

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	832KB (832K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2765x104f80lrabkxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
6	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output			
	T3OUT	O1	St/B	GPT12E Timer T3 Toggle Latch Output			
	T6OUT	O2	St/B	GPT12E Timer T6 Toggle Latch Output			
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	ESR2_1	I	St/B	ESR2 Trigger Input 1			
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output			
	EMUX1	O1	St/B	External Analog MUX Control Output 1 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output			
	CCU62_CCP OS1A	1	St/B	CCU62 Position Input 1			
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.			
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input			
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output			
	EXTCLK	O1	St/B	Programmable Clock Signal Output			
	CCU62_CTR APA	I	St/B	CCU62 Emergency Trap Input			
	BRKIN_C	I	St/B	OCDS Break Signal Input			

Table	able 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
9	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output			
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output			
	CCU62_CCP OS2A	I	St/B	CCU62 Position Input 2			
	TCK_C	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input			
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input			
11	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output			
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)			
	BRKOUT	O3	DA/A	OCDS Break Signal Output			
	ADCx_REQG TyG	1	DA/A	External Request Gate Input for ADC0/1			
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input			
12	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output			
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)			
	T3OUT	O2	DA/A	GPT12E Timer T3 Toggle Latch Output			
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output			
	ADCx_REQT RyE	I	DA/A	External Request Trigger Input for ADC0/1			
	ESR1_6	I	DA/A	ESR1 Trigger Input 6			

Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function			
13	P6.2	O0 / I	DA/A	Bit 2 of Port 6, General Purpose Input/Output			
	EMUX2	01	DA/A	External Analog MUX Control Output 2 (ADC0)			
	T6OUT	02	DA/A	GPT12E Timer T6 Toggle Latch Output			
	U1C1_SCLK OUT	O3	DA/A	USIC1 Channel 1 Shift Clock Output			
	U1C1_DX1C	I	DA/A	USIC1 Channel 1 Shift Clock Input			
15	P15.0	I	In/A	Bit 0 of Port 15, General Purpose Input			
	ADC1_CH0	I	In/A	Analog Input Channel 0 for ADC1			
16	P15.2	I	In/A	Bit 2 of Port 15, General Purpose Input			
	ADC1_CH2	I	In/A	Analog Input Channel 2 for ADC1			
	T5INA	I	In/A	GPT12E Timer T5 Count/Gate Input			
17	P15.4	I	In/A	Bit 4 of Port 15, General Purpose Input			
	ADC1_CH4	I	In/A	Analog Input Channel 4 for ADC1			
	T6INA	I	In/A	GPT12E Timer T6 Count/Gate Input			
18	P15.5	I	In/A	Bit 5 of Port 15, General Purpose Input			
	ADC1_CH5	I	In/A	Analog Input Channel 5 for ADC1			
	T6EUDA	1	In/A	GPT12E Timer T6 External Up/Down Control Input			
19	P15.6	I	In/A	Bit 6 of Port 15, General Purpose Input			
	ADC1_CH6	I	In/A	Analog Input Channel 6 for ADC1			
20	V _{AREF}	-	PS/A	Reference Voltage for A/D Converters ADC0/1			
21	V _{AGND}	-	PS/A	Reference Ground for A/D Converters ADC0/1			
22	P5.0	I	In/A	Bit 0 of Port 5, General Purpose Input			
	ADC0_CH0	I	In/A	Analog Input Channel 0 for ADC0			
23	P5.2	I	In/A	Bit 2 of Port 5, General Purpose Input			
	ADC0_CH2	I	In/A	Analog Input Channel 2 for ADC0			
	TDI_A	I	In/A	JTAG Test Data Input			

General Device Information

Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function		
87	P1.3	O0 / I	St/B	Bit 3 of Port 1, General Purpose Input/Output		
	CCU62_COU T63	O1	St/B	CCU62 Channel 3 Output		
	U1C0_SELO 7	O2	St/B	USIC1 Channel 0 Select/Control 7 Output		
	U2C0_SELO 4	O3	St/B	USIC2 Channel 0 Select/Control 4 Output		
	A11	ОН	St/B	External Bus Interface Address Line 11		
	ESR2_4	I	St/B	ESR2 Trigger Input 4		
	CCU62_T12 HRB	I	St/B	External Run Control Input for T12 of CCU62		
89	P10.14	O0 / I	St/B	Bit 14 of Port 10, General Purpose Input/Output		
	U1C0_SELO 1	O1	St/B	USIC1 Channel 0 Select/Control 1 Output		
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output		
	RD	OH	St/B	External Bus Interface Read Strobe Output		
	ESR2_2	I	St/B	ESR2 Trigger Input 2		
	U0C1_DX0C	I	St/B	USIC0 Channel 1 Shift Data Input		
90	P1.4	O0 / I	St/B	Bit 4 of Port 1, General Purpose Input/Output		
	CCU62_COU T61	O1	St/B	CCU62 Channel 1 Output		
	U1C1_SELO 4	O2	St/B	USIC1 Channel 1 Select/Control 4 Output		
	U2C0_SELO 5	O3	St/B	USIC2 Channel 0 Select/Control 5 Output		
	A12	OH	St/B	External Bus Interface Address Line 12		
	U2C0_DX2B	I	St/B	USIC2 Channel 0 Shift Control Input		

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
91	P10.15	O0 / I	St/B	Bit 15 of Port 10, General Purpose Input/Output			
	U1C0_SELO 2	01	St/B	USIC1 Channel 0 Select/Control 2 Output			
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output			
	U1C0_DOUT	O3	St/B	USIC1 Channel 0 Shift Data Output			
	ALE	ОН	St/B	External Bus Interf. Addr. Latch Enable Output			
	U0C1_DX1C	I	St/B	USIC0 Channel 1 Shift Clock Input			
92	P1.5	O0 / I	St/B	Bit 5 of Port 1, General Purpose Input/Output			
	CCU62_COU T60	O1	St/B	CCU62 Channel 0 Output			
	U1C1_SELO 3	O2	St/B	USIC1 Channel 1 Select/Control 3 Output			
	BRKOUT	O3	St/B	OCDS Break Signal Output			
	A13	ОН	St/B	External Bus Interface Address Line 13			
	U2C0_DX0C	I	St/B	USIC2 Channel 0 Shift Data Input			
93	P1.6	O0 / I	St/B	Bit 6 of Port 1, General Purpose Input/Output			
	CCU62_CC6 1	O1 / I	St/B	CCU62 Channel 1 Output			
	U1C1_SELO 2	O2	St/B	USIC1 Channel 1 Select/Control 2 Output			
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output			
	A14	ОН	St/B	External Bus Interface Address Line 14			
	U2C0_DX0D	I	St/B	USIC2 Channel 0 Shift Data Input			
	CCU62_CC6 1INA	1	St/B	CCU62 Channel 1 Input			

Tabl	able 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.			
	RxDC0E	I	St/B	CAN Node 0 Receive Data Input			
	U1C0_DX0F	Ι	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2C	I	St/B	USIC1 Channel 0 Shift Control Input			
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input			
	U1C1_DX2B	I	St/B	USIC1 Channel 1 Shift Control Input			
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input			
99	ESR0	O0 / I	St/B	External Servic<u>e</u> Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.			
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input			
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.			
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V _{DDI1} pins must be connected to each other.			
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6 and			
				P15 are fed from supply voltage V_{DDPA} .			

With this hardware most XC2765X instructions are executed in a single machine cycle of 12.5 ns with an 80-MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle, no matter how many bits are shifted. Also, multiplication and most MAC instructions execute in one cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast; for example, a 32-/16-bit division is started within 4 cycles while the remaining cycles are executed in the background. Another pipeline optimization, the branch target prediction, eliminates the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. One of these register banks is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active register bank accessed by the CPU at any time. The number of these register bank copies is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided for storage of temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area); it is accessed by the CPU with the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared with the stack pointer value during each stack access to detect stack overflow or underflow.

The high performance of the CPU hardware implementation can be best utilized by the programmer with the highly efficient XC2765X instruction set. This includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9 Compare Modes (cont'd)

3.9 Capture/Compare Units CCU6x

The XC2765X types feature the CCU60, CCU61, CCU62 and CCU63 unit(s).

The CCU6 is a high-resolution capture and compare unit with application-specific modes. It provides inputs to start the timers synchronously, an important feature in devices with several CCU6 modules.

The module provides two independent timers (T12, T13), that can be used for PWM generation, especially for AC motor control. Additionally, special control modes for block commutation and multi-phase machines are supported.

Timer 12 Features

- Three capture/compare channels, where each channel can be used either as a capture or as a compare channel.
- Supports generation of a three-phase PWM (six outputs, individual signals for highside and low-side switches)
- 16-bit resolution, maximum count frequency = peripheral clock
- Dead-time control for each channel to avoid short circuits in the power stage
- Concurrent update of the required T12/13 registers
- Center-aligned and edge-aligned PWM can be generated
- Single-shot mode supported
- Many interrupt request sources
- Hysteresis-like control mode
- Automatic start on a HW event (T12HR, for synchronization purposes)

Timer 13 Features

- One independent compare channel with one output
- 16-bit resolution, maximum count frequency = peripheral clock
- Can be synchronized to T12
- Interrupt generation at period match and compare match
- Single-shot mode supported
- Automatic start on a HW event (T13HR, for synchronization purposes)

Additional Features

- Block commutation for brushless DC drives implemented
- Position detection via Hall sensor pattern
- Automatic rotational speed measurement for block commutation
- Integrated error handling
- Fast emergency stop without CPU load via external signal (CTRAP)
- Control modes for multi-channel AC drives
- · Output levels can be selected and adapted to the power stage

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

Mnemonic	Description	Bytes						
NOP	Null operation	2						
CoMUL/CoMAC	Multiply (and accumulate)	4						
CoADD/CoSUB	Add/Subtract	4						
Co(A)SHR	(Arithmetic) Shift right	4						
CoSHL	Shift left	4						
CoLOAD/STORE	Load accumulator/Store MAC register	4						
CoCMP	Compare	4						
CoMAX/MIN	Maximum/Minimum	4						
CoABS/CoRND	Absolute value/Round accumulator	4						
CoMOV	Data move	4						
CoNEG/NOP	Negate accumulator/Null operation	4						

Table 11 Instruction Set Summary (cont'd)

1) The Enter Power Down Mode instruction is not used in the XC2765X, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

Pullup/Pulldown Device Behavior

Most pins of the XC2765X feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application.

The specified current values indicate how to load the respective pin depending on the intended signal level. **Figure 13** shows the current paths.

The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values.

Figure 13 Pullup/Pulldown Current Definition

			•	•	·	,
Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Output Low Voltage ⁸⁾	V _{OL} CC	-	-	1.0	V	$I_{\rm OL} \leq I_{\rm OLmax}$
		-	-	0.4	V	$I_{\rm OL} \leq I_{\rm OLnom}^{10}$

Table 15 DC Characteristics for Lower Voltage Range (cont'd)

1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2.

- 2) Not subject to production test verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions.
- 3) If the input voltage exceeds the respective supply voltage due to ground bouncing ($V_{\rm IN} < V_{\rm SS}$) or supply ripple ($V_{\rm IN} > V_{\rm DDP}$), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current ($I_{\rm INJ}$) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor $K_{\rm CV}$.
- 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (*T*_J = junction temperature [°C]): *I*_{OZ} = 0.05 x e^(1.5 + 0.028 x TJ-) [µA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = *V*_{DDP} *V*_{PIN} [V]): *I*_{OZ} = *I*_{OZtempmax} (1.6 x DV) (µA]. This voltage derating formula is an approximation which applies for maximum temperature.
- Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: V_{PIN} <= V_{IL} for a pullup; V_{PIN} >= V_{IH} for a pulldown.
- 6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins.
- 7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: V_{PIN} >= V_{IH} for a pullup; V_{PIN} <= V_{IL} for a pulldown.
- 8) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit.
- 9) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified.
- 10) As a rule, with decreasing output current the output levels approach the respective supply level (V_{OL} -> V_{SS} , V_{OH} -> V_{DDP}). However, only the levels for nominal output currents are verified.

4.5 Flash Memory Parameters

The XC2765X is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XC2765X's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been

erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module program/erase limit	$N_{\rm PP}{ m SR}$	-	-	4 ¹⁾		$N_{\text{FL}_{\text{RD}}} \le 1,$ $f_{\text{SYS}} \le 80 \text{ MHz}$
depending on Flash read activity		-	-	1 ²⁾		$N_{\rm FL_RD}$ > 1
Flash erase endurance for security pages	$N_{\rm SEC}{ m SR}$	10	-	-	cycle s	t _{RET} ≥ 20 years
Flash wait states ³⁾	N _{WSFLAS} _H SR	1	-	-		$f_{SYS} \le 8 \text{ MHz}$
		2	-	-		$f_{SYS} \le 13 \text{ MHz}$
		3	-	-		$f_{SYS} \le 17 \text{ MHz}$
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	34)	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm Er} \le 1\ 000$ cycles
Drain disturb limit	$N_{\rm DD}{ m SR}$	32	-	-	cycle s	

Table 23 Flash Parameters

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC2765X. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain)

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input = clock signal
		4	_	16	MHz	Input = crystal or ceramic resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	$t_2 \mathrm{SR}$	6	-	-	ns	
Input clock rise time	t ₃ SR	-	-	8	ns	
Input clock fall time	t ₄ SR	-	-	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{\rm AX1}{ m SR}$	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	4 to 16 MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	16 to 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	25 to 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 25 External Clock Input Characteristics

XC2765X XC2000 Family / Base Line

Electrical Parameters

Table 33 USIC SSC Master Mode Timing for Lower Voltage Ran	je (cont'd)
--	--------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	_	_	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 34 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	-	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	_	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	7	-	33	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Package and Reliability

Package Outlines

Figure 32 PG-LQFP-100-8 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

Package and Reliability

5.3 Quality Declarations

The operation lifetime of the XC2765X depends on the applied temperature profile in the application. For a typical example, please refer to **Table 42**; for other profiles, please contact your Infineon counterpart to calculate the specific lifetime within your application.

Table 41Quality Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Operation lifetime	t _{OP} CC	-	-	20	а	See Table 42 and Table 43
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	-	-	2 000	V	EIA/JESD22- A114-B
Moisture sensitivity level	MSL CC	-	-	3	_	JEDEC J-STD-020C

Table 42 Typical Usage Temperature Profile

Operating Time (Sum = 20 years)	Operating Temperat.	Notes
1 200 h	$T_{\rm J} = 150^{\circ}{\rm C}$	Normal operation
3 600 h	$T_{\rm J} = 125^{\circ}{\rm C}$	Normal operation
7 200 h	$T_{\rm J} = 110^{\circ}{\rm C}$	Normal operation
12 000 h	$T_{\rm J} = 100^{\circ}{\rm C}$	Normal operation
7 × 21 600 h	$T_{\rm J} = 010^{\circ} {\rm C},,$ 6070°C	Power reduction

Table 43 Long Time Storage Temperature Profile

Operating Time (Sum = 20 years)	Operating Temperat.	Notes
2 000 h	$T_{\rm J}$ = 150°C	Normal operation
16 000 h	T _J = 125°C	Normal operation
6 000 h	$T_{\rm J} = 110^{\circ}{\rm C}$	Normal operation
151 200 h	$T_{\rm J} \le 150^{\circ}{ m C}$	No operation

www.infineon.com

Published by Infineon Technologies AG