

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	8/16-Bit
Speed	40MHz
Connectivity	UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	32
Program Memory Size	·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	•
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-PQFP (20x14)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ia188em-pqf100i-r-03

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Copyright © 2011 by Innovasic Semiconductor, Inc.

Published by Innovasic Semiconductor, Inc. 3737 Princeton Drive NE, Suite 130, Albuquerque, NM 87107

AMD, Am186, and Am188 are trademarks of Advanced Micro Devices, Inc. MILES[™] is a trademark of Innovasic Semiconductor, Inc.

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 2 of 146

516	$CDRAM$ ($0e^{2}h$)	61
517	MDRAM (0e0h)	62
518	D1CON (0dah) and D0CON (0cah)	02 62
519	D1TC (0d8h) and D0TC (0c8h)	02 64
5 1 10	D1DSTH (0d6h) and D0DSTH (0c6h)	6 <u>/</u>
5 1 11	DIDSTI (0ddh) and D0DSTI (0cdh)	
5 1 12	D1SPCH (0d2h) and $D0SPCH (0c2h)$	
5 1 13	DISKCII ($002n$) and DOSKCII ($002n$).	
5 1 14	MPCS (0.98b)	
5 1 15	MMCS (0a6h)	67
5 1 16	$PACS (0_2/h)$	
5 1 17	I MCS (0a4h)	
5 1 18	LIMCS $(0a2li)$	70
5 1 10	$SDP \land UD (0.92h)$	
5 1 20	SPDD (096L)	12
5.1.20	SFKD (00011)	
5.1.21	SPTD (00411)	
5.1.22	SPS15 (082fl)	
5.1.25	SPCT(0800)	
5.1.24	PDATAI $(0/an)$ and PDATAU $(0/4n)$	
5.1.25	PDIRT $(0/8n)$ and PDIRU $(0/2n)$	
5.1.26	PIOMODE1 (0/6n) and PIOMODE0 (0/0n)	
5.1.27	TICON (05eh) and TOCON (056h)	80
5.1.28	12CON(060n)	81
5.1.29	12COMPA (062h), 11COMPB (05ch), 11COMPA (05ah),	0.2
5 1 00	T0COMPB (054h), and T0COMPA (052h)	
5.1.30	T2CNT (060h), T1CNT (058h), and T0CNT (050h)	
5.1.31	SPICON (044h) (Master Mode)	
5.1.32	WDCON (044h) (Master Mode)	
5.1.33	I4CON (040h) (Master Mode)	
5.1.34	I3CON (03eh) and I2CON (03ch) (Master Mode)	85
5.1.35	I1CON (03ah) and I0CON (038h) (Master Mode)	85
5.1.36	TCUCON (032h) (Master Mode)	86
5.1.37	T2INTCON (03ah), T1INTCON (038h), and T0INTCON (032h)	
	(Slave Mode)	87
5.1.38	DMA1CON/INT6CON (036h) and DMA0CON/INT5CON (034h)	
	(Master Mode)	87
5.1.39	DMA1CON/INT6 (036h) and DMA0CON/INT5 (034h) (Slave	
	Mode)	87
5.1.40	INTSTS (030h) (Master Mode)	88
5.1.41	INTSTS (030h) (Slave Mode)	88
5.1.42	REQST (02eh) (Master Mode)	89
5.1.43	REQST (02eh) (Slave Mode)	90
5.1.44	INSERV (02ch) (Master Mode)	90

LIST OF FIGURES

Figure 1. IA186EM TQFP Package Diagram	16
Figure 2. IA188EM TQFP Package Diagram	19
Figure 3. TQFP Package Dimensions	22
Figure 4. IA186EM PQFP Package Diagram	23
Figure 5. IA188EM PQFP Package Diagram	26
Figure 6. PQFP Package Dimensions	29
Figure 7. Functional Block Diagram	44
Figure 8. Crystal Configuration	45
Figure 9. Organization of Clock	46
Figure 10. DMA Unit	54
Figure 11. Read Cycle	106
Figure 12. Multiple Read Cycles	107
Figure 13. Write Cycle	109
Figure 14. Multiple Write Cycles	110
Figure 15. PSRAM Read Cycle	112
Figure 16. PSRAM Write Cycle	114
Figure 17. PSRAM Refresh Cycle	116
Figure 18. Interrupt Acknowledge Cycle	117
Figure 19. Software Halt Cycle	119
Figure 20. Clock—Active Mode	120
Figure 21. Clock—Power-Save Mode	120
Figure 22. srdy—Synchronous Ready	121
Figure 23. ardy—Asynchronous Ready	122
Figure 24. Peripherals	122
Figure 25. Reset 1	123
Figure 26. Reset 2	123
Figure 27. Bus Hold Entering	124
Figure 28. Bus Hold Leaving	124
Figure 29. Synchronous Serial Interface	125

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 8 of 146

LIST OF TABLES

Table 1. IA186EM TQFP Numeric Pin Listing	17
Table 2. IA186EM TQFP Alphabetic Pin Listing	18
Table 3. IA188EM TQFP Numeric Pin Listing	20
Table 4. IA188EM TQFP Alphabetic Pin Listing	21
Table 5. IA186EM PQFP Numeric Pin Listing	24
Table 6. IA186EM PQFP Alphabetic Pin Listing	25
Table 7. IA188EM PQFP Numeric Pin Listing	27
Table 8. IA188EM PQFP Alphabetic Pin Listing	28
Table 9. Bus Cycle Types for bhe_n and ad0	31
Table 10. Bus Cycle Types for s2_n, s1_n, and s0_n	38
Table 11. IA186EM and IA188EM Absolute Maximum Ratings	42
Table 12. IA186EM and IA188EM Thermal Characteristics	42
Table 13. DC Characteristics Over Commercial Operating Ranges	42
Table 14. Interrupt Types	51
Table 15. Default Status of PIO Pins at Reset	56
Table 16. Peripheral Control Registers	58
Table 17. Peripheral Control Block Relocation Register	59
Table 18. Reset Configuration Register.	59
Table 19. Processor Release Level Register	60
Table 20. Power-Save Control Register	60
Table 21. Enable Dynamic RAM Refresh Control Register	61
Table 22. Count for Dynamic RAM Refresh Control Register	62
Table 23. Memory Partition for Dynamic RAM Refresh Control Register	62
Table 24. DMA Control Registers	62
Table 25. DMA Transfer Count Registers	64
Table 26. DMA Destination Address High Register	65
Table 27. DMA Destination Address Low Register	65
Table 28. DMA Source Address High Register.	65
Table 29. DMA Source Address Low Register	66
Table 30. MCS and PCS Auxiliary Register	66
Table 31. Midrange Memory Chip Select Register	68
Table 32. Peripheral Chip Select Register	69
Table 33. Low-Memory Chip Select Register	70
Table 34. Upper-Memory Chip Select Register	72
Table 35. Baud Rates	73
Table 36. Serial Port Baud Rate Divisor Registers	73
Table 37. Serial Port Receive Data Register	74
Table 38. Serial Port Transmit Data Register	74
Table 39. Serial Port Status Register	74
Table 40. Serial Port Control Register	75
Table 41. PIO Pin Assignments	77

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 9 of 146

Table 85.	PSRAM Read Cycle Timing	113
Table 86.	PSRAM Write Cycle Timing	115
Table 87.	PSRAM Refresh Cycle	116
Table 88.	Interrupt Acknowledge Cycle Timing	118
Table 89.	Software Halt Cycle Timing	119
Table 90.	Clock Timing	121
Table 91.	Ready and Peripheral Timing	123
Table 92.	Reset and Bus Hold Timing	125
Table 93.	Synchronous Serial Interface Timing	126
Table 94.	Instruction Set Summary	126
Table 95.	Innovasic/AMD Part Number Cross-Reference for the TQFP	140
Table 96.	Innovasic/AMD Part Number Cross-Reference for the PQFP	141
Table 97.	Summary of Errata	142
Table 98.	Revision History	145

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 11 of 146

Name	Pin	Name	Pin	Name	Pin
a0	63	ao13	13	pcs3_n/pio19	85
a1	62	ao14	16	pcs5_n/a1/pio3	83
a2	60	ao15	18	pcs6_n/a2/pio2	82
a3	59	ardy	30	rd_n	29
a4	58	clkouta	39	res_n	94
а5	57	clkoutb	40	rfsh2_n/aden_n	27
a6	56	den_n/pio5	72	rxd/pio28	22
а7	55	drq0/pio12	100	s0_n	34
a8	54	drq1/pio13	99	s1_n	33
a9	53	dt/r_n/pio4	71	s2_n	32
a10	52	gnd	12	s6/lock_n/clkdiv2/pio29	19
a11	51	gnd	35	sclk/pio20	26
a12	50	gnd	41	sdata/pio21	23
a13	49	gnd	64	sden0/pio22	25
a14	48	gnd	65	sden1/pio23	24
a15	47	gnd	87	srdy/pio6	69
a16	46	gnd	93	tmrin0/pio11	98
a17/pio7	45	hlda	67	tmrin1/pio0	95
a18/pio8	43	hold	68	tmrout0/pio10	97
a19/pio9	42	int0	79	tmrout1/pio1	96
ale	30	int1/select_n	78	txd/pio27	21
ad0	1	int2/inta0_n/pio31	77	ucs_n/once1_n	80
ad1	3	int3/inta1_n/irq	76	uzi_n/pio26	20
ad2	5	int4/pio30	75	V _{cc}	15
ad3	7	lcs_n/once0_n	81	V _{cc}	38
ad4	9	mcs0_n/pio14	73	V _{cc}	44
ad5	11	mcs1_n/pio15	74	V _{cc}	61
ad6	14	mcs2_n/pio24	91	V _{cc}	84
ad7	17	mcs3_n/rfsh_n/pio25	92	V _{cc}	90
ao8	2	nmi	70	wb_n	66
ao9	4	pcs0_n/pio16	89	wr_n	28
ao10	6	pcs1_n/pio17	88	x1	36
ao11	8	pcs2_n/pio18	86	x2	37
ao12	10		·		

Table 4. IA188EM TQFP Alphabetic Pin Listing

2.2 Pin Descriptions

2.2.1 a19/pio9, a18/pio8, a17/pio7, a16–a0—Address Bus (synchronous outputs with tristate)

These pins are the system's source of non-multiplexed I/O or memory addresses and occur a half clkouta cycle before the multiplexed address/data bus (ad15–ad0 for the IA186EM or ao15–ao8 and ad7–ad0 for the IA188EM). The address bus is tristated during a bus hold or reset.

2.2.2 ad15–ad8 (IA186EM)—Address/data bus (level-sensitive synchronous inouts with tristate)

These pins are the system's source of time-multiplexed I/O or memory addresses and data. The address function of these pins can be disabled (see bhe_n/aden_n pin description). If the address function of these pins is enabled, the address will be present on this bus during t_1 of the bus cycle and data will be present during t_2 , t_3 , and t_4 of the same bus cycle.

If whb_n is not active, these pins are tristated during t_2 , t_3 , and t_4 of the bus cycle.

The address/data bus is tristated during a bus hold or reset.

These pins can be used to load the internal Reset Configuration register (RESCON, offset 0F6h) with configuration data during a power-on reset (POR).

2.2.3 ad7-ad0—Address/Data bus (level-sensitive synchronous inouts with tristate)

These pins are the system's source of time-multiplexed low-order byte of the addresses for I/O or memory and 8-bit data. The low-order address byte will be present on this bus during t_1 of the bus cycle and the 8-bit data will be present during t_2 , t_3 , and t_4 of the same bus cycle.

The address function of these pins can be disabled (see bhe_n/aden_n pin description).

If wlb_n (IA186EM) is not active, these pins are tristated during t_2 , t_3 , and t_4 of the bus cycle. The address/data bus is tristated during a bus hold or reset.

2.2.4 ao15–ao8 (IA188EM)—Address-only bus (level-sensitive synchronous outputs with tristate)

The address-only bus will contain valid high-order address bits during the bus cycle $(t_1, t_2, t_3, and t_4)$ if the bus is enabled.

These pins are combined with ad7–ad0 to complete the multiplexed address bus and are tristated during a bus hold or reset condition.

2.2.21 Ics_n/once0_n—Lower Memory Chip Select (synchronous output with internal pull-up)/ONCE Mode Request (input)

The lcs_n pin provides an indication that a memory access is occurring to the lower memory block. The size of the Lower Memory Block and its base address are programmable, with the size adjustable up to 512 Kbytes. The lcs_n is held high during bus hold.

The once0_n pin (ONCE – ON Circuit Emulation) and its companion pin, once1_n, define the microcontroller mode during reset. These two pins are sampled on the rising edge of res_n and if both are asserted low the microcontroller starts in ONCE mode, else it starts normally. In ONCE mode, all pins are tristated and remain so until a subsequent reset. To prevent the microcontroller from entering ONCE mode inadvertently, this pin has a weak pull-up that is only present during reset. This pin is not tristated during bus hold.

2.2.22 mcs2_n—mcs0_n (no pio, pio15, pio 14)—Midrange Memory Chip Selects (synchronous outputs with internal pull-up)

The mcs2_n and mcs0_n pins provide an indication that a memory access is in progress to the second or third midrange memory block. The size of the Midrange Memory Block and its base address are programmable. The mcs2_n – mcs0_n are held high during bus hold and have weak pull-ups that are only present during reset.

2.2.23 mcs3_n/rfsh_n (pio25)—Midrange Memory Chip Select (synchronous output with internal pull-up)/Automatic Refresh (synchronous output)

The mcs3_n pin provides an indication that a memory access is in progress to the fourth region of the midrange memory block. The size of the Midrange Memory Block and its base address are programmable. The mcs3_n is held high during bus hold and has a weak pull-up that is present only during reset.

The rfsh_n signal is timed for auto refresh to PSRAM or DRAM devices. The refresh pulse is output only when the PSRAM or DRAM mode bit is set (EDRAM register Bit [15]). This pulse is of 1.5 clock-pulse duration with the rest of the refresh cycle made up of a deassertion period such that the overall refresh time is met. This pin is not tristated during a bus hold.

2.2.24 nmi—Nonmaskable Interrupt (synchronous edge-sensitive input)

Unlike int4 – int0, this is the highest priority interrupt signal and cannot be masked. Upon the assertion of this interrupt (transition from Low to High), program execution is transferred to the nonmaskable interrupt vector in the interrupt vector table and this interrupt is initiated at the next instruction boundary. For recognition to be assured, the nmi pin must be held high for at least a clkouta period so that the transition from low to high is latched and synchronized internally. The interrupt will begin at the next instruction boundary.

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 35 of 146

Note: See pin descriptions for pins that share other functions with PIO pins. Pins pwd, int5, int6, rts1_n/rtr1_n, and cts1_n/enrx1_n are multiplexed with int2_n/inta0_n, drq0_n, drq0_n, pcs3_n, and pcs2_n, respectively.

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 44 of 146

4.12 Low Memory Chip Select

The lcs_n chip-select is for lower memory. As the interrupt vector table is at the bottom of memory beginning at 00000h, this pin us usually used for control data memory. Unlike ucs_n, this pin is inactive on reset, but can be activated by any read or write to the LMCS register.

4.13 Midrange Memory Chip Selects

There are four midrange chip selects, mcs3_n-mcs0_n, which may be used in a user-located memory block. With some exceptions, the base address of the memory block may be located anywhere in the 1-Mbyte memory address space (those used by the ucs_n and lcs_n chip selects, as well as the pcs6_n, pcs5_n, and pcs3_n-pcs0_n, are excluded). If the pcs_n chip selects are mapped to I/O space, then the MCS address range can overlap the PCS address range.

Both the Midrange Memory Chip Select (MMCS) register and the MCS and PCS auxiliary (MPCS) registers are used to program the four midrange chip selects. The MPCS register is used to configure the block size, whereas the MMCS register configures the base address, the ready condition, and the wait states of the memory block accessed by the mcs_n pin. The chip selects (mcs3_n-mcs0_n) are activated by performing a read or write operation of the MMCS and MPCS registers. The assertion of the MCS outputs occurs with the same timing as the multiplexed AD address bus (ad15–ad0 on the IA186EM or ao15–ao8 and ad7–ad0 on the IA188EM). The a19–a0 may be used for address selection, but the timing will be delayed by a half clock cycle over the timing used for the ucs_n and lcs_n.

4.14 Peripheral Chip Selects

There are six peripheral chip selects (pcs6_n, pcs5_n, and pcs3_n-pcs0_n) that may be used within a user-defined memory or I/O block. The base address of this user-defined memory block can be located anywhere within the 1-Mbyte memory address space except for the spaces associated with the ucs_n, lcs_n, and mcs_n chip selects. Or it may be programmed to the 64 Kbyte I/O space. The pcs4_n is not available.

Both the Peripheral Chip Select (PACS) register and the MCS and PCS Auxiliary register (MPCS) registers are used to program the six peripheral chip selects pcs6_n, pcs5_n, and pcs3_n-pcs0_n. The PACS register sets the base address, the ready condition, and the wait states for the pcs3_n-pcs0_n outputs.

The MPCS register configures pcs6_n and pcs5_n pins as either chip selects or address pins a1 and a2, respectively. When these pins are chip selects, the MPCS register also configures them as being active during memory or I/O bus cycles and during their ready and wait states.

None of the pcs_n pins are active at reset. Both the Peripheral Chip Select (PACS) register and the MCS and PCS Auxiliary register (MPCS) registers must be read or written to activate the pcs_n pins as chip selects.

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 49 of 146

Table 16. Peripheral Control Registers

Register Name	Offset
Peripheral Control Block Registers	
PCB Relocation Register	FEh
Reset Configuration Register	F6h
Processor Release Level Register	F4h
Power-Save Control Register	F0h
Enable RCU Register	E4h
Clock Prescaler Register	E2h
Memory Partition Register	E0h
DMA Registers	
DMA1 Control Register	DAh
DMA1 Transfer Count Register	D8h
DMA1 Destination Address High Register	D6h
DMA1 Destination Address Low Register	D4h
DMA1 Source Address High Register	D2h
DMA1 Source Address Low Register	D0h
DMA0 Control Register	CAh
DMA0 Transfer Count Register	C8h
DMA0 Destination Address High Register	C6h
DMA0 Destination Address Low Register	C4h
DMA0 Source Address High Register	C2h
DMA0 Source Address Low Register	C0h
Chip-Select Registers	
pcs_n and mcs_n Auxiliary Register	A8h
Mid-Range Memory Chip-Select Register	A6h
Peripheral Chip-Select Register	A4h
Low-Memory Chip-Select Register	A2h
Upper-Memory Chip-Select Register	A0h
Asynchronous Serial Port Register	
Serial Port Baud Rate Divisor Register	88h
Serial Port Receive Register	86h
Serial Port Transmit Register	84h
Serial Port Status Register	82h
Serial Port Control Register	80h
PIO Registers	
PIO Data 1 Register	7Ah
PIO Direction 1 Register	78h
PIO Mode 1 Register	76h
PIO Data 0 Register	74h
PIO Direction 0 Register	72h
PIO Mode 0 Register	70h

Register Name	Offset
Timer Registers	
Timer 2 Mode and Control Register	66h
Timer 2 Max Count Compare A Register	62h
Timer 2 Count Register	60h
Timer 1 Mode and Control Register	5Eh
Timer 1 Max Count Compare B Register	5Ch
Timer 1 Max Count Compare A Register	5Ah
Timer 1 Count Register	58h
Timer 0 Mode and Control Register	56h
Timer 0 Max Count Compare B Register	54h
Timer 0 Max Count Compare A Register	52h
Timer 0 Count Register	50h
Interrupt Registers	
Serial Port 0 Interrupt Control Register	44h
Watchdog Timer Control Register	42h
INT4 Interrupt Control Register	40h
INT3 Interrupt Control Register	3Eh
INT2 Interrupt Control Register	3Ch
INT1 Interrupt Control Register	3Ah
INT0 Interrupt Control Register	38h
DMA1 Interrupt Control Register	36h
DMA0 Interrupt Control Register	34h
Timer Interrupt Control Register	32h
Interrupt Status Register	30h
Interrupt Request Register	2Eh
Interrupt In-Service Register	2Ch
Interrupt Priority Mask Register	2Ah
Interrupt Mask Register	28h
Interrupt Poll Status Register	26h
Interrupt Poll Register	24h
End-of-Interrupt (EOI) Register	22h
Interrupt Vector Register	20h
Serial Port 1 Registers	-
Synchronous Serial Receive Register	18h
Synchronous Serial Transmit 0 Register	16h
Synchronous Serial Transmit 1 Register	14h
Synchronous Serial Enable Register	12h
Synchronous Serial Status Register	10h

5.1.1 RELREG (0feh)

The Peripheral Control Block RELocation REGister maps the entire Peripheral Control Block Register Bank to either I/O or memory space. In addition, RELREG contains a bit that places the interrupt controller in either master or slave mode. The RELREG contains 20ffh at reset (see Table 17).

Table 17. Peripheral Control Block Relocation Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved	S/Mn	Reserved	IO/Mn					RA	19–	RA	8				

- Bit [15]—Reserved.
- Bit [14]—S/Mn → When set to 1, this bit places the interrupt controller into slave mode. When 0, it is in master mode.
- Bit [13]—Reserved.
- Bit [12]—IO/Mn \rightarrow When set to 1, the Peripheral Control Block is mapped into memory space. When 0, this bit maps the Peripheral Control Block Register Bank into IO space.
- Bits [11–0]—RA19–RA8 → Sets the base address (upper 12 bits) of the Peripheral Control Block Register Bank. RA7–RA0 default to 0. When Bit [12] (IO/Mn) is set to 1, RA19–RA16 are ignored.

5.1.2 **RESCON (0f6h)**

The RESet CONfiguration Register latches user-defined information present at specified pins at the rising edge of reset. The contents of this register are read-only and remain valid until the next reset. The RESCON contains user-defined information at reset (see Table 18).

Table 18. Reset Configuration Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					R	C15	-RC	20							

• Bits [15–0]—RC15–RC0 → At the rising edge of reset, the values of specified pins (ad15–ad0 for the IA186EM and ao15–ao8 and ad7–ad0 for the IA188EM) are latched into this register.

5.1.3 PRL (0f4h)

The Processor Release Level Register contains a code corresponding to the latest processor production release. The PRL is a Read-Only Register. The PRL contains 0400h (see Table 19).

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 59 of 146

- Bit [5]— $P \rightarrow Relative Priority$. When set to 1, selects high priority for this channel relative to the other channel during simultaneous transfers.
- Bit [4]—TDRQ → Timer 2 Synchronization. When set to 1, enables DMA requests from Timer 2. When 0, disables them.
- Bit [3]—Reserved.
- Bit [2]—CHG → Change Start Bit. This bit must be set to 1 to allow modification of the ST bit during a write. During a write, when CHG is set to 0, ST is not changed when writing the control word. The result of reading this bit is always 0.
- Bit [1]—ST → Start/Stop DMA Channel. When set to 1, the DMA channel is started. The CHG bit must be set to 1 for this bit to be modified and only during the same register write. A processor reset causes this bit to be set to 0.
- Bit [0]—Bn/W → Byte/Word Select. When set to 1, word transfers are selected. When 0, byte transfers are selected.

Note: Word transfers are not supported if the chip selects are programmed for 8-bit transfers. The IA188EM does not support word transfers

5.1.9 D1TC (0d8h) and D0TC (0c8h)

DMA Transfer Count Registers. The DMA Transfer Count registers are maintained by each DMA channel. They are decremented after each DMA cycle. The state of the TC bit in the DMA control register has no influence on this activity. But, if unsynchronized transfers are programmed or if the TC bit in the DMA control word is set, DMA activity ceases when the transfer count register reaches 0. The D0TC and D1TC registers are undefined at reset (see Table 25).

Table 25. DMA Transfer Count Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					Т	C15	-TC	:0							

• Bits [15–0]—TC15–TC0 → DMA Transfer Count contains the transfer count for the respective DMA channel. Its value is decremented after each transfer.

5.1.10 D1DSTH (0d6h) and D0DSTH (0c6h)

The DMA DeSTination Address High Register. The 20-bit destination address consists of these 4 bits combined with the 16 bits of the respective Destination Address Low Register. A DMA transfer requires that two complete 16-bit registers (high and low registers) be used for both the source and destination addresses of each DMA channel involved. These four registers must be

these registers must be adjusted to reflect the new processor clock frequency if power-save mode is in effect. The baud rate divisor may be calculated from:

```
BAUDDIV = (Processor Frequency/(32 x baud rate)) -1 (Equation 1)
```

By setting the BAUDDIV to 0000h, the maximum baud rate of 1/32 of the internal processor frequency clock is set. Setting BAUDDIV to 129 (81h) provides a baud rate of 9600 at 40 MHz. The baud rate tolerance is +4.6% to -1.9% with respect to the actual serial port baud rate, not the target baud rate (see Table 35).

	Diviso	r Based on	CPU Cloc	k Rate
Baud Rate	20 MHz	25 MHz	33 MHz	40 MHz
300	4166	5208	6875	8333
600	2083	2604	3437	4166
1200	1041	1302	1718	2083
2400	520	651	859	1041
4800	260	325	429	520
9600	130	162	214	260
14400	42	53	71	85
19200	31	39	53	64
625 Kbaud	0	NA	NA	1
781.25 Kbaud	NA	0	NA	NA
1.041 Mbaud	NA	NA	0	NA
1.25 Mbaud	NA	NA	NA	0

Table 35. Baud Rates

The value of the SPBAUD register at reset is undefined (see Table 36).

Table 36. Serial Port Baud Rate Divisor Registers

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	BAUDDIV														

• Bits [15–0]—BAUDDIV Baud Rate Divisor → Defines the divisor for the internal processor clock.

5.1.20 SPRD (086h)

Serial Port Receive Data Register. Data received over the serial port are stored in this register until read. The data are received initially by the receive shift register (no software access) permitting data to be received while the previous data are being read.

The RDR bit (Receive Data Ready) in the serial port status register indicates the status of the SPRD register. Setting the RDR bit to 1 indicates there is valid data in the receive register. The value of the SPRD register is undefined at reset (see Table 37).

- Bit [1]—RSIE Receive Status Interrupt Enable → When an exception occurs during data reception, an interrupt request is generated if enabled by this bit (RSIE = 1). Interrupt requests are made for the error conditions listed in the serial port status register (BRK, OER, PER, and FER). This bit is 0 at reset.
- Bit [0]—RMODE Receive Mode → When this bit is 1, the receive section of the serial port is enabled. When 0, it is disabled. This bit is 0 at reset.

5.1.24 PDATA1 (07ah) and PDATA0 (074h)

PIO DATA Registers. When a PIO pin is configured as an output, the value in the corresponding PIO data register bit is driven onto the pin. However, if the PIO pin is configured as an input, the value on the pin is put into the corresponding bit of the PIO data register. Table 41 lists the default states for the PIO pins.

PIO Number	Associated Pin Name	Power-On Reset Status
0	tmrin1	Input with pull-up
1	tmrout1	Input with pull-down
2	pcs6/a2	Input with pull-up
3	pcs5/a1	Input with pull-up
4	dt/r_n	Normal operation ^a
5	den_n/ds_n	Normal operation ^a
6	srdy	Normal operation ^b
7 ^c	a17	Normal operation ^a
8 ^c	a18	Normal operation ^a
9 ^c	a19	Normal operation ^a
10	tmrout0	Input with pull-down
11	tmrin0	Input with pull-up
12	drq0	Input with pull-up
13	drq1	Input with pull-up
14	mcs0_n	Input with pull-up
15	mcs1_n	Input with pull-up
16	pcs0_n	Input with pull-up
17	pcs1_n	Input with pull-up
18	pcs2_n	Input with pull-up
19	pcs3_n	Input with pull-up
20	sclk	Input with pull-up
21	sdata	Input with pull-up
22	sden0	Input with pull-down
23	sden1	Input with pull-down

Table 41.	PIO	Pin	Assignments
-----------	-----	-----	-------------

Table 63. Interrupt Status Register (Slave Mode)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DHLT		Reserved								TMF	R2-TI	MR0			

- Bit [15]—DHLT DMA Halt → DMA activity is halted when this bit is 1. It is set to 1 automatically when any non-maskable interrupt occurs and is cleared to 0 when an IRET instruction is executed.
- Bits [14–3]—Reserved.
- Bits [2-0]—TMR2–TMR0 Timer Interrupt Request \rightarrow A pending interrupt request is indicated by the respective timer, when any of these bits is 1.

Note: The TMR bit in the REQST register is a logical OR of these timer interrupt requests.

5.1.42 REQST (02eh) (Master Mode)

Interrupt REQueST Register. This is a read-only register and such a read results in the status of the interrupt request bits presented to the interrupt controller. The REQST register is undefined on reset (see Table 64).

Table 64. Interrupt Request Register (Master Mode)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved			SP0	WD		I	4–I0)		D1-	-D0	Reserved	TMR	

- Bits [15–11]—Reserved.
- Bit [10]—SP0 Serial Port 0 Interrupt Request → This is the serial port interrupt state and when enabled is the logical OR of all the serial port 0 interrupt sources, THRE, RDR, BRKI, FER, PER, and OER.
- Bit [9]—WD Watchdog Timer Interrupt Request → When it is a 1, the watchdog interrupt state indicates that an interrupt is pending.
- Bits [8-4]—I4–I0 Interrupt Requests \rightarrow Setting any of these bits to 1 indicates that the relevant interrupt has a pending interrupt.
- Bits [3-2]—D1–D0 DMA Channel Interrupt Request \rightarrow Setting either bit to 1 indicates that the respective DMA channel has a pending interrupt.
- Bit [1]—Reserved.

- Bits [3–2]—D1–D0 DMA Channel Interrupt In Service → The respective DMA channel is being serviced when this bit is set to 1.
- Bit [1]—Reserved.
- Bit [0]—TMR0 Timer Interrupt In Service → Timer 0 is being serviced when this bit is set to 1.

5.1.46 PRIMSK (02ah) (Master and Slave Mode)

PRIority MaSK Register. This register contains a value that sets the minimum priority level at which an interrupt can be generated by a maskable interrupt. The PRIMSK register contains 0007h on reset (see Table 68).

Table 68. Priority Mask Register

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved									PRN	/12-PF	RM0				

- Bits [15-3]—Reserved \rightarrow Set to 0.
- Bits [2–0]—PRM2–PRM0 Priority Field Mask → This three-bit field sets the minimum priority necessary for a maskable interrupt to generate an interrupt. Any maskable interrupt with a numerically higher value than that contained by these three bits is masked. The values of PR2–PR0 are shown below.

Values of PR2–PR0 by Priority

Priority	PR2-PR0				
(High) 0	000b				
1	001b				
2	010b				
3	011b				
4	100b				
5	101b				
6	110b				
(Low) 7	111b				

Any unmasked interrupt can generate an interrupt if the priority level is set to 7. On the other hand, if the priority level is set to say 4, only unmasked interrupts with a priority of 0 to 5 are permitted to generate interrupts.

5.1.47 IMASK (028h) (Master Mode)

Interrupt MASK Register. The interrupt mask register is read/write. Setting a bit in this register has the same effect as setting the MSK bit in the corresponding interrupt control register. Setting

No.	Name	Description
7	tCLDV	Data Valid Delay
2	tCLDX	Data in Hold
71	tCLEV	clkouta Low to sden Valid
62	tCLHAV	hlda Valid Delay
82	tCLRF	clkouta High to rfsh_n Invalid
27	tCLRH	rd_n Inactive Delay
25	tCLRL	rd_n Active Delay
4	tCLSH	Status Inactive Delay
72	tCLSL	clkouta Low to sclk Low
48	tCLSRY	srdy Transition Hold Time
55	tCLTMV	Timer Output Delay
83	tCOAOB	clkouta to clkoutb Skew
20	tCVCTV	Control Active Delay 1
31	tCVCTX	Control Inactive Delay
21	tCVDEX	den_n Inactive Delay
17	tCXCSX	mcs_n/pcs_n Hold from Command Inactive
1	tDVCL	Data in Setup
75	tDVSH	Data Valid to SCLK High
19	tDXDL	den_n Inactive to dt/r_n Low
58	tHVCL	hld Setup Time
53	tINVCH	Peripheral Setup Time
54	tINVCL	drq Setup Time
86	tLCRF	Ics_n Inactive to rfsh_n Active Delay
23	tLHAV	ale High to Address Valid
10	tLHLL	ale Width
13	tLLAX	ad Address Hold from ALE Inactive
61	tLOCK	Maximum PLL Lock Time
84	tLRLL	Ics_n Precharge Pulse Width
57	tRESIN	res_n Setup Time
85	tRFCY	rfsh_n Cycle Time
29	tRHAV	rd_n Inactive to ad Address Active
59	tRHDX	rd_n High to Data Hold on ad Bus
28	tRHLH	rd_n Inactive to ale High
26	tRLRH	rd_n Pulse Width
77	tSHDX	sclk High to SPI Data Hold
78	tSLDV	sclk Low SPI Data Hold
47	tSRYCL	srdy Transition Setup Time
35	tWHDEX	wr_n Inactive to den_n Inactive
34	tWHDX	Data Hold after wr_n
33	tWHLH	wr_n Inactive to ale High
32	tWLWH	wr n Pulse Width

Table 81. Alphabetic Key to Waveform Parameters (Continued)

No.	Name	Description	Min ^a	Max ^a						
Gene	eral Timing	g Requirements								
1	tDVCL	Data in Setup	10	1						
2	tCLDX	Data in Hold	0	1						
Gene	General Timing Responses									
3	tCHSV	Status Active Delay	0	6						
4	tCLSH	Status Inactive Delay	0	6						
7	tCLDV	Data Valid Delay	0	12						
8	tCHDX	Status Hold Time	0	-						
9	tCHLH	ale Active Delay	0	8						
10	tLHLL	ale Width	tCLCH-5	-						
11	tCHLL	ale Inactive Delay	0	8						
12	tAVLL	ad Address Valid to ale Low	tCLCH	-						
15	tCLAZ	ad Address Float Delay	0	12						
19	tDXDL	den_n Inactive to dt/r_n Low	0	-						
20	tCVCTV	Control Active Delay 1	0	10						
21	tCVDEX	den_n Inactive Delay	0	9						
22	tCHCTV	Control Active Delay 2	0	10						
23	tLHAV	ale High to Address Valid	7.5	-						
31	tCVCTX	Control Inactive Delay	0	10						
68	tCHAV	clkouta High to a Address Valid	0	8						

Table 88. Interrupt Acknowledge Cycle Timing

^aIn nanoseconds.

end of the timer interrupt routine being serviced, set the Interrupt Enable Bit in the Process Status Word to globally disable interrupts prior to clearing the timer interrupt being serviced and unmask the appropriate timer interrupts.

Errata No. 2

Problem: Lock up just after reset is released.

Description: Usually the first instruction is a long jump to the start of the user's code. In this case, the compiler apparently inserted a short jump instruction with zero displacement before the expected long jump instruction. The OEM device stuttered, but recovered to execute the long jump, while the device instruction pointer was corrupted, causing the lockup. In summary, a short jump with zero displacement is a corner case that does not work in the device.

Workaround: Do not use a short jump instruction with zero displacement.

Errata No. 3

Problem: Intermittent startup.

Description: Processor either came out of reset normally, or would go into a series of watchdog timeouts. The addition of 10K ohm pullups to the wr_n and rd_n outputs seemed to solve the issue. Further analysis of the OEM device shows the presence of undocumented pullups on these pins, which will pull them high when the reset condition tristates these pins. The device does not include internal pullups on these pins allowing these outputs to float during reset.

Workaround: Add 10K ohm pullups to wr_n and rd_n pins to guarantee proper logic levels at the end of reset.

Errata No. 4

Problem: Timer operation in continuous mode.

Description: The timers (Timer 0 and Timer 1) do not function per the specification when set in continuous mode with no external timer input stimulus to initiate/continue count.

Workaround: None.

Errata No. 5

Problem: DMA interrupt will not bring device out of halt state.

IA211050831-19 UNCONTROLLED WHEN PRINTED OR COPIED Page 143 of 146