
NXP USA Inc. - PXAC37KFBD/00,157 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor XA

Core Size 16-Bit

Speed 32MHz

Connectivity CANbus, EBI/EMI, SPI, UART/USART

Peripherals DMA, POR, PWM, WDT

Number of I/O 32

Program Memory Size 32KB (32K x 8)

Program Memory Type OTP

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 5.5V

Data Converters -

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package 44-LQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/pxac37kfbd-00-157

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pxac37kfbd-00-157-4449449
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 ii

Reset Timing 24.
Power Reduction Modes 24.
Interrupts 24.

Interrupt Types 24.
Interrupt Structures 25.
Event Interrupt Handling 25.
Interrupt Priority Details 25.

ABSOLUTE MAXIMUM RATINGS 26.
DC ELECTRICAL CHARACTERISTICS 27.
AC ELECTRICAL CHARACTERISTICS 28.
EPROM CHARACTERISTICS 34.

Security Bits 34.
XA-C3 OVERVIEW 35.

Introduction 35.
Definition of Terms 35.

Standard and Extended CAN Frames 35.
Acceptance Filtering 35.
Message Object 35.
CAN Arbitration ID 35.
Screener ID 35.
Match ID 35.
Mask 35.
CTL 35.
Fragmented Message 36.
Message Buffer 36.
MMR 36.

CTL/CAN Functionality of the XA-C3 36.
Message Objects / Message Management 36.
Acceptance Filtering 36.
Message Storage 36.
Transmit Pre–Arbitration 36.
Remote Frame Handling 37.

MEMORY MAPS 37.
Data Memory Space 37.
Code Memory Space 37.

CAN CORE BLOCK (CCB) 37.
CAN Bus Timing 37.

CAN System Clock 37.
Samples Per Bit 37.
Location of Sample Point 38.
Synchronization Jump Width 38.
CANBTR: CAN Bus Timing Register 38.

CAN Command and Status Registers 38.
Two Modes in CAN Core Operation 38.
CANCMR: CAN Command Register 38.
CANSTR: CAN Status Register 38.

CAN/CTL MESSAGE HANDLER 39.
Message Objects 39.
Receive Message Objects and the Receive Process 39.

Acceptance Filtering 39.
Message Storage 41.
Message Assembly 42.

Transmit Message Objects and the Transmit Process 45.
Pre–Arbitration Based on Priority (default mode) 45.

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 iii

Pre–Arbitration Based on Object Number 45.
Message Retrieval 46.
Transmission of Fragmented Messages 46.

RTR Handling 46.
Receiving an RTR Frame 46.
Transmitting an RTR Frame 46.

Data integrity issues 46.
Using the Semaphore Bits, SEM1 and SEM0 46.
Avoiding Data Corruption for Transmit Message Objects 47.

OSEK, DEVICENET, AND CANOPEN FRAMES OF INTEREST 47.
OSEK ConsecutiveFrame 47.
DeviceNet I/O Message 47.
CANopen Download Domain Segment Request 47.
CANopen Auto–Acknowledge Tx Response to Download Domain Segment 47.

CAN/CTL RELATED INTERRUPTS 47.
Rx and Tx Message Complete Interrupts 47.
Rx Buffer Full Interrupt 48.
Message Error Interrupt 49.

Tx Buffer Underflow 49.
Fragmentation Error 49.

Frame Error Interrupt 49.
Bus Error 49.
Pre–Buffer Overflow 49.
Arbitration Lost 50.
Error Warning 50.
Error Passive 50.
Bus Off 50.

CAN Interrupt Registers 50.
CANINTFLG (CAN Interrupt Flag Register) 50.
FESTR (Frame Error Status Register) 51.
FEENR (Frame Error Enable Register) 51.
MCIR (Message Complete Info Register) 51.
MEIR (Message Error Info Register) 51.
MCPLH (Message Complete Status Flags High) 51.
MCPLL (Message Complete Status Flags Low) 52.
TxERC (Tx Error Counter) 52.
RxERC (Rx Error Counter) 52.
EWLR (Error Warning Limit Register) 52.
ECCR (Error Code Capture Register) 52.
ALCR (Arbitration Lost Capture Register) 52.

CAN Interrupt SFRs 53.
POWER–DOWN AND IDLE MODE 53.

Background: XA Power–Down and Idle modes 53.
XA-C3 Idle Mode 53.
XA-C3 Power–Down Mode 53.
CAN Sleep Enable 53.

MEMORY INTERFACE UNIT 54.
General Description 54.
Summary of features 54.
Memory Mapped Registers (MMRs) 54.

Special Function Register MRBH 55.
Special Function Register MRBL 55.

On–Chip Message Buffer RAM (XRAM) 55.
MBXSR (Message Buffer and XRAM Segment Register) 56.

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

12000 Jan 25

GENERAL DESCRIPTION
The XA–C3 is a member of the Philips XA (eXtended Architecture)
family of high–performance 16–bit single–chip microcontrollers. The
XA–C3 combines an array of standard peripherals together with a
PeliCAN CAN 2.0B engine and unique ”Message Management”
hardware to provide integrated support for most CAN Transport
Layer (CTL) protocols such as DeviceNet, CANopen and OSEK. For
additional details, refer to the XA-C3 Overview on page 35.

The XA architecture supports:
� Easy 16-bit migration from the 80C51 architecture.

� 16–bit fully static CPU with 24–bit addressed PROGRAM and
DATA spaces.

� Twenty–one 16–bit CPU core registers capable of all arithmetic
and logic operations while serving as memory pointers.

� An enhanced orthogonal instruction set tailored for high–level
support of the C language.

� Multi–tasking and direct real–time executive support.

� Low–power operation intrinsic to the XA architecture includes
Power–Down and Idle modes.

FEATURES IN COMMON WITH XA-G3
� Pin–compatibility (CAN RxD and CAN TxD use the XA-G3 NC

pins).

� 32K bytes of on–chip EPROM PROGRAM memory (see Table 1).

� 44–pin PLCC (Figure 1 and Table 2) and 44–pin LQFP (Figure 2
and Table 3) packages.

� Commercial (0 to 70oC) and Industrial (–40 to 85oC) ranges.

� Supports off–chip addressing of PROGRAM and DATA memory
up to 1 megabyte each (20 address lines).

� Three standard counter/timers (T0, T1, and T2) with
enhancements such as Auto Reload for PWM outputs.

� UART–0 with enhancements such as separate Rx and Tx
interrupts, Break Detection, and Automatic Address Recognition.

� Watchdog with a secure WFEED1 / WFEED2 sequence.

� Four 8–bit I/O ports with 4 programmable output configurations
per pin.

XA-C3 SPECIFIC FEATURES
� 32 MHz operating frequency at 4.5 to 5.5V operation.

� One Serial Port Interface (SPI)

� 1024 bytes of on–chip DATA RAM.

� 42 vectored interrupts. These include 13 maskable Events, 7
Software interrupts, 6 Exceptions, 16 software Traps, segmented
DATA memory, multiple User stacks, and banked registers to
support rapid context switching.

� External interfacing via a 16–bit DATA bus width.

XA-C3 CAN AND CTL FEATURES
� A PeliCAN CAN 2.0B engine from the SJA1000 Stand–alone CAN

controller which supports 11– and 29–bit IDentifiers and the
maximum CAN data rate (1 Mbps) and CAN Diagnostics.

� Hardware “Message Management” support for all major CTL
protocols: DeviceNet, CANopen, OSEK.

� Automatic (hardware) assembly of Fragmented Messages via a
Transport Layer Co-Processor. Concurrent assembly of up to 32
separate interleaved Fragmented Messages

� 32 CAN Transport Layer (CTL) Message Objects are modelled as
a FullCAN Object Superset.

� 32 separate filters/screeners (one per Message Object), each
allowing a 30–bit ID Match and full 29–bit Mask (i.e., each
filter/screener represents a unique Group address).

� Each Message Object can be configured as Receive or Transmit.

� A separate message buffer is associated with each CTL Message
Object. 32 message buffers are located in XRAM and managed
by 32 DMA channels. Message buffer size for each Message
Object is independently configurable in length (from 2 to 256
bytes).

� For single–chip systems there is a 512–byte (on–chip) XRAM
message buffer, independent of the 1K on–chip DATA RAM, which
is extendable (off–chip) to 8K bytes (i.e., 32 Message Objects that
can be up to 256 bytes each).

LOGIC SYMBOL AND BLOCK DIAGRAM

Refer to Figure 3 for the logic symbol for the XA-C3 and to Figure 4
for a simplified block diagram representation.

UPGRADING XA-G3 DESIGNS TO CAN
� XA-G3 NC pins are XA-C3 CAN RxD and CAN TxD pins.

� XA-G3 UART–1 is replaced by a Serial Port Interface (SPI)

� XA-C3 software must never write to the BCR register

� XA-C3 software must initialize BTRH and BTRL with 00h

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 4

44-pin LQFP package

Figure 2. 44-pin PLCC package

Table 3. 44-pin LQFP package pin functions
Pin Function (see Note) Pin Function (see Note)

1 P1.5 ; SPITx 23 P2.5 ; A17D13

2 P1.6 ; T2 ; SPICLK 4 P2.6 ; A18D14

3 P1.7 ; T2EX 25 P2.7 ; A19D15

4 RST/ 26 PSEN/

5 P3.0 ; RxD0 27 ALE ; PROG/

6 CAN RxD 28 CAN TxD

7 P3.1 ; TxD0 29 EA/ ; Vpp ; WAIT

8 P3.2 ; INT0/ 30 P0.7 ; A11D7

9 P3.3 ; INT1/ 31 P0.6 ; A10D6

10 P3.4 ; T0 32 P0.5 ; A9D5

11 P3.5 ; T1 33 P0.4 ; A8D4

12 P3.6 ; WRL/ 34 P0.3 ; A7D3

13 P3.7 ; RD/ 35 P0.2 ; A6D2

14 XTAL2 36 P0.1 ; A5D1

15 XTAL1 37 P0.0 ; A4D0

16 VSS 38 VDD

17 VDD 39 VSS

18 P2.0 ; A12D8 40 P1.0 ; WRH/

19 P2.1 ; A13D9 41 P1.1 ; A1

20 P2.2 ; A14D10 42 P1.2 ; A2

21 P2.3 ; A15D11 43 P1.3 ; A3

22 P2.4 ; A16D12 44 P1.4 ; SPIRx

NOTE:
1. All active–low signals are indicated by a “/” symbol

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 9

SPECIAL FUNCTION REGISTERS

Table 5. Special Function Registers
NAME DESCRIPTION SFR BIT FUNCTIONS AND BIT ADDRESSES RESET

ADDRESS 7 6 5 4 3 2 1 0 VALUE

BCR Bus Configuration Register 46Ah – – – WAITD BUSD – – – 07h (Note 1)
BTRH Bus Timing Register High 469h DW1 DW0 DWA1 DWA0 DR1 DR0 DRA1 DRA0 FFh (Note 2)
BTRL Bus Timing Register Low 468h WM1 WM0 ALEW – CR1 CR0 CRA1 CRA0 EFh (Note 2)
MIFCNTL MIF Control Register 495h – – – WDSBL BUSD – – –

MRBL MMR Base address Low 496h MA15 MA14 MA13 MA12 – – – MRBE F0h
MRBH MMR Base address High 497h MA23 MA22 MA21 MA20 MA19 MA18 MA17 MA16 0Fh
DS Data Segment 441h 00h
ES Extra Segment 442h 00h
CS Code Segment 443h 00h

33F 33E 33D 33C 33B 33A 339 338

IEH* Interrupt Enable High 427h EMRI EMTI EMER ECER ESPI – ETI0 ERI0 00h
337 336 335 334 333 332 331 330

IEL* Interrupt Enable Low 426h EA – EBUFF ET2 ET1 EX1 ET0 EX0 00h

IPA0 Interrupt Priority Assignment 0 4A0h – PT0 – PX0 00h
IPA1 Interrupt Priority Assignment 1 4A1h – PT1 – PX1 00h
IPA2 Interrupt Priority Assignment 2 4A2h – PBUFF – PT2 00h
IPA4 Interrupt Priority Assignment 4 4A4h – PTI0 – PRI0 00h
IPA5 Interrupt Priority Assignment 5 4A5h – PSPI – – 00h
IPA6 Interrupt Priority Assignment 6 4A6h – PMER – PCER 00h
IPA7 Interrupt Priority Assignment 7 4A7h – PMRI – PMTI 00h

387 386 385 384 383 382 381 380

P0* Port 0 430h A11D7 A10D6 A9D5 A8D4 A7D3 A6D2 A5D1 A4D0 FFh
38F 38E 38D 38C 38B 38A 389 388

P1* Port 1 431h T2EX T2 ;
SPICLK

SPITx SPIRx A3 A2 A1 WRH/ FFh

397 396 395 394 393 392 391 390

P2* Port 2 432h A19D15 A18D14 A17D13 A16D12 A15D11 A14D10 A13D9 A12D8 FFh
39F 39E 39D 39C 39B 39A 399 398

P3* Port 3 433h RD/ WRL/ T1 T0 INT1/ INT0/ TxD0 RxD0 FFh

P0CFGA Port 0 Configuration A 470h Note 3
P1CFGA Port 1 Configuration A 471h Note 3
P2CFGA Port 2 Configuration A 472h Note 3
P3CFGA Port 3 Configuration A 473h Note 3
P0CFGB Port 0 Configuration B 4F0h Note 3
P1CFGB Port 1 Configuration B 4F1h Note 3
P2CFGB Port 2 Configuration B 4F2h Note 3
P3CFGB Port 3 Configuration B 4F3h Note 3

227 226 225 224 223 222 221 220

PCON* Power Control Reg 404h – – – – – – PD IDL 00h
20F 20E 20D 20C 20B 20A 209 208

PSWH* Program Status Word High 401h SM TM RS1 RS0 IM3 IM2 IM1 IM0 Note 4
207 206 205 204 203 202 201 200

PSWL* Program Status Word Low 400h C AC – – – V N Z Note 4
217 216 215 214 213 212 211 210

PSW51* 80C51–compatible PSW 402h C AC F0 RS1 RS0 V F1 P Note 5

RTH0
Timer 0 extended reload, high
byte 455h 00h

RTH1
Timer 1 extended reload, high
byte 457h 00h

RTL0
Timer 0 extended reload, low
byte 454h 00h

RTL1
Timer 1 extended reload, low
byte 456h 00h

307 306 305 304 303 302 301 300

S0CON* Serial port 0 control register 420h SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00h

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 14

CP or
RL2/

BIT SYMBOL FUNCTION
T2CON.7 TF2 Timer 2 overflow flag. Set by hardware on Timer/Counter overflow. Must be cleared by software.

TF2 will not be set when RCLK0, RCLK1, TCLK0, TCLK1 or T2OE=1.
T2CON.6 EXF2 Timer 2 external flag is set when a capture or reload occurs due to a negative transition on T2EX (and

EXEN2 is set). This flag will cause a Timer 2 interrupt when this interrupt is enabled. EXF2 is cleared by
software.

T2CON.5 RCLK0 Receive Clock Flag.
T2CON.4 TCLK0 Transmit Clock Flag. RCLK0 and TCLK0 are used to select Timer 2 overflow rate as a clock source for

UART0 instead of Timer T1.
T2CON.3 EXEN2 Timer 2 external enable bit allows a capture or reload to occur due to a negative transition on T2EX.
T2CON.2 TR2 Start=1/Stop=0 control for Timer 2.
T2CON.1 C2 or T2/ Timer or counter select.

0=Internal timer
1=External event counter (falling edge triggered)

T2CON.0 CP or RL2/ Capture/Reload flag.
If CP/RL2 & EXEN2=1 captures will occur on negative transitions of T2EX.
If CP/RL2=0, EXEN2=1 auto reloads occur with either Timer 2 overflows or negative transitions at T2EX.
If RCLK or TCLK=1 the timer is set to auto reload on Timer 2 overflow, this bit has no effect.

SU001326

C2 or
T2/

TR2EXEN2TCLK0RCLK0EXF2TF2

T2CON Address:418
Bit Addressable
Reset Value: 00H

LSBMSB

Figure 8. Timer/Counter 2 Control (T2CON) Register

New Timer-Overflow Toggle Output
In the XA, the timer module now has two outputs, which toggle on
overflow from the individual timers. The same device pins that are
used for the T0 and T1 count inputs are also used for the new
overflow outputs. An SFR bit (TnOE in the TSTAT register – see
Figure 9 –– is associated with each counter and indicates whether
Port–SFR data or the overflow signal is output to the pin. These
outputs could be used in applications for generating variable duty
cycle PWM outputs (changing the auto–reload register values).
Also, variable frequency (fosc/8 to fosc/8,388,608) outputs could be
achieved by adjusting the prescaler along with the auto–reload
register values.

Timer T2
Timer 2 in the XA is a 16–bit Timer/Counter which can operate as
either a timer or as an event counter. This is selected by {C2 or T2/}
(T2CON[1]) (see Figure 8). Upon timer T2 overflow/underflow, the
TF2 flag is set, which may be used to generate an interrupt. It can
be operated in one of three operating modes: auto–reload (up or
down counting), capture, or as the baud rate generator (for the
UART via SFRs T2CON and T2MOD – see Figure 10.
These modes are shown in Table 7.

Capture Mode
In the capture mode there are two options which are selected by bit
EXEN2 (T2CON[3]). If EXEN2 = 0, then timer 2 is a 16–bit timer or
counter, which upon overflowing sets bit TF2 (T2CON[7]), the timer
2 overflow bit. This will cause an interrupt when the timer 2 interrupt
is enabled.

If EXEN2 = 1, then Timer 2 still does the above, but with the added
feature that a 1–to–0 transition at External input T2EX causes the
current value in the Timer 2 registers, TL2 and TH2, to be captured
into registers RCAP2L and RCAP2H, respectively. In addition, the
transition at T2EX causes bit EXF2 (T2CON[6]) to be set. This will
cause an interrupt in the same fashion as TF2 when the Timer 2
interrupt is enabled. The capture mode is illustrated in Figure 11.

Auto-Reload Mode (Up or Down Counter)
In the auto–reload mode, the timer registers are loaded with the
16–bit value in T2CAPH and T2CAPL when the count overflows.
T2CAPH and T2CAPL are initialized by software. If the EXEN2 bit
(T2CON[3]) is set, the timer registers will also be reloaded and the
EXF2 flag T2CON[6] set when a 1–to–0 transition occurs at input
T2EX. The auto–reload mode is shown in Figure 12.

In this mode, Timer 2 can be configured to count up or down. This is
done by setting or clearing the DCEN (Down Counter Enable) bit
T2MOD[0] (see Table 7). The T2EX pin then controls the count
direction. When T2EX is high, the count is in the up direction, when
T2EX is low, the count is in the down direction.

Figure 12 shows Timer 2, which will count up automatically, since
DCEN = 0. In this mode there are two options selected by bit
EXEN2 in the T2CON register. If EXEN2 bit = 0, then Timer 2 counts
up to FFFFh and sets the TF2 (Overflow Flag) bit T2CON[7] upon
overflow. This causes the Timer 2 registers to be reloaded with the
16–bit value in T2CAPL and T2CAPH, whose values are preset by
software. If EXEN2 bit T2CON[3] = 1, a 16–bit reload can be
triggered either by an overflow or by a 1–to–0 transition at input
T2EX. This transition also sets the EXF2 bit. If enabled, either TF2
bit or EXF2 bit can generate the Timer 2 interrupt.

In Figure 13 where the DCEN bit = 1; this enables the Timer 2 to
count up or down. In this mode, the logic level of T2EX pin controls
the direction of count. When a logic ‘1’ is applied at pin T2EX, the
Timer 2 will count up. The Timer 2 will overflow at FFFFh and set the
TF2 bit flag, which can then generate an interrupt if enabled. This
timer overflow also causes the 16–bit value in T2CAPL and
T2CAPH to be reloaded into timer registers TL2 and TH2,
respectively.

A logic ‘0’ at pin T2EX causes Timer 2 to count down. When
counting down, the timer value is compared to the 16–bit value
contained in T2CAPH and T2CAPL. When the value is equal, the

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 17

TCLK C2 or T2/ = 0

C2 or T2/ = 1

TL2 TH2

TR2

CONTROL
T2 PIN

SU01329

FFH FFH

T2CAPL T2CAPH

(UP COUNTING RELOAD VALUE) T2EX PIN

TF2 INTERRUPT

COUNT
DIRECTION
1 = UP
0 = DOWN

EXF2

OVERFLOW

(DOWN COUNTING RELOAD VALUE)

TOGGLE

Figure 13. Timer 2 Auto Reload Mode (DCEN = 1)

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 21

3. The timer reload value may never be larger than the timer range.

4. If a timer reload value calculation gives a negative or fractional
result, the baud rate requested is not possible at the given
oscillator frequency and N value.

Using Timer 2 to Generate Baud Rates
Timer T2 is a 16–bit up/down counter. As a baud rate generator,
Timer 2 is selected as a clock source for UART–0 transmitter and/or
receiver by setting TCLK0 and/or RCLK0 in T2CON (see Table 10).
As the baud rate generator, T2 is incremented as fosc/N where N =
4, 16, or 64 depending on TCLK as programmed in SCR bits PT1
(SCR[3]) and PTO (SCR[2]). See Table 11).

NOTE: Pin T2EX [P1.7] acts as an additional External interrupt
“INT2/” whenever Timer T2 is used as a baud rate generator.

Table 10. T2CON Settings
T2CON
0x418

T2CON[5] T2CON[4]

RCLK0 TCLK0

Table 11. Prescaler Select for Timer Clock
SCR
0x440

SCR[3] SCR[2]

PT1 PT0

STINT0

BIT SYMBOL FUNCTION
S0STAT.3 FE0 Framing Error flag is set when the receiver fails to see a valid STOP bit at the end of the frame.

Cleared by software.
S0STAT.2 BR0 Break Detect flag is set if a character is received with all bits (including STOP bit) being logic ‘0’. Thus

it gives a “Start of Break Detect” on bit 8 for Mode 1 and bit 9 for Modes 2 and 3. The break detect
feature operates independently of the UARTs and provides the START of Break Detect status bit that
a user program may poll. Cleared by software.

S0STAT.1 OE0 Overrun Error flag is set if a new character is received in the receiver buffer while it is still full (before
the software has read the previous character from the buffer), i.e., when bit 8 of a new byte is
received while RI_0 in S0CON is still set. Cleared by software.

S0STAT.0 STINT0 This flag must be set to enable any of the above status flags to generate a receive interrupt (RI_0).
The only way it can be cleared is by a software write to this register.

SU01315

OE0BR0FE0————

S0STAT Address: S0STAT 421
Bit Addressable
Reset Value: 00H

LSBMSB

Figure 15. Serial Port Extended Status (S0STAT) Register

Note: See also Figure 17 regarding Framing Error flag.

UART Interrupt Scheme
There are separate interrupt vectors for UART–0 transmit and
receive functions (see Table 12 below).

Table 12. Vector Locations for UART in XA
Vector Address Interrupt Source Arbitration

00A0h – 00A3h UART 0 Receiver 10

00A4h – 00A7h UART 0 Transmitter 11

NOTE:
The transmit and receive vectors could contain the same ISR
address to work like an 8051 interrupt scheme.

Multiprocessor Communications
Modes 2 and 3 have a special provision for multiprocessor
communications. In these modes, 9 data bits are received. The 9th
one goes into bit RB_8 (S0CON[2]). Then comes a stop bit.
UART–0 can be programmed such that when the stop bit is
received, the serial port interrupt will be activated only if RB_8 = 1.
This feature is enabled by setting bit SM2_0 (S0CON[5]). A way to
use this feature in multiprocessor systems is as follows:

When the master processor wants to transmit a block of data to one
of several slaves, it first sends out an address byte which identifies
the target slave. An address byte differs from a data byte in that the
9th bit is 1 in an address byte and 0 in a data byte. With SM2_0 = 1,
no slave will be interrupted by a data byte. An address byte,
however, will interrupt all slaves, so that each slave can examine the

received byte and see if it is being addressed. The addressed slave
will clear its SM2_0 bit and prepare to receive the data bytes that will
be coming. The slaves that weren’t being addressed leave their
SM2_0 bits set and go on about their business, ignoring the
incoming data bytes.

SM2_0 has no effect in UART Mode 0, and in UART Mode 1 can be
used to check the validity of the stop bit although this is better done
with the Framing Error flag (FE0) {S0STAT[3]}. In a Mode 1
reception, if SM2_0 = 1, the receive interrupt will not be activated
unless a valid stop bit is received.

Error Handling, Status Flags and Break Detect
UART–0 has the four error flags as described in Figure 15.

Automatic Address Recognition
Automatic Address Recognition is a feature which allows UART–0 to
recognize certain addresses in the serial bit stream by using
hardware to make the comparisons. This feature saves a great deal
of software overhead by eliminating the need for the software to
examine every serial address which passes by the serial port. This
feature is enabled by setting the SM2_0 bit. In the 9–bit UART
Modes (Mode 2 and Mode 3) the Receive Interrupt flag (RI_0)
(S0CON[0]) will be automatically set when the received byte
contains either the “Given” address or the “Broadcast” address. The
9–bit mode requires that the 9th information bit is a 1 to indicate that
the received information is an address and not data. Automatic
address recognition is shown in Figure 16.

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 22

Using the Automatic Address Recognition feature allows a master to
selectively communicate with one or more slaves by invoking the
Given slave address or addresses. All of the slaves may be
contacted by using the Broadcast address. Two special Function
Registers are used to define the slave’s address, S0ADDR, and the
address mask, S0ADEN. S0ADEN is used to define which bits in the
S0ADDR are to be used and which bits are “don’t care”. The
S0ADEN mask can be logically ANDed with the S0ADDR to create
the “Given” address which the master will use for addressing each
of the slaves. Use of the Given address allows multiple slaves to be
recognized while excluding others. The following examples will help
to show the versatility of this scheme:

Slave 0 S0ADDR = 1100 0000
S0ADEN = 1111 1101
Given = 1100 00X0

Slave 1 S0ADDR = 1100 0000
S0ADEN = 1111 1110
Given = 1100 000X

In the above example S0ADDR is the same and the S0ADEN data
is used to differentiate between the two slaves. Slave 0 requires a 0
in bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is
ignored. A unique address for Slave 0 would be 1100 0010 since
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be
selected at the same time by an address which has bit 0 = 0 (for
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed
with 1100 0000.

In a more complex system the following could be used to select
slaves 1 and 2 while excluding slave 0:

Slave 0 S0ADDR = 1100 0000
S0ADEN = 1111 1001
Given = 1100 0XX0

Slave 1 S0ADDR = 1110 0000
 S0ADEN = 1111 1010

Given = 1110 0X0X

Slave 2 S0ADDR = 1110 0000
S0ADEN = 1111 1100
Given = 1110 00XX

In the above example the differentiation among the 3 slaves is in the
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and
it can be uniquely addressed by 1110 and 0101. Slave 2 requires
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0
and 1 and exclude Slave 2 use address 1110 0100, since it is
necessary to make bit 2 = 1 to exclude slave 2.

The Broadcast Address for each slave is created by taking the
logical OR of S0ADDR and S0ADEN. Zeros in this result are treated
as don’t–cares. In most cases, interpreting the don’t–cares as ones,
the broadcast address will be FF hexadecimal.

Upon Reset, S0ADDR and S0ADEN are loaded with 0s. This
produces a given address of all “don’t cares” as well as a Broadcast
address of all “don’t cares”. This effectively disables the Automatic
Addressing mode and allows the microcontroller to use standard
UART drivers which do not make use of this feature.

BIT SYMBOL FUNCTION
S0CON.5 SM2_0 Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2_0 is set to 1, then

RI_0 will not be activated if the received 9th data bit (RB8_0) is 0. In Mode 1, if SM2_0=1 then RI_0 will not be
activated if a valid stop bit was not received. In Mode 0, SM2_0 should be 0.

S0CON.4 REN_0 Enables serial reception. Set by software to enable reception. Clear by software to disable reception.
S0CON.3 TB8_0 The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. The TB8_0 bit is

not double buffered. See text for details.
S0CON.2 RB8_0 In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, if SM2_0=0, RB8_0 is the stop bit that was

received. In Mode 0, RB8_0 is not used.
S0CON.1 TI_0 Transmit interrupt flag. Set when another byte may be written to the UART transmitter. See text for details.

Must be cleared by software.
S0CON.0 RI_0 Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the end of the stop bit time

in the other modes (except see SM2_0). Must be cleared by software.

Where SM0_0, SM1_0 specify the serial port mode, as follows:

SM0_0 SM1_0 Mode Description Baud Rate
0 0 0 shift register fOSC/16
0 1 1 8-bit UART variable
1 0 2 9-bit UART fOSC/32
1 1 3 9-bit UART variable

SU01330

RI_0TI_0RB8_0TB8_0REN_0SM2_0SM1_0SM0_0

S0CON Address: S0CON 420

Bit Addressable
Reset Value: 00H

LSBMSB

Figure 16. Serial Port Control (S0CON) Register

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 23

D0 D1 D2 D3 D4 D5 D6 D7 D8

STOP
BIT

DATA BYTE ONLY IN
MODE 2, 3

START
BIT

SU01331

— — — — FE0 BR0 OE0 STINT0 S0STAT

if 0, sets FE

Figure 17. UART Framing Error Detection

SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 S0CON

D0 D1 D2 D3 D4 D5 D6 D7 D8

1
1

1
0

COMPARATOR

1 1 X

RECEIVED ADDRESS D0 TO D7

PROGRAMMED ADDRESS

IN UART MODE 2 OR MODE 3 AND SM2_0 = 1:
 INTERRUPT IF REN_0=1, RB8_0=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS”
– WHEN OWN ADDRESS RECEIVED, CLEAR SM2_0 TO RECEIVE DATA BYTES
– WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2_0 TO WAIT FOR NEXT ADDRESS.

SU01332

Figure 18. UART Multiprocessor Communication, Automatic Address Recognition

INPUT/OUTPUT PORT PIN CONFIGURATION
Each I/O port pin can be user–configured to one of four modes:
Quasi–Bidirectional (essentially the same as standard 80C51 family
I/O ports), Open–Drain, Push–Pull, and Off (High Impedance). After
Reset, the default configuration is Quasi–Bidirectional.

I/O port pin configurations are determined by the settings in port
configuration SFRs. There are two SFRs for each port, called
PnCFGA and PnCFGB, where “n” is the port number. One bit in
each of the two SFRs relates to the setting for the corresponding
port pin, allowing any combination of the four modes to be mixed on
any port pins. For instance, the mode of port 1 pin 3 (P1.3) is
controlled by setting bit 3 (P1CFGA[3] and P1CFGB[3]).

Table 13 shows the configuration register settings for the four port
pin modes. The DC electrical characteristics of each mode may be
found in Table 19.

Table 13. Port Configuration Register Settings

PnCFGB PnCFGA Port Pin Mode

0 0 Open–Drain

0 1 Quasi–Bidirectional

1 0 Off (High Impedance)

1 1 Push–Pull

Note: Mode changes may cause glitches to occur during transitions.
When modifying both registers, WRITE instructions should be
carried out consecutively.

EXTERNAL BUS
If off chip code is selected (through the use of the EA/ pin), initial
code fetches will be done within a full 20–bit address space. The
External PROGRAM/DATA bus provides 16 bit width in a 20–bit
ADDRESS space.

RESET
Refer to Figure 19 for a recommended Reset circuit example.

VDD

R

C

RESET

XA

SOME TYPICAL VALUES FOR R AND C:
R = 100K, C = 1.0µF
R = 1.0M, C = 0.1µF

(ASSUMING THAT THE VDD RISE TIME IS 1ms OR LESS) SU00702

Figure 19. Recommended Reset Circuit

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 30

tPXIZ

ALE

PSEN

MULTIPLEXED
 ADDRESS AND DATA

UNMULTIPLEXED
ADDRESS

A1–A3

tAVLL

tPXIX

tLLAX

INSTR IN *

tLHLL

tPLPH

tPLAZ

tLLPL

tAVIVA

SU00946

tPLIV

A4–A19

tIXUA

* D0–D15

Figure 21. External PROGRAM Memory Read Cycle (ALE Cycle)

ALE

PSEN

MULTIPLEXED
 ADDRESS AND DATA

UNMULTIPLEXED
ADDRESS

A1–A3

INSTR IN *

SU01345

A4–A19

tAVIVB

* D0–D15

A1–A3

Figure 22. External PROGRAM Memory Read Cycle (Non-ALE Cycle)

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 31

ALE

MULTIPLEXED
ADDRESS
AND DATA

UNMULTIPLEXED
ADDRESS

RD

DATA IN *A4–A19

A1–A3

tLLRL tRLRH

tLLAX
tAVLL

tRHDX

tRHDZ

tAVDVA

tRLDV

SU01346

tDXUA

* D0–D15

Figure 23. External DATA Memory Read Cycle (ALE Cycle)

tUAWH

tLLAX

ALE

MULTIPLEXED
ADDRESS
AND DATA

UNMULTIPLEXED
ADDRESS

WRL or WRH

A4–A19 DATA OUT *

A1–A3

tLLWL tWLWH

tAVLL

tAVWL

tQVWX
tWHQX

SU01347* D0–D15

Figure 24. External DATA Memory Write Cycle

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 34

VDD

EA

RST

XTAL1

XTAL2

VSS

(NC)

SU00585A

VDD

VDD

Figure 33. I DD Test Condition, Power-Down Mode

Note: All other pins are disconnected. VDD=2V to 5.5V

EPROM CHARACTERISTICS
The XA–C37 is programmed by using a modified Improved
Quick–Pulse Programming algorithm. This algorithm is essentially
the same as that used by the later 80C51 family EPROM parts.
However, different pins are used for many programming functions.

Detailed EPROM programming information may be obtained from
the internet at www.philipsmcu.com/ftp.html.

The XA–C3 contains three signature bytes that can be read and
used by an EPROM programming system to identify the device. The

signature bytes identify the device as an XA–Gx manufactured by
Philips.

Security Bits
With none of the security bits programmed the code in the
PROGRAM memory can be verified. When only security bit 1 (see
Table 21) is programmed, MOVC instructions executed from
External PROGRAM memory are disabled from fetching code bytes
from the internal memory. All further programming of the EPROM is
disabled. When, in addition to the above, security bits 1 and 2 are
programmed, verify mode is disabled. When all three security bits
are programmed, all of the conditions above apply and all External
PROGRAM memory execution is disabled. (See Table 21).

Table 21. PROGRAM Security Bits

PROGRAM LOCK BITS

SB1 SB2 SB3 PROTECTION DESCRIPTION

1 U U U No PROGRAM Security features enabled.

2 P U U MOVC instructions executed from External PROGRAM memory are disabled from fetching code
bytes from internal memory and further programming of the EPROM is disabled.

3 P P U Same as 2, also verify is disabled.

4 P P P Same as 3, External execution is disabled. Internal DATA RAM is not accessible.

NOTES:
1. P – programmed. U – unprogrammed.
2. Any other combination of the security bits is not defined.

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 38

Location of Sample Point
The location of the sample point within a bit period is determined
according to the following:

one bit period

tSYNC–

SEG

tSEG1 tSEG2

Sample point

SU01339

� tSYNCSEG = tSCL

� tSEG1 = tSCL ∗ (8 ∗ tSEG1.3 + 4 ∗ tSEG1.2 + 2 ∗ tSEG1.1 +
tSEG1.0 + 1)

� tSEG2 = tSCL ∗ (4 ∗ tSEG2.2 + 2 ∗ tSEG2.1 + tSEG2.0 + 1)

where tSEG1.3 – tSEG1.0 and tSEG2.2 – tSEG2.0 are bits in
CANBTR.

Synchronization Jump Width
To compensate for phase shifts between clock oscillators of different
bus controllers, any bus controller must re–synchronize on any
relevant signal edge of the current transmission. The
Synchronization Jump Width defines the maximum number of CAN
System Clock cycles that a bit period may be shortened or
lengthened by one re–synchronization, and is given by the following
expression:
� tSJW = tSCL ∗ (2 ∗ SJW.1 + SJW.0 + 1)

where SJW.1 and SJW.0 are bits in CANBTR.

CANBTR: CAN Bus Timing Register
� Address: MMR base + 272h

� Access: Read, Write during reset mode only. Word access only.

� Reset value: 0000h

CANBTR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SAM TSEG2.2 TSEG2.1 TSEG2.0 TSEG1.3 TSEG1.2 TSEG1.1 TSEG1.0 SJW.1 SJW.0 BRP.5 BRP.4 BRP.3 BRP.2 BRP.1 BRP.0

CAN Command and Status Registers

Two Modes in CAN Core Operation
The CCB has two different modes of operation: Reset mode, and
Operation mode. On hardware reset, the CAN core is in Reset
mode, and the RR bit of CANCMR (CAN Command Register) will
be set. The User application would usually set up registers, etc.,
then put the CCB into Operation mode by clearing the RR bit.

While in Operation mode, the following conditions will cause the RR
bit to be set, putting the CCB back into Reset mode:
� Tx Buffer Underflow (TBUF)

� Bus Off

� Hardware reset

� Test mode (Refer to XA-C3 User Guide, Sections 2.2.2.1 and
2.7.1.2)

CANCMR: CAN Command Register
� Address: MMR base + 270h

� Access: Read/Write, no R/M/W, Byte or Word Access. Hardware
can set bit 0.

� Reset value: 01h

CANCMR
7 6 5 4 3 2 1 0

RXP ST LO Reserved SLPEN OC1 Reserved RR

RXP Rx Polarity, writable during reset mode only.
0 = non–inverted, 1 = inverted.

ST Self test, disable TxACK

LO Listen only

Reserved Reserved bit.

SLPEN CTL will go back to idle if no interrupt is
generated.

OC1 Output control for Tx pad. 0 = Push–Pull,
1 = Open Drain

Reserved Reserved bit

RR Reset Request.

CANSTR: CAN Status Register
� Address: MMR base + 271h

� Access: Read only, no write, no R/M/W. Byte access OK.
Hardware can set or clear bits 7 – 2.

� Reset value: 00h

CANSTR
7 6 5 4 3 2 1 0

BS EP EW TS RS SLPOK – –

BS Bus status
EP Error passive
EW Error warning
TS Transmit status

RS Receive status
SLPOK CAN status: no CAN bus activity and no

pending core interrupts

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 39

CAN/CTL MESSAGE HANDLER

Message Objects
The XA-C3 supports 32 independent Message Objects, each of
which can be either a transmit or a receive object. A receive object
can be associated either with a unique CAN ID, or with a set of CAN
IDs which share certain ID bit fields.

Each Message Object has access to its own block of data memory
space, which is known as the object’s message buffer. Both the size
and base address of an object’s message buffer is programmable.
However, all message buffers must reside in the same 64Kbyte
segment of data memory, as the contents of a single register
(MBXSR…Message Buffer and XRAM Segment Register) are used
to form the most significant byte of all 24–bit message buffer
addresses.

Each Message Object is associated with a set of eight MMRs
dedicated to that object. Some of these registers function differently
for Tx than they do for Rx objects. The names of the eight MMRs
are

1. MnMIDH – Message n Match ID High

2. MnMIDL – Message n Match ID Low

3. MnMSKH – Message n Mask High

4. MnMSKL – Message n Mask Low

5. MnCTL – Message n Control

6. MnBLR – Message n Buffer Location Register

7. MnBSZ – Message n Buffer Size

8. MnFCR – Message n Fragment Count Register

where n ranges from 0 to 31. In general, setting up a Message
Object involves configuring some or all of its eight MMRs.
Additionally, there are several MMRs whose bits control global
parameters that apply to all objects. Table 22 summarizes the eight
Message Object MMRs and their functions for receive and transmit
objects. Details can be found in the sections that follow.

Table 22. Message Object Register Functions for Tx and Rx
Message Object Register

 (n = 0 – 31)
Rx Function Tx Function Address

Offset

MnMIDH Match ID* [28:13] CAN ID [28:13] n0h

MnMIDL Match ID* [12:0][IDE][–][–] CAN ID [12:0][IDE][–][–] n2h

MnMSKH Mask [28:13] DLC n4h

MnMSKL Mask [12:0][–][–][–] Not used n6h

MnCTL Control Control n8h

MnBLR Buffer base address [a15:a0] Buffer base address [a15:a0] nAh

MnBSZ Buffer size Buffer size nCh

MnFCR Fragmentation count** Not used nEh

* After reception, the actual incoming Screener ID (without regard to Mask bits) will be stored by hardware in MnMIDH and MnMIDL for the
benefit of the User application.

** Typically written to only by hardware. Exceptions are the CANopen and OSEK protocols in which the User application must also initialize
this register.

Receive Message Objects and the Receive
Process
During reception, the XA-C3 will store the incoming message in a
temporary (13–byte) buffer. Once it is determined that a complete,
error–free CAN frame has been successfully received, the XA-C3
will initiate the acceptance filtering (“Mask and Match”) process. If
acceptance filtering produces a Match with an enabled receive
object’s Match ID, the message is stored by the DMA engine in that
object’s message buffer.

Acceptance Filtering
The XA-C3 will sequentially compare the 30–bit Screener ID
extracted from the incoming frame to the corresponding Match ID
values specified in the MnMIDH and MnMIDL registers for all
currently enabled receive objects. Any of the bits which are Masked
will be excluded from this comparison. Masking is accomplished on
an object–by–object basis by writing a logic ‘1’ in the desired bit
position(s) in the appropriate MnMSKH or MnMSKL register.
Any screener ID bits which are not intended to participate in
acceptance filtering for a particular object must be Masked by the
User (e.g., ID bits 0 & 1 for a Standard CAN frame, and possibly one
or both data bytes).
If the acceptance filter determines that there is a Match between the
incoming frame and any enabled receive object, the contents of the

frame will be stored, via DMA, into the designated message buffer
space associated with that object. If there is a Match to more than
one Message Object, the frame will be considered to have matched
the one with the lowest object number.
To summarize, Acceptance Filtering proceeds as follows:
� The “Screener ID” field is extracted from the incoming CAN

Frame. The Screener ID field is assembled differently for
Standard and Extended CAN Frames.

� The assembled Screener ID field is compared to the Match ID
fields of all enabled receive Message Objects.

� Any bits which an object has Masked (by having ‘1’ bits in its
Mask field) are not included in the comparison. That is, if there is
a ‘1’ in some bit position of an object’s Mask field, the
corresponding bit in the object’s Match ID field becomes a don’t
care (i.e., always yields a Match with the Screener ID).

� If filtering in this manner produces a Match, the frame will be
stored via the DMA engine in that object’s message buffer. If there
is a Match with more than one object, the frame will be considered
to have matched the one with the lowest object number.

Screener ID Field for Standard CAN Frame
The following table shows how the Screener ID field is assembled
from the incoming bits of a Standard CAN Frame, and how it is
compared to the Match ID and Mask fields of Object n.

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 43

The Frame Info byte contains the following bits:

FRAME INFO
7 6 5 4 3 2 1 0

IDE RTR SEM1 SEM0 DLC.3 DLC.2 DLC.1 DLC.0

The actual incoming Screener ID which caused the Match can be
retrieved from the MnMIDH and MnMIDL registers as shown in
Figure 39.

MNMIDH
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID.28 ID.27 ID.26 ID.25 ID.24 ID.23 ID.22 ID.21 ID.20 ID.19 ID.18 ID.17 ID.16 ID.15 ID.14 ID.13

MNMIDL
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ID.12 ID.11 ID.10 ID.9 ID.8 ID.7 ID.6 ID.5 ID.4 ID.3 ID.2 ID.1 ID.0 IDE – –

Figure 39. Retrieving the Screener ID for an Extended CAN Frame

Fragmented Message Assembly
Masking of the 11/29 bit CAN Identifier field by User software (but
only the actual bits of the Identifier itself!) is disallowed for any
Message Object which employs auto–Fragmentation assembly. The
identifier which resulted in the Match is, therefore, known
unambiguously and is not included in the receive buffer. If the
software needs access to this information, it can retrieve it from the
appropriate MnMIDH and MnMIDL registers.

As subsequent frames of a Fragmented message are received, the
new data bytes are appended to the end of the previously received
packets. This process continues until a complete multi–frame
message has been received and stored.

If an object is enabled with FRAG = 1, under protocols DeviceNet,
CANopen, and OSEK (Prtcl1 Prtcl0 ≠ 00), the first CAN frame data
byte is used to encode Fragmentation information only. That byte
will not be stored in the buffer area. The storage will start with the
second data byte (Data Byte 2) and proceed to the end of the frame.
See Figure 40.

Byte count Direction of increasing
addressData Byte 2 address

Data Byte 3

…
Data Byte DLC

Data Byte 2 (next)

Data Byte 3 (next)

…

Figure 40. Memory Image for Fragmented CTL Messages
(FRAG = 1 and Prtcl1 Prtcl0 ≠ 00)

If an object is enabled with FRAG = 1, with CAN as the system
protocol (Prtcl1 Prtcl0 = 00), then CAN frames are stored
sequentially in that object’s message buffer using the format shown
in . Also, if [Prtcl1 Prtcl0] = 00, Rx Buffer Full is defined as “less than
9 bytes remaining” after storage of a complete CAN frame. When
the DMA pointer wraps around, it will be reset to offset ‘1’ in the
buffer, not offset ‘0’, and there will be no Byte Count written.

FrameInfo Direction of increasing
addressData Byte 1 address

Data Byte 2

…
Data Byte DLC

FrameInfo (next)

Data Byte 1 (next)

Data Byte 2 (next)
… …Direction of increasing

dd
Direction of increasing

dd
Figure 41. Memory Image for CAN Frame Buffering (FRAG = 1

and Prtcl1 Prtcl0 = 00)

During buffer access, the DMA will generate addresses
automatically starting from the base location of the buffer. If the DMA
has reached the top of the buffer, but the message has not been
completely transferred to memory yet, the DMA will wrap around by
generating addresses starting from the bottom of the buffer again.
Some time before this happens, a warning interrupt will be
generated so that the User application can take the necessary
action to prevent data loss.

The top location of the buffer is determined by the size of the buffer
as specified in MnBSZ.

The XA-C3 automatically receives, checks and reassembles up to
32 Fragmented messages automatically. When the FRAG bit is set
on a particular message, the message handler hardware will use the
Fragmentation information contained in Data Byte 1 of each frame.

To enable automatic Fragmented message handling for a certain
Message Object, the User is responsible for setting the FRAG bit in
the object’s MnCTL register.

The message handler will keep track of the current address location
and the number of bytes of each CTL message as it is being
assembled in the designated message buffer location. After an “End
of Message” is decoded, the message handler will finish moving the
complete message and the byte count into the message buffer via

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 45

Table 24. Format for storing the CANopen Acknowledge byte
7 6 5 4 3 2 1 0

Byte offset 0 scs t = d.c. X X X X

Byte offset 1
Byte offset 2

Byte offset 3
Byte offset 4 Not used in the protocol

Byte offset 5
Byte offset 6

Byte offset 7

MnFCR: Message n Fragmentation Count Register
� Address: MMR base + nEh

� Access: Read, write. Byte or word access.

� Reset Value: 00xxxxxxb (unused bits are always read as ‘0’)

MNFCR
7 6 5 4 3 2 1 0

– – count

An object’s Fragmentation Count Register need not be configured
by the User in DeviceNet systems. However, in CANopen and
OSEK systems, the User must initialize this register.
GCTL: Global Control Byte (applies to all objects)

� Address: MMR base + 27Eh

� Access: Read, write, R/M/W, byte or word

� Reset Value: 00h

GCTL
7 6 5 4 3 2 1 0

– – – – Auto_Ack Pre_Arb Prtcl1 Prtcl0

Auto_Ack Enables automatic acknowledge for CANopen.
0 = disable, 1 = enable.

Pre_Arb Establishes the transmit pre–arbitration
scheme. 0 = Pre–arbitration based on CAN ID,
object number is secondary tie–breaker. 1 =
Pre–arbitration based on object number only.

[Prtcl1 Prtcl0] Indicates CTL protocol of the system (if any).

00 = CAN
01 = DeviceNet
10 = CANopen
11 = OSEK

Transmit Message Objects and the Transmit
Process
In order to transmit a message, the XA application program needs to
first assemble the complete message and store it in the message
buffer area for that Message Object (the address of the message
buffer would have been previously programmed into the object’s
MnBLR register). The header (CAN ID and Frame Information) must
be written to the object’s MnMIDH, MnMIDL, and MnMSKH registers
as appropriate.

When the above is done, the Application is ready to transmit the
message. To initiate a transmission, the object enable bit (OBJ_EN)
must be set (except when transmitting an Auto–Acknowledge frame
in CANopen). This will allow this ready–to–transmit message to
participate in the pre–arbitration process.

If more than one message is ready to be transmitted. A so–called
pre–arbitration process will be performed to determine which
Message Object will be selected for transmission. There are two
pre–arbitration policies which the User can choose between by
setting or clearing the Pre_Arb bit in the GCTL register.

After a Tx Message Complete, the Tx Pre–Arbitration process is
“reset”, and begins again. Also, if the winning Message Object
subsequently loses arbitration on the CAN bus, the Tx
Pre–Arbitration process gets reset and begins again.

If there is only one transmit message whose OBJ_EN bit is set, it
will be selected regardless of the pre–arbitration policy.

Pre–Arbitration Based on Priority (default mode)
This mode is selected by writing ‘0’ to the Pre_Arb bit in GCTL[2].

The filter state machine goes through all transmit Message Objects
for which the OBJ_EN bit is set. The message with the highest
priority as defined by the CAN arbitration ID field will be selected
for transmission. If more than one pending transmit message share
the same CAN identifier, then secondary priority will be based on
XA-C3 Message Object numbers, with the lowest numbered object
winning access.

The winning message will then be output onto the CAN bus where it
will compete for access with other transmitting nodes.

Pre–Arbitration Based on Object Number
As an alternative, the User may select to base pre–arbitration on
Message Object number alone. This mode is selected by writing ‘1’
to the Pre_Arb bit in GCTL[2].

The pre–arbitration state machine will go through the Message
Objects sequentially, starting with object number 0, and select the
first encountered transmit Message Object, with OBJ_EN set to ‘1’,
for transmission. In other words, the order in which the messages
objects are examined in the pre–arbitration process is by increasing
object number n, where n = 0…31. Each time pre–arbitration begins,
the enabled message with the lowest object number will be selected

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 46

for transmission, regardless of the priority level represented by its
CAN identifier.

Message Retrieval
Once a Message Object is selected for transmission, the DMA will
begin retrieving the data from the message buffer area in memory
and transferring the data to the CAN core block for transmission.

The same DMA engine and address pointer logic is used for
message retrieval of transmit messages as for message storage of
receive messages. Message buffer location and size information is
specified in the same way. Please refer to the section entitled
Message Storage on page 41 for a complete description.

When a message is retrieved, it will be written to the CCB
sequentially. During this process, the DMA will keep requesting the
bus, reading from memory and writing to the CCB.

To prepare a message for transmission, the User application is
required to put the message in the appropriate object’s message
buffer area in the format shown below:

Data Byte 0 Direction of increasing
addressData Byte 1 address

Data Byte 2

Data Byte 3

Data Byte 4

Data Byte 5

Data Byte 6

Data Byte 7

Please observe that the CAN identifier field and frame info must not
be included in the transmit buffer. The transmit logic retrieves this
information from the appropriate MnMIDH, MnMIDL, and MnMSKH
registers. The format for storing the frame information in the
MnMSKH register is shown in Figure 42.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x DLC.3 DLS.2 DLC.1 DLC.0

Figure 42. Format for Storing the Tx Frame Info in MnMSKH

Transmission of Fragmented Messages
The XA-C3 does not handle the transmission of Fragmented
messages in hardware. It is the User’s responsibility to write each
frame of a Fragmented message to the transmit buffer, enable the
object for transmission, and wait for a completion before writing the
next frame to the message buffer. The User application must
therefore transmit multiple frames one by one until the whole
message is transmitted.
However, by using multiple Tx objects whose object numbers
increase sequentially, and whose CAN IDs have been configured
identically, several frames of a Fragmented message can be
queued–up and enabled, and will be transmitted in order.

RTR Handling
This section describes how to receive or transmit Remote Transmit
Request (RTR) frames.

Receiving an RTR Frame
1. The software must setup an Rx object with the RTR bit in

MnCTL[0] set to ‘1’.

2. An RTR frame is received when the CAN ID Matches that of the
enabled receive object whose RTR bit set to ‘1’.

3. If interrupt is enabled for that Message Object, an interrupt will
be generated upon the RTR message reception.

4. The software would usually have a transmit object available with
the same ID. Upon receiving an RTR frame, the software should
update the data for the corresponding transmit object and send it
out.

Transmitting an RTR Frame
1. The software must setup a Tx object with the RTR bit in

MnCTL[0] set to ‘1’.

2. The software sets the object enable bit (OBJ_EN) which will
enable the object to participate in pre–arbitration.

3. After the object wins pre–arbitration, an RTR frame will be sent
out with a ‘1’ in the RTR bit position.

4. At the end of a successful RTR transmission, the OBJ_EN bit will
be cleared. An interrupt could be generated if it is enabled.

5. It is possible for an incoming message, with CAN ID Matching
that of the transmitting RTR object, to arrive while the
transmitting RTR object is in pre–arbitration, or even during
transmission. In this case, the OBJ_EN bit of the transmitting
RTR object will be cleared to ‘0’, but no interrupt will be
generated.

Data integrity issues
The data stored in the message buffer area can be accessed both
by the CPU and by the DMA engine. Measures have been taken to
ensure that the application does not read data from an object as it is
being updated by the DMA. This is especially important if receive
interrupts have been disabled or have not been responded to before
a new message could have arrived. The general principle is,
� When DMA is accessing the buffer, the CPU should NOT attempt

to read from and write to the buffer.

� When CPU is accessing the buffer, the DMA is still allowed to
access the buffer. When this happens the CPU should be able to
detect and abandon the data read.

Using the Semaphore Bits, SEM1 and SEM0
A three–state semaphore is used to signal whether a given buffer is:
1. Ready for CPU to read

2. Being accessed by DMA (therefore not ready for CPU read)

3. Being read by CPU

The semaphore is encoded by two semaphore bits, SEM1 and
SEM0, which are in bit positions [5] and [4] of the Frame Info byte,
the first byte of the receive buffer.

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 50

If the Receive Pre–Buffer overflows, the PBO status flag in
FESTR[5] will be set, generating a Frame Error interrupt, if enabled.
The PBO status flag is cleared by writing ‘1’ to the flag’s bit position.

Since this error will be generated before any acceptance filtering has
been performed, there will be no Message Object number
associated with the error (hence its inclusion under the category of
frame error). Note that the new message being ignored may be
intended for some other device on the CAN bus. This error should
never occur unless there is a serious system–design problem (e.g.,
an off–chip device grabs the bus and fails to de–assert “WAIT” for
an extended period).

Arbitration Lost
During transmission, arbitration on the CAN bus can be lost to a
competing device with a higher priority CAN Identifier. In this case,
the ARBLST status flag in FESTR[4] will be set, generating a Frame
Error interrupt if enabled. The ARBLST status flag is cleared by
executing a read of the Arbitration Lost Capture Register.

The bit position in the CAN Identifier at which arbitration was lost will
be encoded and stored in the Arbitration Lost Capture Register
(ALCR) for the benefit of the User application. The ALCR must be
read by the CPU in order to be reactivated for capturing the next
arbitration lost code, as well as to clear the ARBLST status flag. The
bit position in the CAN ID is encoded and stored in the 5–bit field
ALCR[4:0]. ALCR[7:5] are reserved, and are always read as zeros.
The 5–bit number latched into ALCR is interpreted according to
Table 26.
Table 26. Arbitration Lost Codes

ALCR[4:0] Interpretation
0 Arbitration lost in ID28

1 Arbitration lost in ID27

2 Arbitration lost in ID26

... ...

10 Arbitration lost in ID18

11 Arbitration lost in SRR bit

12 Arbitration lost in IDE bit

13 Arbitration lost in ID17 (Extended Frame only)

... ...

30 Arbitration lost in ID0 (Extended Frame only)

31 Arbitration lost in RTR bit (Extended Frame only)

Error Warning
The EW bit in CANSTR[5] reports the error status of the core, with
regard to the Error Warning Limit defined by the User. If EW is ‘0’,
then both the Tx and Rx Error Counters contain values less than
that stored in the Error Warning Limit Register. If either counter
reaches or exceeds the value stored in the EWLR register, then the
EW bit will be set to ‘1’. Subsequently if both counters decrement
below the value stored in the EWLR register, the EW bit will be
cleared to ‘0’.

The ERRW status flag in FESTR[1] will be set each time the EW bit
in CANSTR[5] changes state, generating a Frame Error interrupt, if
enabled. That is, both the 0–to–1 and the 1–to–0 transitions of the
EW bit will cause the ERRW status flag to be set. The ERRW status
flag is cleared by writing ‘1’ to the flag’s bit position.

Error Passive
The EP bit in CANSTR[6] reflects the Error Passive status of the
core. If either the Tx or Rx Error Counter equals or exceeds the
predefined value 128d, the EP bit will be set to ‘1’. Subsequently, if

both counters decrement below 128d, the EP bit will be cleared to
‘0’.

Both 0–to–1 and 1–to–0 transitions of the EP bit will cause the
ERRP status flag to be set, generating a Frame Error interrupt if
enabled. The ERRP status flag is cleared by writing ‘1’ to the flag’s
bit position in FESTR[0].

Bus Off
The BS (Bus Status) bit in CANSTR[7] reflects the Bus–On and
Bus–Off status of the core. BS = 0 means the CAN core is currently
involved in bus activity (Bus–On), while BS = 1 means it is not
(Bus–Off).

When the Transmit Error Counter exceeds the predefined value
255d, the BS bit is set to ‘1’ (Bus–Off). In addition, the RR bit is set
to ‘1’ (putting the CAN Core into Reset mode), and the BOFF status
flag is set, generating a Frame Error interrupt if enabled. The
Transmit Error Counter is preset to 127d, and the Receive Error
Counter is cleared to 00h. The CAN Core will remain in this state
until it is returned to Normal mode by clearing the RR bit.

Once the RR bit is cleared, the Tx Error Counter will decrement
once for each occurrence of the Bus–Free signal (11 consecutive
recessive bits). After 128 occurrences of Bus–Free, the BS bit is
cleared (Bus–On). Again, the BOFF status flag is set (generating
another Frame Error interrupt if enabled). At this point, both the Tx
and Rx Error counters will contain the value 00h. At any time during
the Bus–Off condition (BS = 1), the CPU can determine the progress
of the Bus–Off recovery by reading the contents of the Tx Error
Counter.

During Bus–Off, a return to Bus–On can be expedited under
software control. If BS = 1, writing a value between 0 and 254 to the
Tx Error Counter and then clearing the RR bit will cause the BS bit
to be cleared after only 1 occurrence of the Bus–Free signal. As in
the case above, on the 1–to–0 transition of the BS bit, the BOFF
status flag will be set, generating another Frame Error interrupt if
enabled.

The CPU can also initiate a Bus–Off condition, if the CAN Core is
first put into Reset mode by setting RR = 1. Next, the value 255 is
written to the Tx Error Counter, and the RR bit is cleared. With the
core back in Normal mode, the Tx Error Counter contents are
interpreted, and the Bus–Off condition proceeds as described
above, exactly as if it had been caused by bus errors.

Note that the Tx Error Counter can only be written to when the CAN
Core is in Reset mode, and that both 0–to–1 and 1–to–0 transitions
of the BS bit will cause the BOFF status flag to be set, generating
Frame Error interrupts if enabled.

CAN Interrupt Registers

CANINTFLG (CAN Interrupt Flag Register)
� Address: MMR base + 228h

� Access: Read/Clear, byte or word

� Reset Value: 00h

CANINTFLG
7 6 5 4 3 2 1 0
– – – FERIF MERIF RBFIF TMCIF RMCIF

FERIF Frame Error Interrupt Flag (this bit is
Read–Only, and must be cleared in FESTR)

Philips Semiconductors Preliminary specification

XA-C3
XA 16-bit microcontroller family
32K/1024 OTP CAN transport layer controller
1 UART, 1 SPI Port, CAN 2.0B, 32 CAN ID filters, transport layer co-processor

2000 Jan 25 60

PLCC44: plastic leaded chip carrier; 44 leads SOT187-2

