

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Dectano	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	832KB (832K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2765x104f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 General Device Information

The XC2765X series (16/32-Bit Single-Chip Microcontroller with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 80 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM.

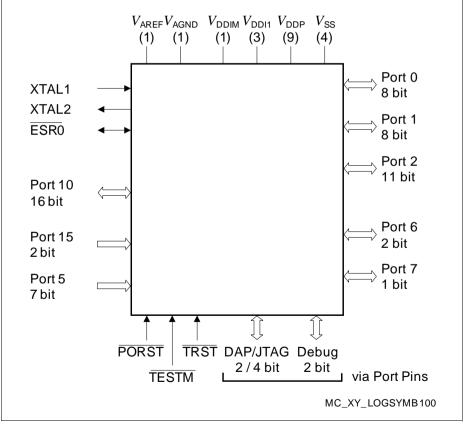


Figure 2 XC2765X Logic Symbol

Key to Pin Definitions

Ctrl.: The output signal for a port pin is selected by bit field PC in the associated • register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to $1x00_{\text{B}}$, output O1 is selected by $1x01_{\text{B}}$, etc.

Output signal OH is controlled by hardware.

- **Type**: Indicates the pad type and its power supply domain (A, B, M, 1). •
 - St: Standard pad
 - Sp: Special pad e.g. XTALx
 - DP: Double pad can be used as standard or high speed pad
 - In: Input only pad
 - PS: Power supply pad

Pin	Symbol	Ctrl.	Туре	Function		
3	TESTM	I	In/B	Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to V_{DDPB}). An internal pull-up device will hold this pin high when nothing is driving it.		
4	P7.2	O0 / I	St/B	Bit 2 of Port 7, General Purpose Input/Output		
	EMUX0	01	St/B	External Analog MUX Control Output 0 (ADC1)		
	CCU62_CCP OS0A	I	St/B	CCU62 Position Input 0		
	TDI_C	IH	St/B	JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.		
5	TRST	1	In/B	Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC2765X's debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it.		

Pin Definitions and Functions Table 6

Table	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
43	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU63_COU T63	O2	St/B	CCU63 Channel 3 Output		
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.		
	A16	ОН	St/B	External Bus Interface Address Line 16		
	ESR2_0	I	St/B	ESR2 Trigger Input 0		
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input		
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input		
44	P4.1	O0 / I	St/B	Bit 1 of Port 4, General Purpose Input/Output		
	CC2_CC25	O3 / I	St/B	CAPCOM2 CC25IO Capture Inp./ Compare Out.		
	CS1	ОН	St/B	External Bus Interface Chip Select 1 Output		
	CCU62_CCP OS0B	I	St/B	CCU62 Position Input 0		
	T4EUDB	I	St/B	GPT12E Timer T4 External Up/Down Control Input		
	ESR1_8	I	St/B	ESR1 Trigger Input 8		
45	P2.4	O0 / I	St/B	Bit 4 of Port 2, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output		
	CC2_CC17	O3 / I	St/B	CAPCOM2 CC17IO Capture Inp./ Compare Out.		
	A17	ОН	St/B	External Bus Interface Address Line 17		
	ESR1_0	I	St/B	ESR1 Trigger Input 0		
	U0C0_DX0F	I	St/B	USIC0 Channel 0 Shift Data Input		
	RxDC1A	I	St/B	CAN Node 1 Receive Data Input		

Tabl	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
46	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output	
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output	
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output	
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.	
	A18	ОН	St/B	External Bus Interface Address Line 18	
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input	
	ESR1_10	I	St/B	ESR1 Trigger Input 10	
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output	
	CC2_CC26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.	
	CS2	ОН	St/B	External Bus Interface Chip Select 2 Output	
	T2INA	I	St/B	GPT12E Timer T2 Count/Gate Input	
	CCU62_CCP OS1B	I	St/B	CCU62 Position Input 1	
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output	
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output	
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output	
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.	
	A19	ОН	St/B	External Bus Interface Address Line 19	
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input	
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input	
	ESR2_6	I	St/B	ESR2 Trigger Input 6	
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.	
	CS3	ОН	St/B	External Bus Interface Chip Select 3 Output	
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input	
	CCU62_CCP OS2B	I	St/B	CCU62 Position Input 2	

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output	
	CCU62_COU T63	O1	St/B	CCU62 Channel 3 Output	
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output	
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output	
	A11	ОН	St/B	External Bus Interface Address Line 11	
	ESR2_4	I	St/B	ESR2 Trigger Input 4	
	CCU62_T12 HRB	1	St/B	External Run Control Input for T12 of CCU62	
89	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output	
	U1C0_SELO 1	01	St/B	USIC1 Channel 0 Select/Control 1 Output	
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output	
	RD	ОН	St/B	External Bus Interface Read Strobe Output	
	ESR2_2	I	St/B	ESR2 Trigger Input 2	
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input	
90	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output	
	CCU62_COU T61	01	St/B	CCU62 Channel 1 Output	
	U1C1_SELO 4	02	St/B	USIC1 Channel 1 Select/Control 4 Output	
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output	
	A12	ОН	St/B	External Bus Interface Address Line 12	
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input	

2.2 Identification Registers

The identification registers describe the current version of the XC2765X and of its modules.

Table 7 XC2765X Identification Registers

Short Name	Value	Address	Notes
SCU_IDMANUF	1820 _H	00'F07E _H	
SCU_IDCHIP	3801 _H	00'F07C _H	
SCU_IDMEM	30D0 _H	00'F07A _H	
SCU_IDPROG	1313 _H	00'F078 _H	
JTAG_ID	0017'E083 _H		marking EES-AA, ES-AA or AA

Functional Description

3.1 Memory Subsystem and Organization

The memory space of the XC2765X is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

	Start Loc.	End Loc.	Area Size ²⁾	Notes
Address Area				Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 Bytes	-
Reserved (Access trap)	F0'0000 _H	FF'FEFF _H	<1 Mbyte	Minus IMB registers
Reserved for EPSRAM	E8'8000 _H	EF'FFFF _H	480 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'7FFF _H	32 Kbytes	With Flash timing
Reserved for PSRAM	E0'8000 _H	E7'FFFF _H	480 Kbytes	Mirrors PSRAM
Program SRAM	E0'0000 _H	E0'7FFF _H	32 Kbytes	Maximum speed
Reserved for Flash	CD'0000 _H	DF'FFFF _H	<1.25 Mbytes	_
Program Flash 3	CC'0000 _H	CC'FFFF _H	64 Kbytes	-
Program Flash 2	C8'0000 _H	CB'FFFF _H	256 Kbytes	-
Program Flash 1	C4'0000 _H	C7'FFFF _H	256 Kbytes	-
Program Flash 0	C0'0000 _H	C3'FFFF _H	256 Kbytes	3)
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	-
Available Ext. IO area ⁴⁾	21'0000 _H	3F'FFFF _H	< 2 Mbytes	Minus USIC/CAN
Reserved	20'BC00 _H	20'FFFF _H	17 Kbytes	-
USIC alternate regs.	20'B000 _H	20'BFFF _H	4 Kbytes	Accessed via EBC
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via EBC
Reserved	20'6000 _H	20'7FFF _H	8 Kbytes	-
USIC registers	20'4000 _H	20'5FFF _H	8 Kbytes	Accessed via EBC
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via EBC
External memory area	01'0000 _H	1F'FFFF _H	< 2 Mbytes	Minus segment 0
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbyte	-
Dual-Port RAM	00'F600 _H	00'FDFF _H	2 Kbytes	-
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbyte	-
ESFR area	00'F000 _H	00'F1FF _H	0.5 Kbyte	-
XSFR area	00'E000 _H	00'EFFF _H	4 Kbytes	-

Table 8 XC2765X Memory Map ¹⁾

Functional Description

3.2 External Bus Controller

All external memory access operations are performed by a special on-chip External Bus Controller (EBC). The EBC also controls access to resources connected to the on-chip LXBus (MultiCAN and the USIC modules). The LXBus is an internal representation of the external bus that allows access to integrated peripherals and modules in the same way as to external components.

The EBC can be programmed either to Single Chip Mode, when no external memory is required, or to an external bus mode with the following selections¹⁾:

- Address Bus Width with a range of 0 ... 24-bit
- Data Bus Width 8-bit or 16-bit
- Bus Operation Multiplexed or Demultiplexed

The bus interface uses Port 10 and Port 2 for addresses and data. In the demultiplexed bus modes, the lower addresses are output separately on Port 0 and Port 1. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines shall be assigned to Port 2.

External \overline{CS} signals (address windows plus default) can be generated and output on Port 4 in order to save external glue logic. External modules can be directly connected to the common address/data bus and their individual select lines.

Important timing characteristics of the external bus interface are programmable (with registers TCONCSx/FCONCSx) to allow the user to adapt it to a wide range of different types of memories and external peripherals.

Access to very slow memories or modules with varying access times is supported by a special 'Ready' function. The active level of the control input signal is selectable.

In addition, up to four independent address windows may be defined (using registers ADDRSELx) to control access to resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these four address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

The external bus timing is based on the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

XC2765X XC2000 Family / Base Line

Functional Description

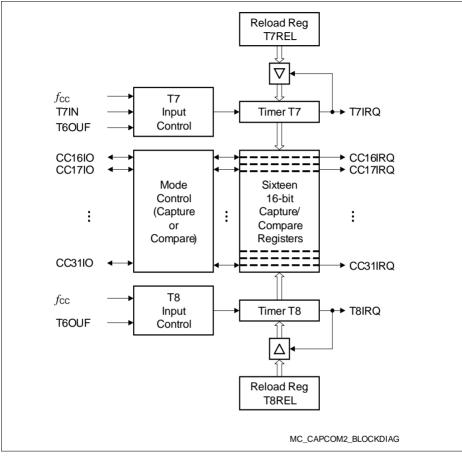
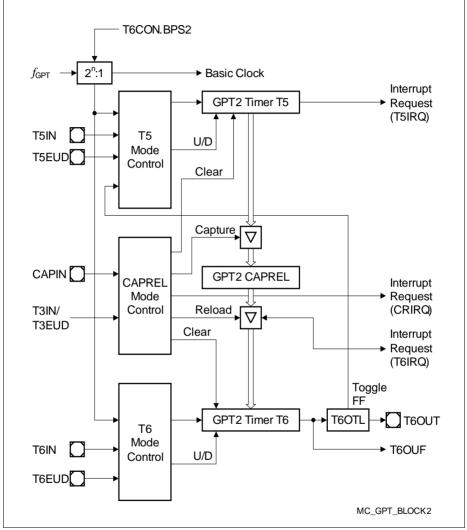



Figure 6 CAPCOM2 Unit Block Diagram

Functional Description

Functional Description

Target Protocols

Each USIC channel can receive and transmit data frames with a selectable data word width from 1 to 16 bits in each of the following protocols:

- UART (asynchronous serial channel)
 - module capability: maximum baud rate = f_{SYS} / 4
 - data frame length programmable from 1 to 63 bits
 - MSB or LSB first
- LIN Support (Local Interconnect Network)
 - module capability: maximum baud rate = f_{SYS} / 16
 - checksum generation under software control
 - baud rate detection possible by built-in capture event of baud rate generator
- SSC/SPI (synchronous serial channel with or without data buffer)
 - module capability: maximum baud rate = f_{SYS} / 2, limited by loop delay
 - number of data bits programmable from 1 to 63, more with explicit stop condition
 - MSB or LSB first
 - optional control of slave select signals
- IIC (Inter-IC Bus)
 - supports baud rates of 100 kbit/s and 400 kbit/s
- IIS (Inter-IC Sound Bus)
 - module capability: maximum baud rate = f_{SYS} / 2
- Note: Depending on the selected functions (such as digital filters, input synchronization stages, sample point adjustment, etc.), the maximum achievable baud rate can be limited. Please note that there may be additional delays, such as internal or external propagation delays and driver delays (e.g. for collision detection in UART mode, for IIC, etc.).

Functional Description

Table 11 Ins	truction Set Summary (cont'd)				
Mnemonic	Description				
ROL/ROR	Rotate left/right direct word GPR	2			
ASHR	Arithmetic (sign bit) shift right direct word GPR	2			
MOV(B)	Move word (byte) data	2/4			
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4			
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4			
JMPS	Jump absolute to a code segment	4			
JB(C)	Jump relative if direct bit is set (and clear bit)	4			
JNB(S)	Jump relative if direct bit is not set (and set bit)	4			
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4			
CALLS	Call absolute subroutine in any code segment	4			
PCALL	Push direct word register onto system stack and call absolute subroutine	4			
TRAP	Call interrupt service routine via immediate trap number	2			
PUSH/POP	Push/pop direct word register onto/from system stack	2			
SCXT	Push direct word register onto system stack and update register with word operand				
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)				
RETS	Return from inter-segment subroutine	2			
RETI	Return from interrupt service subroutine	2			
SBRK	Software Break	2			
SRST	Software Reset	4			
IDLE	Enter Idle Mode	4			
PWRDN	Unused instruction ¹⁾	4			
SRVWDT	Service Watchdog Timer	4			
DISWDT/ENWDT	Disable/Enable Watchdog Timer	4			
EINIT	End-of-Initialization Register Lock	4			
ATOMIC	Begin ATOMIC sequence	2			
EXTR	Begin EXTended Register sequence	2			
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4			
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4			

4.1.3 Pad Timing Definition

If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also "Pad Properties" on Page 103.

4.1.4 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC2765X and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC2765X provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC2765X.

Pullup/Pulldown Device Behavior

Most pins of the XC2765X feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 13** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

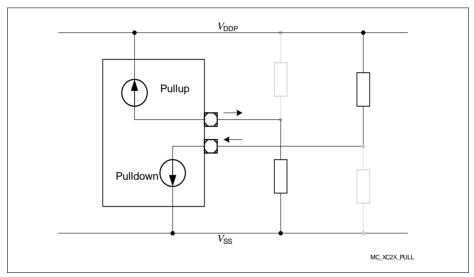


Figure 13 Pullup/Pulldown Current Definition

XC2765X XC2000 Family / Base Line

Electrical Parameters

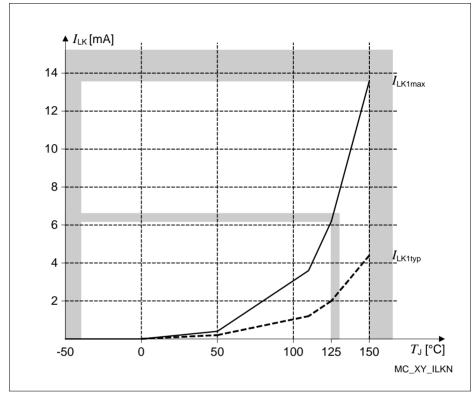


Figure 15 Leakage Supply Current as a Function of Temperature

Sample time and conversion time of the XC2765X's A/D converters are programmable. The timing above can be calculated using **Table 19**.

The limit values for f_{ADCI} must not be exceeded when selecting the prescaler value.

GLOBCTR.5-0 (DIVA)	A/D Converter Analog Clock f_{ADCI}	INPCRx.7-0 (STC)	Sample Time ¹⁾ t _s	
000000 _B	$f_{\rm SYS}$	00 _H	$t_{ADCI} \times 2$	
000001 _B	<i>f</i> _{SYS} / 2	01 _H	$t_{\sf ADCI} imes 3$	
000010 _B	f _{SYS} / 3	02 _H	$t_{ADCI} \times 4$	
:	$f_{\rm SYS}$ / (DIVA+1)	:	$t_{ADCI} \times (STC+2)$	
111110 _B	f _{SYS} / 63	FE _H	$t_{\rm ADCI} imes 256$	
111111 _B	f _{SYS} / 64	FF _H	$t_{\rm ADCI} imes 257$	

 Table 19
 A/D Converter Computation Table

1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase).

Converter Timing Example A:

Assumptions:	$f_{\rm SYS}$	= 80 MHz (i.e. t_{SYS} = 12.5 ns), DIVA = 03 _H , STC = 00 _H				
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 4 = 20 \text{ MHz}$, i.e. $t_{ADCI} = 50 \text{ ns}$				
Sample time	t _S	$= t_{ADCI} \times 2 = 100 \text{ ns}$				
Conversion 10-	bit:					
	<i>t</i> _{C10}	= $13 \times t_{ADCI}$ + 2 × t_{SYS} = 13 × 50 ns + 2 × 12.5 ns = 0.675 µs				
Conversion 8-b	it:					
	t _{C8}	= $11 \times t_{ADCI}$ + $2 \times t_{SYS}$ = 11×50 ns + 2×12.5 ns = 0.575 µs				

Converter Timing Example B:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. t_{SYS} = 25 ns), DIVA = 02 _H , STC = 03 _H
Analog clock	$f_{\rm ADCI}$	$= f_{SYS} / 3 = 13.3 \text{ MHz}$, i.e. $t_{ADCI} = 75 \text{ ns}$
Sample time	t _S	$= t_{ADCI} \times 5 = 375 \text{ ns}$
Conversion 10-	bit:	
	<i>t</i> _{C10}	= $16 \times t_{ADCI}$ + 2 × t_{SYS} = 16 × 75 ns + 2 × 25 ns = 1.25 µs
Conversion 8-b	it:	
	t _{C8}	= $14 \times t_{ADCI}$ + 2 × t_{SYS} = 14 × 75 ns + 2 × 25 ns = 1.10 µs

4.6 AC Parameters

These parameters describe the dynamic behavior of the XC2765X.

4.6.1 Testing Waveforms

These values are used for characterization and production testing (except pin XTAL1).

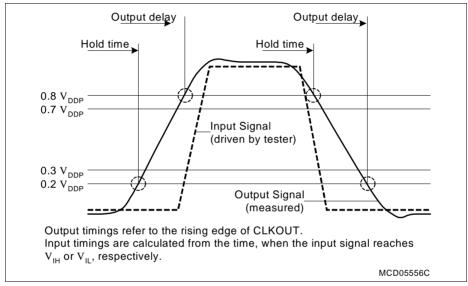
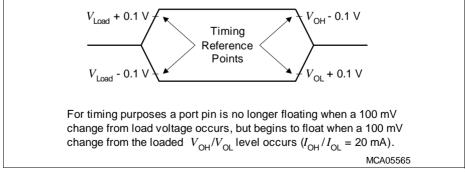



Figure 17 Input Output Waveforms

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 D_{max} = $\pm(220$ / (4 \times 33) + 4.3) = 5.97 ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{array}$

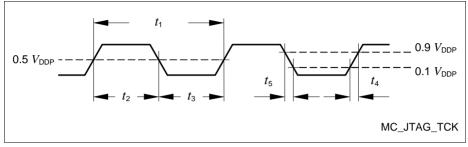
4.6.6 Synchronous Serial Interface Timing

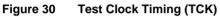
The following parameters are applicable for a USIC channel operated in SSC mode.

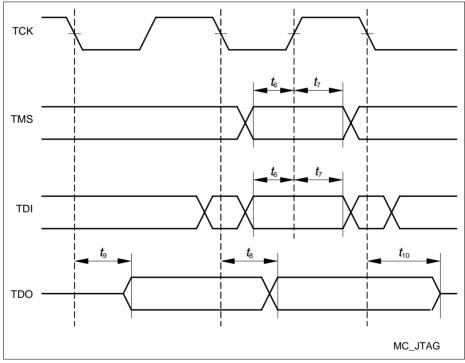
Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Unit Parameter Symbol Values Note / Test Condition Min. Typ. Max. Slave select output SELO t₁ CC ns t_{SYS} - 8 ¹⁾ active to first SCLKOUT transmit edge $t_2 CC$ Slave select output SELO t_{SYS} - 6 ¹⁾ _ _ ns inactive after last SCLKOUT receive edge Data output DOUT valid t_3 CC -6 _ 9 ns time Receive data input setup t_4 SR 31 _ _ ns time to SCLKOUT receive edge $t_5 \, SR$ Data input DX0 hold time -4 ns _ _ from SCLKOUT receive edge


Table 32 USIC SSC Master Mode Timing for Upper Voltage Range


1) $t_{SYS} = 1 / f_{SYS}$


Table 33 USIC SSC Master Mode Timing for Lower Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	<i>t</i> _{SYS} - 10 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	<i>t</i> _{SYS} - 9 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-7	_	11	ns	

