16 VSS 38 VDD

17 VDD 39 VSS

18 P2.0 ; A12D8 40 P1.0 ; WRH/

19 P2.1 ; A13D9 41 P1.1 ; A1

20 P2.2 ; A14D10 42 P1.2 ; A2

21 P2.3 ; A15D11 43 P1.3 ; A3

22 P2.4 ; A16D12 44 P1.4 ; SPIRx

NOTE:
1. All active–low signals are indicated by a “/” symbol
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Figure 4.  XA-C3 Simplified Block Diagram
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PIN DESCRIPTIONS

Table 4.  Pin Descriptions
MNEMONIC PIN NUMBERS TYPE NAME AND FUNCTION

PLCC LQFP
VSS 1, 22 16, 39 I Ground: 0V Reference.

VDD 23, 44 17, 38 I Power Supply: This is the power supply voltage for normal, Idle and Power–Down op-
eration.

P0.0 – P0.7 43 – 36 37–30 I/O Port 0: Port 0 is an 8–bit I/O Port with user –configurable pins.  Port 0 latches have 1’s
written to them and are configured in the Quasi–Bidirectional mode during Reset.  The
operation of Port 0 pins as inputs or outputs depends upon the Port configuration se-
lected. Each Port pin is configured independently.  Refer to the sections on I/O Port
configuration and DC Electrical Characteristics for details.
NOTE:
2. When the External PROGRAM/DATA bus is used, Port 0 becomes the multiplexed

low DATA/Instruction Byte and Address lines 4 through 11.

P1.0 – P1.7 2 – 9 40 – 44
1 – 3

I/O Port 1:  Port 1 is an 8–bit I/O Port with user –configurable pins.  Port 1 latches have 1’s
written to them and are configured in the Quasi–Bidirectional mode during Reset.  The
operation of Port 1 pins as inputs or outputs depends upon the Port configuration se-
lected. Each Port pin is configured independently.  Refer to the sections on I/O Port
configuration and DC Electrical Characteristics for details.

P1.0 2 40 O WRH/: Address bit 0 of the External Address bus when the External DATA bus is config-
ured for 8–bit width.  When the External DATA bus is used, this pin becomes the High
Byte Write Strobe (WRH).

P1.1 3 41 O A1:       Address bit 1 of the External Address bus.

P1.2 4 42 O A2:       Address bit 2 of the External Address bus.

P1.3 5 43 O A3:       Address bit 3 of the External Address bus.

P1.4 6 44 I SPIRx:  Receiver serial input of SPI.

P1.5 7 1 O SPITx:  Transmitter serial output of SPI.

P1.6 8 2 I T2 ; SPICLK:   Timer/counter 2 external clock input or Timer/counter 2 Clock–Out mode
output, or SPI Clock output.
NOTES:
3. SPICLK must be configured to idle in the logic ‘1’ state in order to use either the T2

or P1.6 output functions, even if the SPI Port is not in use!
4. The default state from Reset of the SPICLK polarity is “inverted” which yields an

SPICLK idle state of logic ‘1’.
5. If the SPI Clock polarity is changed by the user during SPI Port usage, it must be

restored to “inverted” polarity before using either the P1.6 or Timer/counter 2 output
functions.

P1.7 9 3 O T2EX: Timer/counter 2 reload/capture/direction control.

P2.0 – P2.7 24 – 31 18 – 25 I/O Port 2: Port 2 is an 8–bit I/O port with user–configurable pins.  Port 2 latches have 1’s
written to them and are configured in the Quasi–Bidirectional mode during Reset.  The
operation of Port 2 pins as inputs or outputs depends upon the Port configuration se-
lected. Each Port pin is configured independently.
Refer to the sections on I/O port configuration and DC Electrical Characteristics for de-
tails.
NOTES:
6. When the External 16–bit PROGRAM/DATA bus is used, Port 2 is MUXed between

High (DATA/Instruction) Byte and Address lines 12 through 19.

P3.0 – P3.7 11,
13 – 19

5,
7 –12

I/O Port 3: Port 3 is an 8–bit I/O Port with user–configurable pins.
NOTES:
7. Port 3 latches have 1’s written to them and are configured in the Quasi–Bidirectional

mode during Reset.
8. The operation of Port 3 pins as inputs or outputs depends upon the Port

configuration selected.
9. Each Port pin is configured independently.
Refer to the sections on I/O Port configuration and DC Electrical Characteristics for
details.

P3.0 11 5 I RxD0: Receiver serial input of UART 0.

P3.1 13 7 O TxD0: Transmitter serial output of UART 0.

P3.2 14 8 I INT0/: External interrupt 0 input.

P3.3 15 9 I INT1/: External interrupt 1 input.
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MNEMONIC NAME AND FUNCTIONTYPEPIN NUMBERS
LQFPPLCC

P3.4 16 10 I/O T0: Timer 0 External count input or Timer 0 Overflow output.

P3.5 17 11 I/O T1 : Timer 1 External count input or Timer 1 Overflow output.

P3.6 18 12 O WRL/: External DATA memory Low Byte Write Strobe.

P3.7 19 13 O RD/: External DATA memory Read Strobe.

RST/ 10 4 I RESET/:
NOTE:
10. A low on this pin resets the XA–C3, causing I/O Ports and peripherals to take on

their default states, and the processor to begin execution at the Address contained in
the Reset Vector.

Refer to the Reset section for details.

ALE ; PROG/ 33 27 I/O Address Latch Enable ; Program Pulse/:
NOTES:
11. A high output on the ALE pin signals External circuitry to latch the address portion of

the multiplexed Address/DATA bus.
12. A pulse on ALE occurs only when needed to process an External bus cycle. During

EPROM programming, this pin is used as the Program pulse input.

PSEN/ 32 26 O Program Store Enable/:
This is the Read Strobe for External PROGRAM memory.
NOTES:
13. When the microcontroller accesses External PROGRAM memory, PSEN/ is driven

low in order to enable memory devices.
14. PSEN/ is only active when External code accesses are performed.

EA/ ; WAIT ;
VPP

35 29 I External Access/ ; WAIT ; Programming Supply Voltage:
NOTES:
15. The EA/ input determines whether the internal PROGRAM memory of the XA–C3 is

used for code execution.
16. The EA/ pin is latched as the (External) Reset input is released and its value applied

during later execution.  When latched as a 0, External PROGRAM memory is used
exclusively.  When latched as a 1, internal PROGRAM memory will be used up to its
limit, and External PROGRAM memory is used above that point.

17. After Reset is released, this pin takes on the function of a Bus WAIT input.  If WAIT
is asserted High during any External bus access, that cycle will be extended until
WAIT is released.

18. During EPROM programming, this pin is also the programming supply voltage input.

CAN RxD 12 6 I CAN Receive Data input:  CAN serial receiver input to the SJA1000 PeliCAN core.

CAN TxD 34 28 O CAN Transmit Data output:  CAN serial transmitter output from the SJA1000 PeliCAN
core.

XTAL1 21 15 I Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the
internal clock generator circuits.

XTAL2 20 14 O Crystal 2: Output from the oscillator amplifier.

NOTE:
1. All active–low signals are indicated by a “/” symbol.
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WATCHDOG TIMER
The watchdog timer subsystem protects the system from incorrect
code execution by causing a system Reset when the watchdog
timer underflows as a result of a failure of software to feed the timer
prior to the timer reaching its terminal count. It is important to note
that the watchdog timer is running after any type of Reset and must
be turned off by user software if the application does not use the
watchdog function.

Watchdog Function
The watchdog consists of a programmable prescaler and the main
timer. The prescaler derives its clock from the TCLK source that also
drives timers 0, 1, and 2. The watchdog timer subsystem consists of
a programmable 13–bit prescaler, and an 8–bit main timer. The main
timer is clocked (decremented) by a tap taken from one of the top
8–bits of the prescaler as shown in Figure 14.

The clock source for the prescaler is the same as TCLK (same as
the clock source for the timers). Thus the main counter can be
clocked as often as once every 32 TCLKs (see Table 8). The
watchdog generates an underflow signal (and is autoloaded from
WDL) when the watchdog is at count 0 and the clock to decrement
the watchdog occurs. The watchdog is 8 bits wide and the autoload
value can range from 0 to FFh. (The autoload value of 0 is
permissible since the prescaler is cleared upon autoload).

This leads to the following user design equations:

tMIN = tOSC × 4 × 32 (W = 0, N = 4)

tMAX = tOSC × 64 × 4096 × 256 (W = 255, N = 64)

tD = tOSC × N × P × (W + 1)

where

tOSC   is the oscillator period

N is the selected prescaler tap value

W is the main counter autoload value

P is the prescaler value from Table 8

tMIN is the minimum watchdog time–out value (when the
autoload value is 0)

tMAX is the maximum time–out value (when the autoload value
is FFh)

tD is the design time–out value.

The watchdog timer is not directly loadable by the user. Instead, the
value to be loaded into the main timer is held in an autoload register.
In order to cause the main timer to be loaded with the appropriate
value, a special sequence of software action must take place. This
operation is referred to as feeding the watchdog timer.

To feed the watchdog, two instructions must be sequentially
executed successfully. No intervening SFR accesses are allowed,
so interrupts should be disabled before feeding the watchdog. The
instructions should move A5h to the WFEED1 register and then 5Ah
to the WFEED2 register. If WFEED1 is correctly loaded and
WFEED2 is not correctly loaded, then an immediate watchdog
Reset will occur.  The program sequence to feed the watchdog timer
or cause new WDCON settings to take effect is as follows:

clr ea ; disable global interrupts.
mov.b wfeed1,#A5h ; do watchdog feed part 1
mov.b wfeed2,#5Ah ; do watchdog feed part 2
setb ea ; re–enable global interrupts.

This sequence assumes that the XA interrupt system is enabled and
there is a possibility of an interrupt request occurring during the feed
sequence. If an interrupt was allowed to be serviced and the service
routine contained any SFR access, it would trigger a watchdog
Reset. If it is known that no interrupt could occur during the feed
sequence, the instructions to disable and re–enable interrupts may
be removed.

The software must be written so that a feed operation takes place
every tD seconds from the last feed operation. Some tradeoffs may
need to be made. It is not advisable to include feed operations in
minor loops or in subroutines unless the feed operation is a specific
subroutine.

To turn the watchdog timer completely off, the following code
sequence should be used:

mov.b wdcon,#0 ; set WD control register to clear
 WDRUN.

mov.b wfeed1,#A5h ; do watchdog feed part 1
mov.b wfeed2,#5Ah ; do watchdog feed part 2

This sequence assumes that the watchdog timer is being turned off
at the beginning of the User’s initialization code and that the XA
interrupt system has not yet been enabled. If the watchdog timer is
to be turned off at a point when interrupts may be enabled,
instructions to disable and re–enable interrupts should be added to
this sequence.

Watchdog Control Register (WDCON)
The Reset values of the WDCON and WDL registers will be such
that the watchdog timer has a timeout period of 4 × 4096 × tOSC and
the watchdog is running. WDCON can be written by software but the
changes only take effect after executing a valid watchdog feed
sequence.

Table 8.  Prescalar Select Values in WDCON
PRE2 PRE1 PRE0 DIVISOR

0 0 0 32
0 0 1 64
0 1 0 128
0 1 1 256
1 0 0 512
1 0 1 1024
1 1 0 2048
1 1 1 4096

Watchdog Detailed Operation
When External Reset is applied, the following takes place:
� Watchdog run control bit set to ON (1).

� Autoload register WDL set to 00 (min. count).

� Watchdog time–out flag cleared.

� Prescaler is cleared.

� Prescaler tap set to the highest divide.

� Autoload takes place.

When coming out of a hardware Reset, the software should load the
autoload register and then feed the watchdog (i.e., cause an
autoload).
If the watchdog is running and happens to underflow at the time the
External Reset is applied, the watchdog time–out flag will be
cleared.
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Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave’s address, S0ADDR, and the
address mask, S0ADEN. S0ADEN is used to define which bits in the
S0ADDR are to be used and which bits are “don’t care”. The
S0ADEN mask can be logically ANDed with the S0ADDR to create
the “Given” address which the master will use for addressing each
of the slaves. Use of the Given address allows multiple slaves to be
recognized while excluding others. The following examples will help
to show the versatility of this scheme:

Slave 0 S0ADDR = 1100  0000
S0ADEN = 1111  1101
Given = 1100 00X0

Slave 1 S0ADDR = 1100 0000
S0ADEN = 1111 1110
Given = 1100 000X

In the above example S0ADDR is the same and the S0ADEN data
is used to differentiate between the two slaves. Slave 0 requires a 0
in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.

In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:

Slave 0 S0ADDR = 1100  0000
S0ADEN = 1111  1001
Given = 1100 0XX0

Slave 1 S0ADDR = 1110  0000
 S0ADEN = 1111  1010

Given = 1110 0X0X

Slave 2 S0ADDR = 1110  0000
S0ADEN = 1111  1100
Given = 1110 00XX

In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0
and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the
logical OR of S0ADDR and S0ADEN. Zeros in this result are treated
as don’t–cares. In most cases, interpreting the don’t–cares as ones,
the broadcast address will be FF hexadecimal.

Upon Reset, S0ADDR and S0ADEN are loaded with 0s. This
produces a given address of all “don’t cares” as well as a Broadcast
address of all “don’t cares”. This effectively disables the Automatic
Addressing mode and allows the microcontroller to use standard
UART drivers which do not make use of this feature.

BIT SYMBOL FUNCTION
S0CON.5 SM2_0 Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2_0 is set to 1, then

RI_0 will not be activated if the received 9th data bit (RB8_0) is 0. In Mode 1, if SM2_0=1 then RI_0 will not be
activated if a valid stop bit was not received. In Mode 0, SM2_0 should be 0.

S0CON.4 REN_0 Enables serial reception. Set by software to enable reception. Clear by software to disable reception.
S0CON.3 TB8_0 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. The TB8_0 bit is

not double buffered. See text for details.
S0CON.2 RB8_0 In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, if SM2_0=0, RB8_0 is the stop bit that was

received. In Mode 0, RB8_0 is not used.
S0CON.1 TI_0 Transmit interrupt flag. Set when another byte may be written to the UART transmitter. See text for details.

Must be cleared by software.
S0CON.0 RI_0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the end of the stop bit time

in the other modes (except see SM2_0). Must be cleared by software.

Where SM0_0, SM1_0 specify the serial port mode, as follows:

SM0_0 SM1_0 Mode Description Baud Rate
0 0 0 shift register fOSC/16
0 1 1 8-bit UART variable
1 0 2 9-bit UART fOSC/32
1 1 3 9-bit UART variable

SU01330

RI_0TI_0RB8_0TB8_0REN_0SM2_0SM1_0SM0_0

S0CON Address: S0CON 420

Bit Addressable
Reset Value: 00H

LSBMSB

Figure 16.  Serial Port Control (S0CON) Register
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DC ELECTRICAL CHARACTERISTICS

Table 19.  DC Electrical Characteristics
VDD = 4.5V to 5.5V unless otherwise specified;

Tambient = 0 to +70°C for commercial, –40°C to +85°C for industrial, unless otherwise specified.

SYMBOL PARAMETER TEST CONDITIONS LIMITS UNIT

MIN TYP MAX

Supply Currents
IDD Supply current, operating mode 32 MHz 54 80 mA

IID Supply current, Idle mode 32 MHz 25 30 mA

IPD Power–Down mode current 5 100 µA

IPDI Power–Down mode current (–40°C to +85°C) 150 µA

Inputs
VRAM RAM keep–alive voltage RAM keep–alive voltage 1.5 V

VIL Input Low voltage –0.5 0.22VDD V

VIH Input High voltage, except XTAL1, RST/ At 5.0V 2.2 V

VIH1 Input High voltage to XTAL1, RST/ At 5.0V 0.7VDD V

VOL Output Low voltage all ports, ALE, PSEN/3 IOL = 3.2mA, VDD = 5.0V 0.5 V

VOH1 Output High voltage all ports, ALE, PSEN/1 IOH = –100mA, 
VDD = 4.5V 2.4 V

VOH2 Output High voltage, ports P0–3, ALE, PSEN/2 IOH = 3.2mA, VDD = 4.5V 2.4 V

CIO Input/Output pin capacitance 15 pF

IIL Logical 0 Input current, P0–36 VIN = 0.45V –25 –75 µA

ILI Input Leakage current, P0–35 VIN = VIL or VIH ±10 µA

ITL Logical 1–to–0 Transition current –– all ports4 At 5.5V –650 µA

CAN RxD
VIL Input Low voltage –0.5 0.22VDD V

VIH Input High voltage VDD = 5.0V 2.2 V

CI Input pin capacitance 15 pF

IIL Logical 0 Input current VIN = 0.45V –25 –75 µA

ILI Input Leakage current VIN = VIL or VIH ±10 µA

CAN TxD
VOL Output Low voltage IOL = 3.2mA, VDD = 5.0V 0.5 V

VOH Output High voltage IOH = –100mA, 
VDD = 4.5V 2.4 V

CO Output capacitance 15 pF

ITL Logical 1–to–0 Transition current VDD = 5.5V –650 µA

NOTES:
1. Ports in Quasi–Bidirectional mode with weak pull–up (applies to ALE, PSEN/ only during Reset operations).
2. Ports in Push–Pull mode, both pull–up and pull–down are assumed to be of the same strength
3. In all output modes
4. Port pins source a transition current when used in Quasi–Bidirectional mode and externally driven from 1 to 0. This current is highest when

VIN is approximately 2V.
5. Measured with port in high–impedance output mode.
6. Measured with port in Quasi–Bidirectional output mode.
7. Load capacitance for all outputs=80pF.
8. Under steady state (non–transient) conditions, IOL must be externally limited as follows:

Maximum IOL per port pin: 15mA (*NOTE: This is 85°C specification for VDD = 5V.)
Maximum IOL per 8–bit port: 26mA
Maximum total IOL for all outputs: 71mA

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed
test conditions.

9. See Figures 29, 30, 32, and 33 for IDD test conditions, and Figure 31 for ICC vs. Frequency.
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XTAL1

ADDRESS BUS

WAIT

SU00709A
tWTL

ALE

BUS STROBE
(WRL, WRH,

RD, OR PSEN)
tWTH

tCRAR

(The dashed line shows the strobe without WAIT.)

Figure 25.  WAIT Signal Timing
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Figure 26.  External Clock Drive

VDD–0.5

0.45V

0.2VDD+0.9

0.2VDD–0.1

NOTE:
AC inputs during testing are driven at VDD –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.
Timing measurements are made at the 50% point of transitions.

SU00703A

Figure 27.  AC Testing Input/Output

VLOAD

VLOAD+0.1V

VLOAD–0.1V

VOH–0.1V

VOL+0.1V

NOTE:

TIMING
REFERENCE

POINTS

For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,
and begins to float when a 100mV change from the loaded VOH/VOL level occurs. IOH/IOL ≥ ±20mA.

SU00011

Figure 28.  Float Waveform



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 34

VDD

EA

RST

XTAL1

XTAL2

VSS

(NC)

SU00585A

VDD

VDD

Figure 33.  I DD Test Condition, Power-Down Mode

Note: All other pins are disconnected. VDD=2V to 5.5V

EPROM CHARACTERISTICS
The XA–C37 is programmed by using a modified Improved
Quick–Pulse Programming  algorithm. This algorithm is essentially
the same as that used by the later 80C51 family EPROM parts.
However, different pins are used for many programming functions.

Detailed EPROM programming information may be obtained from
the internet at www.philipsmcu.com/ftp.html.

The XA–C3 contains three signature bytes that can be read and
used by an EPROM programming system to identify the device. The

signature bytes identify the device as an XA–Gx manufactured by
Philips.

Security Bits
With none of the security bits programmed the code in the
PROGRAM memory can be verified. When only security bit 1 (see
Table 21) is programmed, MOVC instructions executed from
External PROGRAM memory are disabled from fetching code bytes
from the internal memory. All further programming of the EPROM is
disabled. When, in addition to the above, security bits 1 and 2 are
programmed, verify mode is disabled. When all three security bits
are programmed, all of the conditions above apply and all External
PROGRAM memory execution is disabled. (See Table 21).

Table 21.  PROGRAM Security Bits

PROGRAM LOCK BITS

SB1 SB2 SB3 PROTECTION DESCRIPTION

1 U U U No PROGRAM Security features enabled.

2 P U U MOVC instructions executed from External PROGRAM memory are disabled from fetching code
bytes from internal memory and further programming of the EPROM is disabled.

3 P P U Same as 2, also verify is disabled.

4 P P P Same as 3, External execution is disabled. Internal DATA RAM is not accessible.

NOTES:
1. P – programmed. U – unprogrammed.
2. Any other combination of the security bits is not defined.
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CAN/CTL MESSAGE HANDLER

Message Objects
The XA-C3 supports 32 independent Message Objects, each of
which can be either a transmit or a receive object. A receive object
can be associated either with a unique CAN ID, or with a set of CAN
IDs which share certain ID bit fields.

Each Message Object has access to its own block of data memory
space, which is known as the object’s message buffer. Both the size
and base address of an object’s message buffer is programmable.
However, all message buffers must reside in the same 64Kbyte
segment of data memory, as the contents of a single register
(MBXSR…Message Buffer and XRAM Segment Register) are used
to form the most significant byte of all 24–bit message buffer
addresses.

Each Message Object is associated with a set of eight MMRs
dedicated to that object. Some of these registers function differently
for Tx than they do for Rx objects. The names of the eight MMRs
are

1. MnMIDH – Message n Match ID High

2. MnMIDL – Message n Match ID Low

3. MnMSKH – Message n Mask High

4. MnMSKL – Message n Mask Low

5. MnCTL – Message n Control

6. MnBLR – Message n Buffer Location Register

7. MnBSZ – Message n Buffer Size

8. MnFCR – Message n Fragment Count Register

where n ranges from 0 to 31. In general, setting up a Message
Object involves configuring some or all of its eight MMRs.
Additionally, there are several MMRs whose bits control global
parameters that apply to all objects. Table 22 summarizes the eight
Message Object MMRs and their functions for receive and transmit
objects. Details can be found in the sections that follow.

Table 22.  Message Object Register Functions for Tx and Rx
Message Object Register

 (n = 0 – 31)
Rx Function Tx Function Address

Offset

MnMIDH Match ID* [28:13] CAN ID [28:13] n0h

MnMIDL Match ID* [12:0][IDE][–][–] CAN ID [12:0][IDE][–][–] n2h

MnMSKH Mask [28:13] DLC n4h

MnMSKL Mask [12:0][–][–][–] Not used n6h

MnCTL Control Control n8h

MnBLR Buffer base address [a15:a0] Buffer base address [a15:a0] nAh

MnBSZ Buffer size Buffer size nCh

MnFCR Fragmentation count** Not used nEh

* After reception, the actual incoming Screener ID (without regard to Mask bits) will be stored by hardware in MnMIDH and MnMIDL for the
benefit of the User application.

** Typically written to only by hardware. Exceptions are  the CANopen and OSEK protocols in which the User application must also initialize
this register.

Receive Message Objects and the Receive
Process
During reception, the XA-C3 will store the incoming message in a
temporary (13–byte) buffer. Once it is determined that a complete,
error–free CAN frame has been successfully received, the XA-C3
will initiate the acceptance filtering (“Mask and Match”) process. If
acceptance filtering produces a Match with an enabled receive
object’s Match ID, the message is stored by the DMA engine in that
object’s message buffer.

Acceptance Filtering
The XA-C3 will sequentially compare the 30–bit Screener ID
extracted from the incoming frame to the corresponding Match ID
values specified in the MnMIDH and MnMIDL registers for all
currently enabled receive objects. Any of the bits which are Masked
will be excluded from this comparison. Masking is accomplished on
an object–by–object basis by writing a logic ‘1’ in the desired bit
position(s) in the appropriate MnMSKH or MnMSKL register.
Any screener ID bits which are not intended to participate in
acceptance filtering for a particular object must be Masked by the
User (e.g., ID bits 0 & 1 for a Standard CAN frame, and possibly one
or both data bytes).
If the acceptance filter determines that there is a Match between the
incoming frame and any enabled receive object, the contents of the

frame will be stored, via DMA, into the designated message buffer
space associated with that object. If there is a Match to more than
one Message Object, the frame will be considered to have matched
the one with the lowest object number.
To summarize, Acceptance Filtering proceeds as follows:
� The “Screener ID” field is extracted from the incoming CAN

Frame. The Screener ID field is assembled differently for
Standard and Extended CAN Frames.

� The assembled Screener ID field is compared to the Match ID
fields of all enabled receive Message Objects.

� Any bits which an object has Masked (by having ‘1’ bits in its
Mask field) are not included in the comparison. That is, if there is
a ‘1’ in some bit position of an object’s Mask field, the
corresponding bit in the object’s Match ID field becomes a don’t
care (i.e., always yields a Match with the Screener ID).

� If filtering in this manner produces a Match, the frame will be
stored via the DMA engine in that object’s message buffer. If there
is a Match with more than one object, the frame will be considered
to have matched the one with the lowest object number.

Screener ID Field for Standard CAN Frame
The following table shows how the Screener ID field is assembled
from the incoming bits of a Standard CAN Frame, and how it is
compared to the Match ID and Mask fields of Object n.
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for transmission, regardless of the priority level represented by its
CAN identifier.

Message Retrieval
Once a Message Object is selected for transmission, the DMA will
begin retrieving the data from the message buffer area in memory
and transferring the data to the CAN core block for transmission.

The same DMA engine and address pointer logic is used for
message retrieval of transmit messages as for message storage of
receive messages. Message buffer location and size information is
specified in the same way. Please refer to the section entitled
Message Storage on page 41  for a complete description.

When a message is retrieved, it will be written to the CCB
sequentially. During this process, the DMA will keep requesting the
bus, reading from memory and writing to the CCB.

To prepare a message for transmission, the User application is
required to put the message in the appropriate object’s message
buffer area in the format shown below:

Data Byte 0 Direction of increasing
addressData Byte 1 address

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

Please observe that the CAN identifier field and frame info must not
be included in the transmit buffer. The transmit logic retrieves this
information from the appropriate MnMIDH, MnMIDL, and MnMSKH
registers. The format for storing the frame information in the
MnMSKH register is shown in Figure 42.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x DLC.3 DLS.2 DLC.1 DLC.0

Figure 42.  Format for Storing the Tx Frame Info in MnMSKH

Transmission of Fragmented Messages
The XA-C3 does not handle the transmission of Fragmented
messages in hardware. It is the User’s responsibility to write each
frame of a Fragmented message to the transmit buffer, enable the
object for transmission, and wait for a completion before writing the
next frame to the message buffer. The User application must
therefore transmit multiple frames one by one until the whole
message is transmitted.
However, by using multiple Tx objects whose object numbers
increase sequentially, and whose CAN IDs have been configured
identically, several frames of a Fragmented message can be
queued–up and enabled, and will be transmitted in order.

RTR Handling
This section describes how to receive or transmit Remote Transmit
Request (RTR) frames.

Receiving an RTR Frame
1. The software must setup an Rx object with the RTR bit in

MnCTL[0] set to ‘1’.

2. An RTR frame is received when the CAN ID Matches that of the
enabled receive object whose RTR bit set to ‘1’.

3. If interrupt is enabled for that Message Object, an interrupt will
be generated upon the RTR message reception.

4. The software would usually have a transmit object available with
the same ID. Upon receiving an RTR frame, the software should
update the data for the corresponding transmit object and send it
out.

Transmitting an RTR Frame
1. The software must setup a Tx object with the RTR bit in

MnCTL[0] set to ‘1’.

2. The software sets the object enable bit (OBJ_EN) which will
enable the object to participate in pre–arbitration.

3. After the object wins pre–arbitration, an RTR frame will be sent
out with a ‘1’ in the RTR bit position.

4. At the end of a successful RTR transmission, the OBJ_EN bit will
be cleared. An interrupt could be generated  if it is enabled.

5. It is possible for an incoming message, with CAN ID Matching
that of the transmitting RTR object, to arrive while the
transmitting RTR object is in pre–arbitration, or even during
transmission. In this case, the OBJ_EN bit of the transmitting
RTR object will be cleared to ‘0’, but no interrupt will be
generated.

Data integrity issues
The data stored in the message buffer area can be accessed both
by the CPU and by the DMA engine. Measures have been taken to
ensure that the application does not read data from an object as it is
being updated by the DMA. This is especially important if receive
interrupts have been disabled or have not been responded to before
a new message could have arrived. The general principle is,
� When DMA is accessing the buffer, the CPU should NOT attempt

to read from and write to the buffer.

� When CPU is accessing the buffer, the DMA is still allowed to
access the buffer. When this happens the CPU should be able to
detect and abandon the data read.

Using the Semaphore Bits, SEM1 and SEM0
A three–state semaphore is used to signal whether a given buffer is:
1. Ready for CPU to read

2. Being accessed by DMA (therefore not ready for CPU read)

3. Being read by CPU

The semaphore is encoded by two semaphore bits, SEM1 and
SEM0, which are in bit positions [5] and [4] of the Frame Info byte,
the first byte of the receive buffer.



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 47

At the start of a non–Fragmented message, prior to writing any data
bytes, the DMA will begin by writing 01h into the first byte of the
buffer (byte 0). Once the complete frame has been stored, the DMA
will write the frame information into byte 0, with bits [5] and [4]
always set to ‘1’.

When the application wants to read from the object’s buffer, it can
read byte 0 to determine if the DMA is currently updating the buffer.
If byte 0 contains 01h, then the buffer is currently being updated.
The application should not continue to read from the buffer.

When the application starts to read from the buffer, it should set the
semaphore to 10b. After reading is finished, the application should
check the semaphore again. If it is still 10b, everything is OK.

If, however, the semaphore becomes 01b or 11b after the CPU
access is finished, it means that either the buffer is currently being
accessed by DMA or has been accessed by DMA during the time
the CPU was performing reads. In either case, the CPU should wait
until the semaphore bits become 11b again, and reread.

Use of the semaphore bits is not mandatory. However, their use may
help to maintain data consistency.

There are no dedicated semaphore bits for use with Fragmented
messages. In the case of a Fragmented message (in DeviceNet
only), the DMA will write a 00h in byte 0 of the object’s buffer. After

the completion of a CTL message, the byte count (1 to 255) will be
written to byte 0.

Avoiding Data Corruption for Transmit Message Objects
To avoid data corruption when transmitting messages, there are
three possible approaches:
1. If the Message Complete interrupt is enabled for the transmit

message, the User application would write to the transmit buffer
after seeing the interrupt. Once the interrupt flag is set, it is
known for sure that the pending message has already been
transmitted.

2. Wait until OBJ_EN clears before writing to the buffer. This can be
done by polling the OBJ_EN bit.

3. Clear OBJ_EN, while the object is still in pre–arbitration.

In the first two cases, the pending message will be transmitted
completely before the next message gets sent. For the third case,
the message will not be transmitted. Instead, a message with new
content will enter pre–arbitration.
There is an additional mechanism that prevents corruption of a
message that is being transmitted. If a transmission is ongoing for a
Message Object, the XA-C3 hardware will prevent the User from
clearing the OBJ_EN bit in the object’s MnCTL register.

OSEK, DEVICENET, AND CANOPEN FRAMES OF INTEREST
OSEK ConsecutiveFrame

Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – DLC User Data

1 0 0 1 0 SN

DeviceNet I/O Message
Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – DLC User Data

1 Fragment Type Fragment Count

Fragment Type = 00
� Fragment Count = 0 ... This is the First Fragment

� Fragment Count = 3F ... This is both the First and Last Fragment

Fragment Type = 01 ... Middle Fragment
Fragment Type = 10 ... Last Fragment

CANopen Download Domain Segment Request
Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – DLC User Data

1 ccs (User specified) t n (User specified) c

c = 0 ... not last segment c = 1 ... last segment

CANopen Auto–Acknowledge Tx Response to Download Domain Segment
Data Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

2 – 8 reserved

1 scs (User specified) t not used, always 0000

CAN/CTL RELATED INTERRUPTS
The CAN/CTL module will generate five different Event interrupts to
the XA core:
� Rx Message Complete

� Tx Message Complete

� Rx Buffer Full

� Message Error

� Frame Error

Rx and Tx Message Complete Interrupts
In the following discussion (and elsewhere in the document) the
term “message” applies to a complete transfer of information. For
single–frame messages, the “message complete” condition occurs
at the end of the frame. For multi–frame (Fragmented) messages,
message complete occurs after the last frame is received and
stored. Since the hardware doesn’t recognize or handle
Fragmentation for transmit messages, the Tx message complete
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Message Error Interrupt
There are two possible sources of a Message Error Interrupt: Tx
Buffer Underflow, and Fragmentation Error. When either of these
conditions occur for any Message Object, the Message Error
Interrupt Flag (CANINTFLG[3]) will be set. In addition, the Message
Error Info Register (MEIR) will be updated to reflect the number of
the object which suffered the message error, and the specific type of
message error encountered (Tx Buffer Underflow or Fragmentation
Error).

The MERIF interrupt flag is cleared by writing ‘1’ to the flag’s
position in CANINTFLG[3].

Tx Buffer Underflow
This condition occurs when the transmit engine is “starved” due to
the inability of the DMA to gain access to the bus. This interrupt
condition is predominantly for system debugging. It should never
occur during normal operation unless there is a serious flaw in the
system (e.g., a peripheral which asserts the WAIT signal for an
extended period).

Fragmentation Error
Fragmentation Error is an out–of–sequence Fragment count. For
each successive frame of a Fragmented message, the new
Fragment count must equal the previous count plus one. For
DeviceNet, the Fragment count field is 6 bits wide, for OSEK it is 4
bits wide, and for CANopen it is merely a single, toggling bit.

If a new start–of–message indicator is received for an object, while
the XA-C3 is already in the process of assembling a message for
that object, the pointers for that object will be automatically reset and
assembly will re–commence at the bottom of that object’s message
buffer. The previous, in–progress message will be overwritten, and
no interrupt or error flag of any kind will be generated.

Frame Error Interrupt
There are six conditions generated from within the CAN core, any of
which may cause the Frame Error Interrupt Flag (the FERIF bit in
CANINTFLG[4]) to be set:
� Bus Error

� Pre–Buffer Overflow

� Arbitration Lost

� Error Warning

� Error Passive

� Bus Off

� Each condition has a corresponding status flag in the Frame Error
Status Register (FESTR), which will be set when that condition
occurs. Each condition also has a corresponding enable bit in the
Frame Error Enable Register (FEENR). If a particular condition’s
enable bit is set, then when hardware sets that condition’s status
flag, the Frame Error Interrupt Flag will also be set. The Frame
Error Interrupt Flag is cleared using a 2–step process:

1. The six individual Frame Error Status Flags in the FESTR
register must first be cleared. Details on clearing these flags will
be found in the following sections.

2. The FERIF bit can then be cleared by writing ‘1’ to the flag’s bit
position in CANINTFLG[4].

Bus Error
When a Bus Error occurs, the BERR status flag in FESTR[3] will be
set, generating a Frame Error interrupt, if enabled. The BERR status
flag is cleared by executing a read of the Error Code Capture
Register (ECCR).

The type and location of the error within the bit stream will be
encoded and stored in the Error Code Capture register for the
benefit of the User application. The ECCR register must be read by
the CPU in order to be reactivated for capturing the next error code,
as well as to clear the BERR status flag. Error codes in the ECCR
register are interpreted as shown in Table 25. A read of the ECCR
register should be executed before the Bus Error interrupt is
enabled.
Table 25.  Error Codes for the Error Code Capture

Register (ECCR)
ECCR[7:6] Interpretation

00 Bit Error

01 Form Error

10 Stuff Error

11 Other Error

ECCR[5] Interpretation

0 Tx Error, error occurred during
transmission

1 Rx Error, error occurred during
reception

ECCR[4:0] Interpretation

00011 Start of Frame

00010 ID28 … ID21

00110 ID20 … ID18

00100 SRR Bit

00101 IDE Bit

00111 ID17 … ID13

01111 ID12 … ID5

01110 ID4 … ID0

01100 RTR Bit

01101 Reserved Bit 1

01001 Reserved Bit 0

01011 Data Length Code

01010 Data Field

01000 CRC Sequence

11000 CRC Delimiter

11001 Acknowledge slot

11011 Acknowledge Delimiter

11010 End Of Frame

10010 Intermission (go buy popcorn)

10001 Active Error Flag

10110 Passive Error Flag

10011 Tolerate DOM bits

10111 Error Delimiter

11100 Overload Flag

Pre–Buffer Overflow
The XA-C3 stores one complete frame (which can be up to 13
bytes) in a receive “pre–buffer” while the previous frame is being
processed. Even under extreme conditions, this should provide
ample time for the previous frame to be written to memory by DMA.
If for some reason the DMA is unable to gain access to the bus for a
long period of time, the pre–buffer could overflow. In this event, the
XA-C3 will stop accepting the new message. That is, once the five
pre–buffer bytes are full, subsequent incoming bits will be ignored.
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MERIF Message Error Interrupt Flag (cleared by writing
‘1’)

RBFIF Rx Buffer Full Interrupt Flag (cleared by writing
‘1’)

TMCIF Transmit Message Complete Interrupt Flag
(should be cleared using the 2–step process
described in the section entitled Rx and Tx
Message Complete Interrupts on page 47).

RMCIF Receive Message Complete Interrupt Flag
(should be cleared using the 2–step process
described in the section entitled Rx and Tx
Message Complete Interrupts on page 47

FESTR (Frame Error Status Register)
� Address: MMR base + 22Ch

� Access: Read, byte or word

� Reset Value: 00h

FESTR
7 6 5 4 3 2 1 0

– – PBO ARBLST BERR BOFF ERRW ERRP

PBO Frame Error sub–type is Pre–Buffer Overflow
(cleared by writing ‘1’)

ARBLST Frame Error sub–type is Arbitration Lost
(cleared by reading the ALCR register)

BERR Frame Error sub–type is Bus Error (cleared by
reading the ECCR register)

BOFF Frame Error sub–type is Bus Off (cleared by
writing ‘1’)

ERRW Frame Error sub–type is Error Warning (cleared
by writing ‘1’)

ERRP Frame Error sub–type is Error Passive (cleared
by writing ‘1’)

FEENR (Frame Error Enable Register)
� Address: MMR base + 22Eh

� Access: Read,  byte or word

� Reset Value: 00h

FEENR
7 6 5 4 3 2 1 0

– – PBOE ARBLSTE BERRE BOFFE ERRWE ERRPE

PBOE Pre–Buffer Overflow Enable (0 = disabled, 1 =
enabled)

ARBLSTE Arbitration Lost Enable (0 = disabled, 1 =
enabled)

BERRE Bus Error Enable (0 = disabled, 1 = enabled)

BOFFE Bus Off Enable (0 = disabled, 1 = enabled)

ERRWE Error Warning Enable (0 = disabled, 1 =
enabled)

ERRPE Error Passive Enable (0 = disabled, 1 =
enabled)

MCIR (Message Complete Info Register)
� Address: MMR base + 229h

� Access: Read, byte or word

� Reset Value: 00h

MCIR
7 6 5 4 3 2 1 0

– – 1 or More Object Number

1orMore 0 = No objects whose INT_EN bits are set
currently have a message complete condition. 1
= One or more objects whose INT_EN bits are
set currently have a message complete
condition.

Object Number These 5 bits encode the lowest object number
(0 – 31) of all objects whose INT_EN bits are
set AND who currently have a message
complete condition. If there are no such objects
(1orMore = 0), these bits will be 00000b.

MEIR (Message Error Info Register)
� Address: MMR base + 22Ah

� Access: Read,  byte or word

� Reset Value: 00h

MEIR
7 6 5 4 3 2 1 0

TBU FRAG RBF Object Number

[TBU FRAG RBF] 001 = Most recent is Rx Buffer Full interrupt.

010 = Most recent is Fragmentation Error
interrupt.

100 = Most recent is Tx Buffer Underflow
interrupt.

Object Number These 5 bits encode the object number (0 – 31)
of the Message Object experiencing the most
recent Message Error (Tx Buffer Underflow,
Fragmentation Error, or Rx Buffer Full)
condition. If more than one object are
encountering Message Errors, only the most
recent object number will be available.

MCPLH (Message Complete Status Flags High)
� Address: MMR base + 226h

� Access: Read/Clear, byte or word

� Reset Value: 0000h
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CAN Interrupt SFRs
As with all XA Event interrupts, the five CAN interrupts can be
independently enabled, disabled, and prioritized using the interrupt

control SFRs in the XA Core (see IEH, IEL, and IPA0 – IPA7 in Table
26 on page 50 and see Table 16 on page 26). Bit positions are given
below in .

Table 27.  SFR Interrupt Enable/Priority Bit Positions
NOTE: ALSO SEE TABLE 25 ON PAGE 49

SFR
Name

SFR
Address

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

IEH 427 EMRI EMTI EMER ECER ESPI unused ETI0 ERI0

IEL 426 EA unused EBUFF ET2 ET1 EX1 ET0 EX0

IPA0 4A0 – PT0 – PX0

IPA1 4A1 – PT1 – PX1

IPA2 4A2 – PBUFF – PT2

IPA4 4A4 – PTI0 – PRI0

IPA5 4A5 – PSPI – unused

IPA6 4A6 – PMER – PCER

IPA7 4A7 – PMRI – PMTI

EMRI Rx Message Complete interrupt
enable.

EMTI Tx Message Complete interrupt
enable.

EMER Message Error interrupt enable.

ECER Frame Error interrupt enable.

ESPI SPI Port Interrupt enable.

ETI0, ERI0 XA-C3 Serial Port 0 interrupt
enable bits.

EBUFF Rx Buffer Full interrupt enable.

EA, ET2, ET1, EX1, ET0, EX0 XA-C3 Enable All, Timer, and
External interrupt enable bits.

PX0, PT0, PX1, PT1, PT2 XA-C3 External and Timer
interrupt priority fields.

PBUFF Rx Buffer Full interrupt priority
field.

PRI0, PTI0 XA-C3 Serial Port 0 interrupt
priority fields.

PSPI SPI Port interrupt priority field.

PMRI Rx Message Complete interrupt
priority field.

PMTI Tx Message Complete interrupt
priority field.

PMER Message Error interrupt priority
field.

PCER Frame Error interrupt priority field.

POWER–DOWN AND IDLE MODE

Background: XA Power–Down and Idle modes
Power–Down mode on the XA means that the main oscillator is
clamped–off and there is no chip activity of any kind. Idd in this mode
is on the order of a few tens of microamps. Wake–up from
power–down is accomplished via a system reset or a transition on
the External Interrupt 0 or 1 pins. The wake–up period is 10,000
oscillator clocks (enough for several CAN frames to be transmitted).

Idle mode on the XA means that the clocks are running but are
gated–off to the processor core. Most peripherals are active, but
some may be put to sleep along with the core. Wake–up from Idle

mode is instantaneous, and is initiated via any interrupt. Idd in Idle
mode is in the range of 25–30 mA @ 32 MHz if the CAN/CTL
module is deactivated, perhaps 54–80 mA @ 32 MHz if the CAN is
left active. Note that putting the XA core, by itself, into Idle mode
reduces power consumption by approximately 30 mA @ 32MHz.

XA-C3 Idle Mode
The default condition for the CTL/CAN module will be to stay awake
in Idle mode, so that the core can “sleep” while CAN
transmissions/receptions are in progress. Any interrupt (e.g.,
Message Complete) will wake up the core. An option will be
provided to include the CAN/CTL module in Idle mode. This option
will be selected in software by writing to the SLPEN bit in MMR
CANCMR[3]. If the CAN does  go to sleep in Idle mode, then any
transition on the CAN RxD input pin will be asynchronously latched
and will immediately re–enable the clocks to the CAN/CTL module
so that it can begin receiving the incoming frame. There will not  be
any interrupt generated, however, and the processor core will
remain in idle mode. The CPU will only come out of Idle mode once
a complete message is received and stored and a
Message–Complete interrupt is generated (unless, of course, some
other system interrupt wakes it up prior to that). The CCB will
generate a “ccb_idle_n” signal which will be routed to all of the other
CAN/CTL blocks (including the CMI) at the top level.

XA-C3 Power–Down Mode
If a transition of the CAN RxD input occurs when the XA-C3 is in
Power–Down mode, the CPU will enter Idle mode (after a 9892
clock delay), and the CCB and Message Handler circuits will be
activated to receive and process the incoming frame. When either of
these blocks generates an interrupt (or some other enabled interrupt
occurs), only then will the CPU come out of Idle mode and begin
executing code. Code execution will resume either in the interrupt
service routine, if its priority is higher than current code, or with the
next instruction following the Power–Down instruction. At this time
the termination of the Power–Down mode is actually complete.

CAN Sleep Enable
Certain conditions must be met before the CAN/CTL module can be
safely put to sleep (Idle or Power–Down). Essentially, there must be
no CAN activity in progress and no interrupts pending. The CCB
must generate a “sleepok” signal (SLPOK=CANSTR[2]) which
indicates that these conditions are met. This signal must be used to
enable the  “ccb_idle_n” signal. In addition, the “sleepok” signal



Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 58

SPICFG
7 6 5 4 3 2 1 0

SPSTT SPB2 SPB1 SPB0 SPFG Rsvd Rsvd SPIDL

SPSTT SPI Start
0 = Cycle finished, cleared by hardware and on
reset
1 = Start

SPB2 – SPB0 Number of SPI bits transceived = SPICFG[6:4]
+ 1

Rsvd Reserved bits, write only zeros

SPIDL SPI TxD idle state
0 = idle low
1 = idle high
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PLCC44: plastic leaded chip carrier; 44 leads SOT187-2


