

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	8/16-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	32
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ia186em-pqf100i-r-03

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CONVENTIONS

Arial Bold Designates headings, figure captions, and table captions.

Blue Designates hyperlinks (PDF copy only).

ItalicsDesignates emphasis or caution related to nearby information. Italics is also
used to designate variables, refer to related documents, and to differentiate
terms from other common words (e.g., "During refresh cycles, the *a* and *ad*
busses may not have the same address during the address phase of the *ad* bus
cycle." "The *hold* latency time [time between the *hold* and hlda] depends on
the current processor activity when the hold is received.").

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 12 of 146

Pin	Name
1	ad0
2	ad8
	ad1
3 4	ad9
5	ad2
6	ad10
7	ad3
8	ad11
9	ad4
10	ad12
11	ad5
12	gnd
13	ad13
14	ad6
15	V _{cc}
16	ad14
17	ad7
18	ad15
19	s6/clkdiv2/pio29
20	uzi_n/pio26
21	txd
22	rxd
23	sdata/pio21
24	sden1/pio23
25	sden0/pio22
26	sclk/pio20
27	bhe_n/aden_n
28	wr_n
29	rd_n
30	ale
31	ardy
32	s2_n
33	s1_n
34	s0_n

Table 1.	IA186EM	TQFP	Numeric	Pin	Listing
----------	---------	------	---------	-----	---------

Pin	Name
35	gnd
36	x1
37	x2
38	V _{cc}
39	clkouta
40	clkoutb
41	gnd
42	a19/pio9
43	a18/pio8
44	V _{cc}
45	a17/pio7
46	a16
47	a15
48	a14
49	a13
50	a12
51	a11
52	a10
53	a9
54	a8
55	а7
56	a6
57	а5
58	a4
59	a3
60	a2
61	V _{cc}
62	a1
63	a0
64	gnd
65	whb_n
66	wlb_n
67	hlda

Pin	Name
68	hold
69	srdy/pio6
70	nmi
71	dt/r_n/pio4
72	den_n/pio5
73	mcs0_n/pio14
74	mcs1_n/pio15
75	int4/pio30
76	int3/inta1_n/irq
77	int2/inta0_n/pio31
78	int1/select_n
79	int0
80	ucs_n/once1_n
81	lcs_n/once0_n
82	pcs6_n/a2/pio2
83	pcs5_n/a1/pio3
84	V _{cc}
85	pcs3_n/pio19
86	pcs2_n/pio18
87	gnd
88	pcs1_n/pio17
89	pcs0_n/pio16
90	V _{cc}
91	mcs2_n/pio24
92	mcs3_n/rfsh_n/pio25
93	gnd
94	res_n
95	tmrin1/pio0
96	tmrout1/pio1
97	tmrout0/pio10
98	tmrin0/pio11
99	drq1/pio13
100	drq0/pio12

Name	Pin	Name	Pin	Name	Pin
a0	40	ao13	90	pcs3_n/rts1_n/rtr1_n/pio19	62
a1	39	ao14	93	pcs5_n/a1/pio3	60
a2	37	ao15	95	pcs6_n/a2/pio2	59
a3	36	ardy	8	rd_n	6
a4	35	clkouta	16	res_n	71
a5	34	clkoutb	17	rfsh2_n/aden_n	4
a6	33	den_n/ds_n/pio5	49	rxd/pio28	99
a7	32	drq0/pio12	77	s0_n	11
a8	31	drq1/pio13	76	s1_n	10
a9	30	dt/r_n/pio4	48	s2_n	9
a10	29	gnd	12	s6/lock_n/clkdiv2/pio29	96
a11	28	gnd	18	sclk/pio20	3
a12	27	gnd	41	sdata/pio21	100
a13	26	gnd	42	sden0/pio22	2
a14	25	gnd	64	sden1/pio23	1
a15	24	gnd	70	srdy/pio6	46
a16	23	gnd	89	tmrin0/pio11	75
a17/pio7	22	hlda	44	tmrin1/pio0	72
a18/pio8	20	hold	45	tmrout0/pio10	74
a19/pio9	19	int0	56	tmrout1/pio1	73
ad0	78	int1/select_n	55	txd/pio27	98
ad1	80	int2/inta0_n/pwd/pio31	54	ucs_n/once1_n	57
ad2	82	int3/inta1_n/irq	53	uzi_n/pio26	97
ad3	84	int4/pio30	52	V _{cc}	15
ad4	86	lcs_n/once0_n	58	V _{cc}	21
ad5	88	mcs0_n/pio14	50	V _{cc}	38
ad6	91	mcs1_n/pio15	51	V _{cc}	61
ad7	94	mcs2_n/pio24	68	V _{cc}	67
ale	7	mcs3_n/rfsh_n/pio25	69	V _{cc}	92
ao8	79	nmi	47	wb_n	42
ao9	81	pcs0_n/pio16	66	wr_n	5
ao10	00	pcs1_n/pio17	65	x1	13
	83	p001_1/p1017			
ao11	83	pcs2_n/cts1_n/enrx1_n/pio18	63	x2	14

Table 8. IA188EM PQFP Alphabetic Pin Listing

The select_n pin provides an indication to the microcontroller that an interrupt type has been placed on the address/data bus when the internal Interrupt Control Unit is slaved to an external interrupt controller. Before this can occur, however, the int0 pin must have already indicated an interrupt request has occurred.

2.2.18 int2/inta0_n/pio31—Maskable Interrupt Request 2 (asynchronous input)/Interrupt Acknowledge 0 (synchronous output)

The int2 pin provides an indication that an interrupt request has occurred, and provided that int2 is not masked, program execution will continue at the location specified by the int2 vector in the interrupt vector table. Although interrupt requests are asynchronous, they are synchronized internally and may be edge- or level-triggered. To ensure that it is recognized, the assertion of the interrupt request must be maintained until it is handled. When int0 is configured to be in cascade mode, int2 changes its function to inta0_n.

The inta0_n function indicates to the system that the microcontroller requires an interrupt type in response to the interrupt request int0 when the microcontroller's Interrupt Control Unit is in cascade mode. The peripheral device that issued the interrupt must provide the interrupt type.

2.2.19 int3/inta1_n/irq—Maskable Interrupt Request 3 (asynchronous input)/Interrupt Acknowledge 1 (synchronous output)/Interrupt Acknowledge (synchronous output)

The int3 pin provides an indication that an interrupt request has occurred. If int3 is not masked, program execution will continue at the location specified by the int3 vector in the interrupt vector table. Although interrupt requests are asynchronous, they are synchronized internally and may be edge- or level-triggered. To ensure that it is recognized, the assertion of the interrupt request must be maintained until it is handled. When int1 is configured to be in cascade mode, int3 changes its function to inta1_n.

The inta1_n function indicates to the system that the microcontroller requires an interrupt type in response to the interrupt request int1 when the microcontroller's Interrupt Control Unit is in cascade mode. The peripheral device that issued the interrupt must provide the interrupt type.

The signal on irq allows the microcontroller to output an interrupt request to the external master interrupt controller when the Interrupt Control Unit of the microcontroller is in slave mode.

2.2.20 int4/pio30—Maskable Interrupt Request 4 (asynchronous input)

The int4 pin provides an indication that an interrupt request has occurred, and provided that int4 is not masked, program execution will continue at the location specified by the int4 vector in the interrupt vector table. Although interrupt requests are asynchronous, they are synchronized internally and may be edge- or level-triggered. To ensure that it is recognized, the assertion of the interrupt request must be maintained until it is handled.

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 34 of 146

2.2.33 s2_n-s0_n—Bus Cycle Status (synchronous outputs with tristate)

These three signals inform the system of the type of bus cycle in progress. The s2_n may be used to indicate whether the current access is to memory or I/O, and s1_n may be used to indicate whether data is being transmitted or received. These signals are tristated during bus hold and hold acknowledge. The coding for these pins is presented in Table 10.

s2_n	s1_n	s0_n	Bus Cycle
0	0	0	Interrupt acknowledge
0	0	1	Read data from I/O
0	1	0	Write data to I/O
0	1	1	Halt
1	0	0	Instruction fetch
1	0	1	Read data from memory
1	1	0	Write data to memory
1	1	1	None (passive)

Table 10. Bus Cycle Types for s2_n, s1_n, and s0_n

2.2.34 s6/clkdiv2_n/pio29—Bus Cycle Status Bit 6 (synchronous output)/Clock Divide by 2 (input with internal pull-up)

The s6 signal is high during the second and remaining cycle periods (i.e., $t_2 - t_4$), indicating that a DMA-initiated bus cycle is underway. The s6 is tristated during bus hold or reset.

If the clkdiv2_n signal is held low during power-on-reset, the microcontroller enters clock divide-by-2 mode. In this mode, the PLL is disabled and the processor receives the external clock divided by 2. Sampling of this pin occurs on the rising edge of res_n.

Note: If this pin is used as pio29 and configured as an input, care should be taken that it is not driven low during POR.

Because this pin has an internal pull-up, it is not necessary to drive the pin high even though it defaults to an input PIO.

2.2.35 sclk—Serial Clock (synchronous outputs with tristate)

Because this pin provides a slave device with a synchronous serial clock it permits synchronization of the transmit and receive data exchanges between the slave and the microcontroller. The sclk is the result of dividing the internal clock by 2, 4, 8, or 16, depending on the contents of the Synchronous Serial Control (SSC) register Bits [5–4]. Accessing either the SSR or SSD registers activates the sclk for eight cycles. When sclk is not active, the microcontroller hold is high.

4.2 Clock and Power Management

A phase-lock-loop (PLL) and a second programmable system clock output (clkoutb) are included in the clock and power management unit. The internal clock is the same frequency as the crystal but with a duty cycle of 45% to 55 %, as a worst case, generated by the PLL obviating the need for an x2 external clock. A POR resets the PLL (see Figure 8).

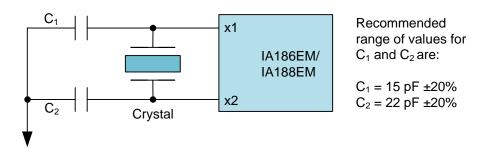


Figure 8. Crystal Configuration

4.3 System Clocks

If required, the internal oscillator can be driven by an external clock source that should be connected to x_1 , leaving x_2 unconnected.

The clock outputs clkouta and clkoutb may be enabled or disabled individually (Power-Save Control register (PDCON) Bits [11–8]). These clock control bits allow one clock output to run at PLL frequency and the other to run at the power-save frequency (see Figure 9).

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 45 of 146

4.16.1 Interrupt Types

Table 14 presents interrupt names, types, vector table address, End-of-Interrupt (EOI) type, overall priority, and related instructions.

Table 14. Interrupt Types

	Interrupt	Vector Table		Overall	Related
Interrupt Name	Туре	Address	EOI Type	Priority	Instructions
Divide Error Exception ^a	00h	00h	NA	1	DIV, IDIV
Trace Interrupt ^b	01h	04h	NA	1A	All
Non-maskable Interrupt (NMI)	02h	08h	NA	1B	-
Breakpoint Interrupt ^a	03h	0ch	NA	1	INT3
INT0 Detected Overflow Exception ^a	04h	10h	NA	1	INT0
Array Bounds Exception ^a	05h	14h	NA	1	BOUND
Unused Opcode Exception ^a	06h	18h	NA	1	Undefined Opcodes
ESC Opcode Exception ^{a,c}	07h	1ch	NA	1	ESC Opcodes
Timer 0 Interrupt ^{d,e}	08h	20h	08h	2A	-
Timer 1 Interrupt ^{d,e}	12h	48h	08h	2B	-
Timer 2 Interrupt ^{d,e}	13h	4ch	08h	2C	-
Reserved	09h	24h	_	-	-
DMA 0 Interrupt ^e	0ah	28h	0ah	3	_
DMA 1 Interrupt ^e	0bh	2ch	0bh	4	-
INT0 Interrupt	0ch	30h	0ch	5	-
INT1 Interrupt	0dh	34h	0dh	6	-
INT2 Interrupt	0eh	38h	0eh	7	-
INT3 Interrupt	0fh	3ch	0fh	8	-
INT4 Interrupt ^f	10h	40h	10h	9	-
Watchdog Timer Interrupt ^f	11h	44h	11h	9	—
Asynchronous Serial Port Interrupt ^f	14h	50h	14h	9	-
Reserved	15h–1fh	54h–7ch	-	-	_

Note: If the priority levels are not changed, the default priority level will be used for the interrupt sources. ^aInstruction execution generates interrupts.

^bPerformed in the same manner as for the 8086 and 8088.

^cAn ESC opcode causes a trap.

^dBecause only one IRQ is generated for the three timers, they share priority level with other sources. The timers have an interrupt priority order among themselves (2A > 2B > 2C).

^eThese interrupt types are programmable in slave mode.

^fNot available in slave mode.

	Accession d Din	Power-On			Power-On
PIO No.	Associated Pin	Reset Status	Associated Pin	PIO No. 7	Reset Status
0	tmrin1	Input with pull-up	a17	-	Normal operation ^a
1	tmrout1	Input with pull-down	a18	8	Normal operation ^a
2	pcs6_n/a2	Input with pull-up	a19	9	Normal operation ^a
3	pcs5_n/a1	Normal operation ^a	den_n/ds_n	5	Normal operation ^a
4	dt/r_n	Normal operation ^a	drq0	12	Input with pull-up
5	den_n	Normal operation ^a	drq1	13	Input with pull-up
6	srdy	Normal operation ^a	dt/r_n	4	Normal operation ^a
7 ^b	a17	Normal operation ^a	int2/	31	Input with pull-up
8 ^b	a18	Normal operation ^a	int4	30	Input with pull-up
9 ^b	a19	Normal operation ^a	mcs0_n	14	Input with pull-up
10	tmrout0	Input with pull-down	mcs1_n	15	Input with pull-up
11	tmrin0	Input with pull-up	mcs2_n	24	Input with pull-up
12	drq0	Input with pull-up	mcs3_n/rfsh_n	25	Input with pull-up
13	drq1	Input with pull-up	pcs0_n	16	Input with pull-up
14	mcs0_n	Input with pull-up	pcs1_n	17	Input with pull-up
15	mcs1_n	Input with pull-up	pcs2_n	18	Input with pull-up
16	pcs0_n	Input with pull-up	pcs3_n	19	Input with pull-up
17	pcs1_n	Input with pull-up	pcs5_n/a1	3	Input with pull-up
18	pcs2_n	Input with pull-up	pcs6_n/a2	2	Input with pull-up
19	pcs3_n	Input with pull-up	rxd	28	Input with pull-up
20	sclk	Input with pull-up	s6/clkdiv2	29	Input with pull-up ^{b,c}
21	sdata	Input with pull-up	sclk	20	Input with pull-up
22	sden0	Input with pull-up	sdata	21	Input with pull-up
23	sden1	Input with pull-up	sden0	22	Input with pull-up
24	mcs2_n	Input with pull-up	sden1	23	Input with pull-up
25	mcs3_n/rfsh_n	Input with pull-up	srdy	6	Normal operation ^d
26 ^{b,c}	uzi_n	Input with pull-up	tmrin0	11	Input with pull-up
27	txd	Input with pull-up	tmrin1	0	Input with pull-up
28	rxd	Input with pull-up	tmrout0	10	Input with pull-down
29 ^{b,c}	s6/clkdiv2	Input with pull-up	tmrout1	1	Input with pull-down
30	int4	Input with pull-up	txd	27	Input with pull-up
31	int2	Input with pull-up	uzi_n	26	Input with pull-up

Table 15. Default Status of PIO Pins at Reset

^aInput with pullup option available when used as PIO.

^bEmulators use these pins and also a15–a0, ad15–ad0 (IA186EM), ale, bhe_n (IA186EM), clkouta, nmi, res_n, and s2_n-s0_n.

^cIf bhe_n/aden_n (IA186EM) or rfsh_n/aden_n (IA188EM) is held low during POR, these pins will revert to normal operation. ^dInput with pulldown option available when used as PIO.

- Bit [5]— $P \rightarrow Relative Priority$. When set to 1, selects high priority for this channel relative to the other channel during simultaneous transfers.
- Bit [4]—TDRQ → Timer 2 Synchronization. When set to 1, enables DMA requests from Timer 2. When 0, disables them.
- Bit [3]—Reserved.
- Bit [2]—CHG → Change Start Bit. This bit must be set to 1 to allow modification of the ST bit during a write. During a write, when CHG is set to 0, ST is not changed when writing the control word. The result of reading this bit is always 0.
- Bit [1]—ST → Start/Stop DMA Channel. When set to 1, the DMA channel is started. The CHG bit must be set to 1 for this bit to be modified and only during the same register write. A processor reset causes this bit to be set to 0.
- Bit [0]—Bn/W → Byte/Word Select. When set to 1, word transfers are selected. When 0, byte transfers are selected.

Note: Word transfers are not supported if the chip selects are programmed for 8-bit transfers. The IA188EM does not support word transfers

5.1.9 D1TC (0d8h) and D0TC (0c8h)

DMA Transfer Count Registers. The DMA Transfer Count registers are maintained by each DMA channel. They are decremented after each DMA cycle. The state of the TC bit in the DMA control register has no influence on this activity. But, if unsynchronized transfers are programmed or if the TC bit in the DMA control word is set, DMA activity ceases when the transfer count register reaches 0. The D0TC and D1TC registers are undefined at reset (see Table 25).

Table 25. DMA Transfer Count Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	TC15–TC0														

• Bits [15–0]—TC15–TC0 → DMA Transfer Count contains the transfer count for the respective DMA channel. Its value is decremented after each transfer.

5.1.10 D1DSTH (0d6h) and D0DSTH (0c6h)

The DMA DeSTination Address High Register. The 20-bit destination address consists of these 4 bits combined with the 16 bits of the respective Destination Address Low Register. A DMA transfer requires that two complete 16-bit registers (high and low registers) be used for both the source and destination addresses of each DMA channel involved. These four registers must be

The value of the PIOMODE1 register is 0000h at reset (see Table 48).

Table 48. PMODE1

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PMODE31–PMODE16															

- Bits [15–0]—PMODE15–PMODE0 PIO Mode 0 Bits → For each bit, if the value is 1, the pin is configured as an input. If 0, an output. The values of these bits correspond to those in the PIO data registers and PIO Mode registers.
- Bits [15–0]—PMODE31–PMODE16 PIO Mode 1 Bits → For each bit, if the value is 1, the pin is configured as an input. If 0, an output. The values of these bits correspond to those in the PIO data registers and PIO Mode registers.

5.1.27 T1CON (05eh) and T0CON (056h)

Timer 0 and Timer 1 Mode and CONtrol Registers. These registers control the operation of Timer 0 and Timer 1, respectively. The value of the T0CON and T1CON registers is 0000h at reset (see Table 49).

Table 49. Timer 0 and Timer 1 Mode and Control Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EN	INHn	INT	RIU		Reserved						RTG	Ρ	EXT	ALT	CONT

- Bit [15]—EN Enable Bit → The timer is enabled when the EN bit is 1. The timer count is inhibited when the EN bit is 0. This bit is write-only and can only be written if the INHn bit (Bit [14]) is set to 1 in the same operation.
- Bit [14]—INHn Inhibit Bit → Gates the setting of the enable (EN) bit. This bit must be set to 1 in the same write operation that sets the enable (EN) bit. Otherwise, the EN bit will not be changed. This bit always reads 0.
- Bit [13]—INT Interrupt Bit → An interrupt request is generated when the Count register reaches its maximum, MC = 1, by setting the INT bit to 1. In dual maxcount mode, an interrupt request is generated when the count register reaches the value in Maxcount A or Maxcount B. No interrupt requests are generated if this bit is set to 0. If an interrupt request is generated, and the enable bit is then cleared before the interrupt is serviced, the interrupt request will remain.
- Bit [12]—RIU Register in Use Bit → This bit is set to 1 when the Maxcount Register B is used to compare to the timer-count value. It is 0 when the Maxcount Compare A register is used.

5.1.30 T2CNT (060h), T1CNT (058h), and T0CNT (050h)

These registers are incremented by one every four internal clock cycles if the relevant timer is enabled.

The Increment of Timer 0 and Timer 1 may also be controlled by external signals tmrin0 and tmrin1 respectively, or prescaled by Timer 2.

Comparisons are made between the count registers and maxcount registers and action taken dependent on achieving the maximum count.

The value of these registers is undefined at reset (see Table 52).

Table 52. Timer Count Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Т	C15	-TC	0							

• Bits [15–0]—TC15–TC0 Timer Count Value → This register has the value of the current count of the related timer that is incremented every fourth processor clock in internal clocked mode. Alternatively, the register is incremented each time the Timer 2 maxcount is reached if using Timer 2 as a prescaler. Timer 0 and Timer 1 may be externally clocked by tmrin0 and tmrin1 signals.

5.1.31 SPICON (044h) (Master Mode)

Serial Port Interrupt CONtrol Register. This register controls the operation of the asynchronous serial port interrupt source (SPI, Bit [10] in the Interrupt Request register). The value of this register is 001Fh at reset (see Table 53).

Table 53. Serial Port Interrupt Control Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			l	Rese	rved						Reserved	MSK	PR	2–P	R0

- Bits [15-5]—Reserved \rightarrow Set to 0.
- Bit [4]—Reserved \rightarrow Set to 1.
- Bit [3]—MSK Mask \rightarrow This bit, when 0, enables the serial port to cause an interrupt. When this bit is 1, the serial port is prevented from generating an interrupt.
- Bits [2–0]—PR2–PR0 Priority → These bits define the priority of the serial port interrupt in relation to other interrupt signals. The interrupt priority is the lowest at 7 at reset. The values of PR2–PR0 are shown below.

• Bit [0]—TMR Timer Interrupt Request → This is the timer interrupt state and is the logical OR of the timer interrupt requests. Setting this bit to 1 indicates that the timer control unit has a pending interrupt.

5.1.43 REQST (02eh) (Slave Mode)

This is a read-only register and such a read results in the status of the interrupt request bits presented to the interrupt controller. The status of these bits is available when this register is read.

When an internal interrupt request (D1, D0, TMR2, TMR1, or TMR0) occurs, the respective bit is set to 1. The internally generated interrupt acknowledge resets these bits. The REQST register contains 0000h on reset (see Table 65).

Table 65. Interrupt Request Register (Slave Mode)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Re	eserv	ed					TMR2	TMR1	D1-	-D0	Reserved	TMR0

- Bits [15–6]—Reserved.
- Bit [5]—TMR2 Interrupt Requests → Setting this bit to 1 indicates that Timer 2 has a pending interrupt.
- Bit [4]—TMR1 Interrupt Requests → Setting this bit to 1 indicates that Timer 1 has a pending interrupt.
- Bits [3-2]—D1–D0 DMA Channel Interrupt Request \rightarrow Setting either bit to 1 indicates that the respective DMA channel has a pending interrupt.
- Bit [1]—Reserved.
- Bit [0]—TMR0 Timer Interrupt Request → Setting this bit to 1 indicates that Timer 0 has a pending interrupt.

5.1.44 INSERV (02ch) (Master Mode)

IN-SERVice Register. The interrupt controller sets the bits in this register when the interrupt is taken. Writing the corresponding interrupt type to the End-of-Interrupt (EOI) register clears each of these bits.

When one of these bits is set, an interrupt request will not be generated by the microcontroller for the respective source. This prevents an interrupt from interrupting itself if interrupts are enabled in the ISR. This restriction is bypassed in Special Fully nested mode for the int0 and int1 sources. The INSERV register contains 0000h on reset (see Table 66).

Table 77. Synchronous Serial Transmit Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		F	Reser	ved						S	D7-	-SD	0		

- Bits [15–8]—Reserved.
- Bits [7-0]—SD7–SD0 \rightarrow Data to be transmitted over the SDATA pin.

5.1.56 SSC (012h)

Synchronous Serial Control Register. This register controls the operation of the sden1 and sden0 outputs and the baud rate of the SSI port. The sden1 and sden0 outputs are held high when the respective bit is set to 1, but in the event that both DE1 and DE0 are set to 1 then only sden0 will be held high. The value of the SSR register is 0000h at reset (see Table 78).

Table 78. Synchronous Serial Control Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Re	eserv	ed					SCL	KDIV	Rese	erved	DE1	DE0

- Bits [15–6]—Reserved.
- Bits [5-4]—SCLKDIV SCLK Divide \rightarrow These bits set the SCLK frequency. SCLK is the result of dividing the internal processor clock by 2, 4, 8, or 16 as shown below.

SCLKDIV	SCLK Frequency Divider
00b	Processor Clock/2
01b	Processor Clock/4
10b	Processor Clock/8
11b	Processor Clock/16

- Bits [3–2]—Reserved.
- Bit [1]—DE1 SDEN1 → The SDEN1 bit is held high when this bit is set to 1 and SDEN1 is held low when this bit is set to 0.
- Bit [0]—DE0 SDEN0 → The SDEN0 bit is held high when this bit is set to 1 and SDEN0 is held low when this bit is set to 0.

5.1.57 SSS (010h)

Synchronous Serial Status Register. This is a read-only register that indicates the state of the SSI port. The value of the SSR register is 0000h at reset (see Table 79).

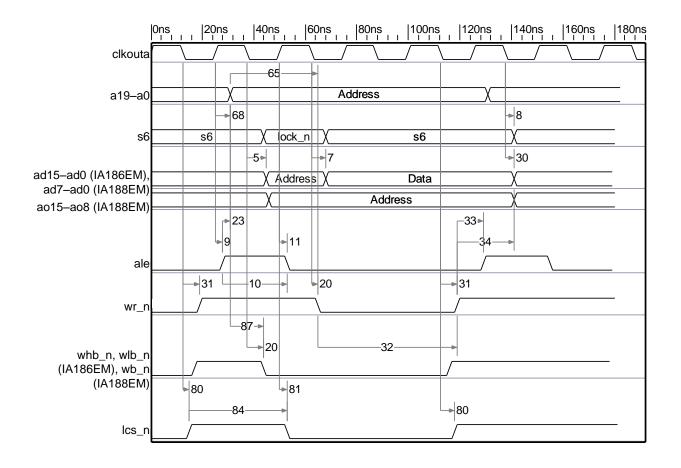


Figure 16. PSRAM Write Cycle

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 114 of 146

Table 90. Clock Timing

No.	Name	Description	Min	Max	Units
CLK	IN Requiren	nents			
36	tCKIN	x1 Period	25	66	ns
37	tCLCK	x1 Low Time	7.5	-	ns
38	tCHCK	x1 High Time	7.5	-	ns
39	tCKHL	x1 Fall Time	-	5	ns
40	tCKLH	x1 Rise time	-	5	ns
CLK	OUT Timing	1			
42	tCLCL	clkouta Period	25	-	ns
43	tCLCH	clkouta Low Time	tCLCL/2	-	ns
44	tCHCL	clkouta High Time	tCLCL/2	-	ns
45	tCH1CH2	clkouta Rise Time	-	3	ns
46	tCL2CL1	clkouta Fall Time	-	3	ns
61	tLOCK	Maximum PLL Lock Time	-	0.5	ms
69	tCICOA	x1 to clkouta Skew	-	25	ns
70	tCICOB	x1 to clkoutb Skew	_	35	ns

^aIn nanoseconds.

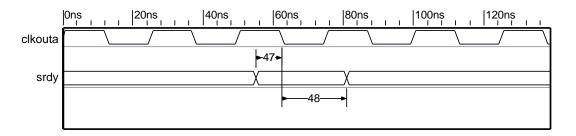
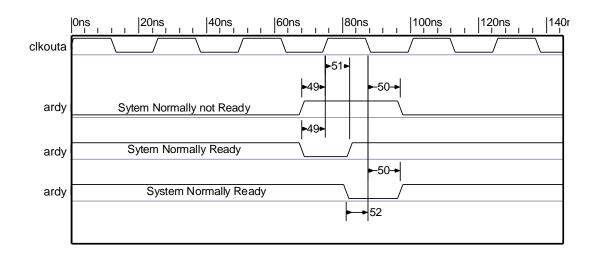



Figure 22. srdy—Synchronous Ready

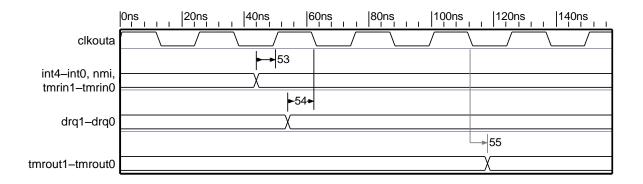


Figure 24. Peripherals

No.	Name	Description	Min ^a	Max ^a
Rese	et and Bus	Hold Timing Requirements		
5	tCLAV	ad Address Valid Delay	0	12
15	tCLAZ	ad Address Float Delay	tCLCH	-
57	tRESIN	res_n Setup Time	10	-
58	tHVCL	hld Setup Time	10	-
Rese	et and Bus	Hold Timing Responses		
62	tCLHAV	hlda Valid Delay	0	7
63	tCHCZ	Command Lines Float Delay	0	12
64	tCHCV	Command Lines Valid Delay (after Float)	0	12

Table 92. Reset and Bus Hold Timing

^aIn nanoseconds.

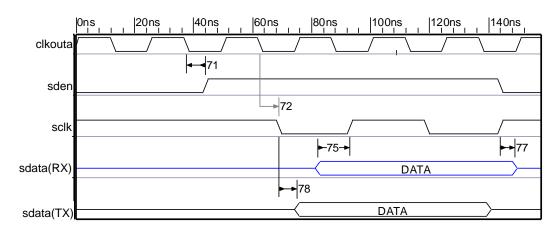


Figure 29. Synchronous Serial Interface

	Instruction	0	pcode - He		Clock	Cycles		1		Flag	gs Affe	cted			
Mnemonic	Description	Byte 1	Byte 2	Bytes 3–6	IA186EM	IA188EM	0	D	Ι	т	s	z	А	Р	С
JS	Jump short if sign (S=1)	78	cb	-	13, 4	13, 4	-	-	-	-	-	-	-	-	I
LAHF	Load AH with low byte of flags	9F	-	-	2	2	-	-	-	-	-	-	-	-	I
LDS	Load DS:r16 with segment offset from memory	C5	/r	-	18	26	-	-	-	-	-	-	-	-	-
LEA	Load offset for m16 word in 16-bit reg	8D	/r	-	6	6	-	-	-	-	-	-	-	-	-
LEAVE	Destroy procedure stack frame	C9	-	_	8	8	-	-	_	-	_	-	-	-	1
LES	Load ES:r16 with segment offset from memory	C4	/r	-	18	26	-	-	-	-	-	-	-	-	-
LOCK	Asserts lock_n during an instruction execution	F0	-	-	1	1	-	-	-	-	-	-	-	-	-
LODS	Load byte segment :[SI] in AL	AC	-	-	12	12	-	-	-	-	-	-	-	-	-
	Load word segment :[SI] in AX	AD	1		12	16	1								
LODSB	Load byte DS:[SI] in AL	AC			12	12	İ —		1				İ —	İ —	
LODSW	Load word DS:[SI] in AX	AD	1		12	16	1								
LOOP	Decrement count; jump short if $CX \neq 0$	E2	-	-	16, 6	16, 6	-	-	-	-	-	-	-	-	-
LOOPE	Decrement count; jump short if $CX \neq 0$ and $Z = 1$	E1	cb	-											
LOOPZ	Decrement count; jump short if $CX \neq 0$ and $Z = 1$														
LOOPNE	Decrement count; jump short if $CX \neq 0$ and $Z = 0$	E0	cb	-	16, 6	16, 6	-	-	-	-	-	-	-	-	-
LOOPNZ	Decrement count; jump short if $CX \neq 0$ and $Z = 0$														
MOV	Copy reg to r/m8	88	/r	-	2/12	2/12	-	-	-	-	-	-	-	-	-
	Copy reg to r/m16	89	/r	_	2/12	2/16									
	Copy r/m8 to reg	8A	/r	-	2/9	2/9									
	Copy r/m16 to reg	8B	/r	-	2/9	2/13									
	Copy segment reg to r/m16	8C	/sr	-	2/11	2/15									
	Copy r/m16 to segment reg	8E	/sr	-	2/9	2/13									
	Copy byte at segment offset to AL	A0	-	-	8	8									
	Copy word at segment offset to AX	A1	-	-	8	12									
	Copy AL to byte at segment offset	A2	-	-	9	9									
	Copy AX to word at segment offset	A3	-	-	9	13									
	Copy imm8 to reg	B0+rb	_	-	3	3	1								
	Copy imm16 to reg	B8+rw			3	4	1								
	Copy imm8 to r/m8	C6	/0	-	12	12	1								
	Copy imm16 to r/m16	C7	/0	-	12	13	1								
MOVS	Copy byte segment [SI] to ES:[DI]	A4	-	-	14	14	-	-	-	-	-	-	-	-	-
	Copy word segment [SI] to ES:[DI]	A5	-	-	14	18									
MOVSB	Copy byte DS:[SI] to ES:[DI]	A4	-	-	14	14	1								
MOVSW	Copy word DS:[SI] to ES:[DI]	A5	-	-	14	18	1								

Table 94. Instruction Set Summary (Continued)

	Instruction	0	pcode - He		Clock	Cycles				Flaç	gs Affe	ected			
Mnemonic	Description	Byte 1	Byte 2	Bytes 3–6	IA186EM	IA188EM	о	D	1	Т	s	z	А	Р	С
REPZ SCAS	Find non-AL byte starting at ES:DI	F3	AE	-	5+15n	5+15n									
	Find non-AX word starting at ES:DI	F3	AF	-	5+15n	9+15n									
REPNE CMPS	Find matching bytes in ES:[DI] and segment :[SI]	F2	A6	-	5+22n	5+22n	-	I	-	-	-	-	-	I	-
	Find matching words in ES:[DI] and segment :[SI]	F2	A7	-	5+22n	9+22n									
REPNZ	Find AL byte starting at ES:[DI]	F2	A6	-	5+22n	5+22n									
CMPS	Find AX word starting at ES:[DI]	F2	A7	-	5+22n	9+22n									
REPNE SCAS	Find matching bytes in ES:DI and segment :[SI]	F2	AE	-	5+15n	5+15n									
	Find matching words in ES:DI and segment :[SI]	F2	AF	-	5+15n	9+15n									
REPNZ	Find AL byte starting at ES:DI	F2	AE	-	5+15n	5+15n									
SCAS	Find AX word starting at ES:DI	F2	AF	-	5+15n	9+15n									
RET	Return near to calling procedure	C3			16	20	-	-	-	-	-	-	-	-	-
	Return far to calling procedure	СВ	data Iow	data high	22	30									
	Return near; pop imm16 parameters	C2			18	22									
	Return far; pop imm16 parameters	CA	data Iow	data high	25	33									
ROL	Rotate 8 bits of r/m8 left once	D0	/0	-	2/15	2/15	U	-	-	-	-	-	-	-	R
	Rotate 8 bits or r/m8 left CL	D2	/0	-	5+n/	5+n/									
	times		(0.1)		17+n	17+n									
	Rotate 8 bits or r/m8 left imm8 times	C0	/0 ib	data 8	5+n/ 17+n	5+n/ 17+n									
	Rotate 16 bits of r/m8 left once	D1	/0	0 _	2/15	2/15									
ROL	Rotate 16 bits or r/m8 left CL	D3	/0	_	5+n/	5+n/	U	_	_	_	-	-	_	-	R
NOL	times	20	10		17+n	17+n	Ŭ								
	Rotate 16 bits or r/m8 left imm8	C1	/0 ib	data	5+n/	5+n/									
	times			8	17+n	17+n									
ROR	Rotate 8 bits of r/m8 right once	D0	/1	-	2/15	2/15	U	-	-	-	-	-	Ι	-	R
	Rotate 8 bits or r/m8 right CL	D2	/1	-	5+n/	5+n/									
	times				17+n	17+n									
	Rotate 8 bits or r/m8 right imm8	C0	/1 ib	data	5+n/	5+n/				1					
	times		14	8	17+n	17+n 2/15	-								
	Rotate 16 bits of r/m8 right once Rotate 16 bits or r/m8 right CL	D1 D3	/1 /1	-	2/15 5+n/	2/15 5+n/	-								
	times	D3	/1	-	5+n/ 17+n	5+n/ 17+n									
	Rotate 16 bits or r/m8 right imm8	C1	/1 ib	data	5+n/	5+n/	-								
	times			8	17+n	17+n				1					
SAHF	Show AH in low byte of the Status Flags reg	9E	-	-	3	3	-	-	-	-	R	R	R	R	R

Table 94. Instruction Set Summary (Continued)

9. Errata

The following errata are associated with Version 03 of the IA186EM/IA188EM. A workaround to the identified problem has been provided where possible.

9.1 Errata Summary

Table 97 presents a summary of errata.

Table 97. Summary of Errata

Errata No.	Problem	Ver. 03
1	There is a difference in how priority of timer interrupts are asserted between the original AMD part and the Innovasic part.	Exists
2	Lock up just after reset is released.	Exists
3	Intermittent startup.	Exists
4	Timer Operation in continuous mode.	Exists
5	DMA interrupt will not bring device out of halt state.	Exists
6	Does not clear the interrupt request bit for INT0 upon entering the ISR.	Exists
7	There is a difference in how hardware handshaking for UARTs during a bus hold cycle is handled between the original AMD part and the Innovasic part.	Exists

9.2 Errata Detail

Errata No. 1

Problem: There is a difference in how priority of timer interrupts are asserted between the original AMD part and the Innovasic part.

Description: In the original AMD part, timer interrupts cannot be interrupted by another timer interrupt, even if the new timer interrupt is of a higher priority. The Innovasic part will interrupt a timer interrupt with a higher-priority timer interrupt. Additionally, if a lower-priority timer interrupt is interrupted with a higher-priority timer interrupt and another incident of the lower-priority interrupt occurs during the processing of the higher-priority interrupt, upon execution of the EOI, a new lower-priority interrupt will be initiated, possibly orphaning the original lower-priority timer interrupt.

Workaround: When using nested interrupts, at the beginning of the interrupt routine before the global interrupts are enabled with a CLI, timer interrupts must be specifically masked. At the

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 142 of 146