

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	80MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	75
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2765x72f80laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC2765X

Revision H	listory: V2.1, 2011-07					
Previous V	ersion(s):					
V2.0, 2009	-03					
V1.31, 200	8-11					
V1.3, 2008	-11					
V1.2, 2008	-09					
V1.1, 2008	-06 Preliminary					
V1.0, 2008	-06 (Intermediate version)					
Page	Subjects (major changes since last revisions)					
39	ID registers added					
86	ADC capacitances corrected (typ. vs. max.)					
90	Conditions relaxed for Δf_{INT}					

Added startup time from power-on t
SPO127Quality declarations added

Trademarks

C166[™], TriCore[™], and DAVE[™] are trademarks of Infineon Technologies AG.

Range for fwu adapted according to PCN 2010-013-A

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies:

- the function set of the corresponding product type
- the temperature range:
 - SAF-...: -40°C to 85°C
 - SAH-...: -40°C to 110°C
 - SAK-...: -40°C to 125°C
- the package and the type of delivery.

For ordering codes for the XC2765X please contact your sales representative or local distributor.

This document describes several derivatives of the XC2765X group:

Basic Device Types are readily available and **Special Device Types** are only available on request.

As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types.

For simplicity the term **XC2765X** is used for all derivatives throughout this document.

1.1 Basic Device Types

Basic device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XC2765X Basic Device Types

Derivative ¹⁾	Flash Memory ²⁾	PSRAM DSRAM ³⁾	Capt./Comp. Modules	ADC ⁴⁾ Chan.	Interfaces ⁴⁾
XC2765X- 104FxxL	832 Kbytes	32 Kbytes 16 Kbytes	CC2 CCU60/1/2/3	11 + 5	2 CAN Nodes, 6 Serial Chan.

1) xx is a placeholder for the available speed grade (in MHz).

2) Specific information about the on-chip Flash memory in Table 3.

3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM.

 Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1).

General Device Information

Table	able 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
46	P2.5	O0 / I	St/B	Bit 5 of Port 2, General Purpose Input/Output		
	U0C0_SCLK OUT	O1	St/B	USIC0 Channel 0 Shift Clock Output		
	TxDC0	O2	St/B	CAN Node 0 Transmit Data Output		
	CC2_CC18	O3 / I	St/B	CAPCOM2 CC18IO Capture Inp./ Compare Out.		
	A18	ОН	St/B	External Bus Interface Address Line 18		
	U0C0_DX1D	I	St/B	USIC0 Channel 0 Shift Clock Input		
	ESR1_10	ļ	St/B	ESR1 Trigger Input 10		
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output		
	CC2_CC26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.		
	CS2	ОН	St/B	External Bus Interface Chip Select 2 Output		
	T2INA	I	St/B	GPT12E Timer T2 Count/Gate Input		
	CCU62_CCP OS1B	I	St/B	CCU62 Position Input 1		
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_SELO 1	02	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	A19	ОН	St/B	External Bus Interface Address Line 19		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	1	St/B	CAN Node 0 Receive Data Input		
	ESR2_6	I	St/B	ESR2 Trigger Input 6		
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.		
	CS3	ОН	St/B	External Bus Interface Chip Select 3 Output		
	T2EUDA	I	St/B	GPT12E Timer T2 External Up/Down Control Input		
	CCU62_CCP OS2B	I	St/B	CCU62 Position Input 2		

General Device Information

Table	Ible 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
56	P2.8	O0 / I	DP/B	Bit 8 of Port 2, General Purpose Input/Output	
	U0C1_SCLK OUT	O1	DP/B	USIC0 Channel 1 Shift Clock Output	
	EXTCLK	O2	DP/B	Programmable Clock Signal Output	
	CC2_CC21	O3 / I	DP/B	CAPCOM2 CC21IO Capture Inp./ Compare Out.	
	A21	OH	DP/B	External Bus Interface Address Line 21	
	U0C1_DX1D	Ι	DP/B	USIC0 Channel 1 Shift Clock Input	
57	P2.9	O0 / I	St/B	Bit 9 of Port 2, General Purpose Input/Output	
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output	
	TxDC1	02	St/B	CAN Node 1 Transmit Data Output	
	CC2_CC22	O3 / I	St/B	CAPCOM2 CC22IO Capture Inp./ Compare Out.	
	A22	OH	St/B	External Bus Interface Address Line 22	
	CLKIN1	I	St/B	Clock Signal Input 1	
	TCK_A	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.	
58	P0.2	O0 / I	St/B	Bit 2 of Port 0, General Purpose Input/Output	
	U1C0_SCLK OUT	O1	St/B	USIC1 Channel 0 Shift Clock Output	
	TxDC0	02	St/B	CAN Node 0 Transmit Data Output	
	CCU61_CC6 2	O3	St/B	CCU61 Channel 2 Output	
	A2	ОН	St/B	External Bus Interface Address Line 2	
	U1C0_DX1B	I	St/B	USIC1 Channel 0 Shift Clock Input	
	CCU61_CC6 2INA	I	St/B	CCU61 Channel 2 Input	

General Device Information

Table	able 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
81	P1.1	O0 / I	St/B	Bit 1 of Port 1, General Purpose Input/Output		
	CCU62_COU T62	01	St/B	CCU62 Channel 2 Output		
	U1C0_SELO 5	02	St/B	USIC1 Channel 0 Select/Control 5 Output		
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output		
	A9	ОН	St/B	External Bus Interface Address Line 9		
	ESR2_3	I	St/B	ESR2 Trigger Input 3		
	U2C1_DX0C	I	St/B	USIC2 Channel 1 Shift Data Input		
82	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output		
	U0C0_SELO 0	01	St/B	USIC0 Channel 0 Select/Control 0 Output		
	CCU60_COU T63	02	St/B	CCU60 Channel 3 Output		
	AD10	OH / IH	St/B	External Bus Interface Address/Data Line 10		
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input		
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input		
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.		
83	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output		
	U1C0_SCLK OUT	O1	St/B	USIC1 Channel 0 Shift Clock Output		
	BRKOUT	O2	St/B	OCDS Break Signal Output		
	AD11	OH / IH	St/B	External Bus Interface Address/Data Line 11		
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input		
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.		

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function	
94	P1.7	O0 / I	St/B	Bit 7 of Port 1, General Purpose Input/Output	
	CCU62_CC6 0	O1	St/B	CCU62 Channel 0 Output	
	U1C1_MCLK OUT	O2	St/B	USIC1 Channel 1 Master Clock Output	
	U2C0_SCLK OUT	O3	St/B	USIC2 Channel 0 Shift Clock Output	
	A15	ОН	St/B	External Bus Interface Address Line 15	
	U2C0_DX1C	I	St/B	USIC2 Channel 0 Shift Clock Input	
	CCU62_CC6 0INA	I	St/B	CCU62 Channel 0 Input	
95	XTAL2	0	Sp/M	Crystal Oscillator Amplifier Output	
96	XTAL1	I	Sp/M	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .	
	ESR2_9	I	St/B	ESR2 Trigger Input 9	
97	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC2765X completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.	

General Device Information

Table 6 Pin Definitions and Functions (cont'd)				
Pin	Symbol	Ctrl.	Туре	Function
2, 25, 27,	V _{DDPB}	-	PS/B	Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent $V_{\text{DDP}}/V_{\text{SS}}$ pin pairs as close as possible to the pins.
50, 52, 75, 77, 100				Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage $V_{\rm DDPB}$.
1, 26, 51,	V _{SS}	-	PS/	Digital Ground All V_{SS} pins must be connected to the ground-line or ground-plane.
76				Note: Also the exposed pad is connected internally to V_{SS} . To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

1) To generate the reference clock output for bus timing measurement, $f_{\rm SYS}$ must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT.

XC2765X XC2000 Family / Base Line

Functional Description

Figure 6 CAPCOM2 Unit Block Diagram

Functional Description

3.14 MultiCAN Module

The MultiCAN module contains independently operating CAN nodes with Full-CAN functionality which are able to exchange Data and Remote Frames using a gateway function. Transmission and reception of CAN frames is handled in accordance with CAN specification V2.0 B (active). Each CAN node can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers.

All CAN nodes share a common set of message objects. Each message object can be individually allocated to one of the CAN nodes. Besides serving as a storage container for incoming and outgoing frames, message objects can be combined to build gateways between the CAN nodes or to set up a FIFO buffer.

Note: The number of CAN nodes and message objects depends on the selected device type.

The message objects are organized in double-chained linked lists, where each CAN node has its own list of message objects. A CAN node stores frames only into message objects that are allocated to its own message object list and it transmits only messages belonging to this message object list. A powerful, command-driven list controller performs all message object list operations.

Figure 12 Block Diagram of MultiCAN Module

Functional Description

3.18 Parallel Ports

The XC2765X provides up to 76 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN
P1	8	I/O	EBC (A15A8), CCU6, USIC
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG
P4	4	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC
P5	11	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN
P6	3	I/O	ADC, CAN, GPT12E
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN
P15	5	I	Analog Inputs, GPT12E

Table 10	Summar	y of the	XC2765X's	Ports
----------	--------	----------	-----------	-------

Functional Description

Mnemonic	Description	Bytes			
NOP	Null operation	2			
CoMUL/CoMAC	Multiply (and accumulate)	4			
CoADD/CoSUB	Add/Subtract	4			
Co(A)SHR	(Arithmetic) Shift right	4			
CoSHL	Shift left	4			
CoLOAD/STORE	Load accumulator/Store MAC register	4			
CoCMP	Compare	4			
CoMAX/MIN	Maximum/Minimum	4			
CoABS/CoRND	Absolute value/Round accumulator	4			
CoMOV	Data move	4			
CoNEG/NOP	Negate accumulator/Null operation	4			

Table 11 Instruction Set Summary (cont'd)

1) The Enter Power Down Mode instruction is not used in the XC2765X, due to the enhanced power control scheme. PWRDN will be correctly decoded, but will trigger no action.

- 3) $f_{\rm WU}$ in MHz
- 4) This value includes a hysteresis of approximately 50 mV for rising voltage.
- 5) $V_{\rm LV}$ = selected SWD voltage level
- 6) The limit V_{LV} 0.10 V is valid for the OK1 level. The limit for the OK2 level is V_{LV} 0.15 V.

Conditions for t_{SPO} Timing Measurement

The time required for the transition from **Power-On** to **Base** mode is called t_{SPO} . It is measured under the following conditions:

Precondition: The pad supply is valid, i.e. V_{DDPB} is above 3.0 V and remains above 3.0 V even though the XC2765X is starting up. No debugger is attached.

Start condition: Power-on reset is removed ($\overline{PORST} = 1$).

End condition: External pin toggle caused by first user instruction executed from FLASH after startup.

Conditions for t_{SSO} Timing Measurement

The time required for the transition from **Stopover** to **Stopover Waked-Up** mode is called t_{SSO} . It is measured under the following conditions:

Precondition: The **Stopover** mode has been entered using the procedure defined in the Programmer's Guide.

Start condition: Pin toggle on ESR pin triggering the startup sequence.

End condition: External pin toggle caused by first user instruction executed from PSRAM after startup.

Coding of bit fields LEVxV in SWD and PVC	Configuration Registers
---	--------------------------------

Code	Default Voltage Level	Notes ¹⁾						
0000 _B	2.9 V							
0001 _B	3.0 V	LEV1V: reset request						
0010 _B	3.1 V							
0011 _B	3.2 V							
0100 _B	3.3 V							
0101 _B	3.4 V							
0110 _B	3.6 V							
0111 _B	4.0 V							
1000 _B	4.2 V							

Table 21 Coding of bit fields LEVxV in Register SWDCON0

Table 21	Coding of bit fields LEVxV in Register SWDCON0 (c	cont'd)	
----------	---	---------	--

Code	Default Voltage Level	Notes ¹⁾
1001 _B	4.5 V	LEV2V: no request
1010 _B	4.6 V	
1011 _B	4.7 V	
1100 _B	4.8 V	
1101 _B	4.9 V	
1110 _B	5.0 V	
1111 _B	5.5 V	

1) The indicated default levels are selected automatically after a power reset.

Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use the this warning level.

Figure 20 Approximated Accumulated PLL Jitter

Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed $C_L = 20 \text{ pF}$.

The maximum peak-to-peak noise on the pad supply voltage (measured between V_{DDPB} pin 100 and V_{SS} pin 1) is limited to a peak-to-peak voltage of V_{PP} = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes.

PLL frequency band selection

Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies:

Parameter	Symbol		Values	6	Unit	Note / Test Condition
		Min.	Тур.	Max.		
VCO output frequency	$f_{\rm VCO}{\rm CC}$	50	-	110	MHz	$VCOSEL = 00_B$
(VCO controlled)		100	_	160	MHz	VCOSEL = 01_B
VCO output frequency	$f_{\rm VCO}$ CC	10	-	40	MHz	$VCOSEL = 00_B$
(VCO free-running)		20	_	80	MHz	VCOSEL = 01_B

Table 24 System PLL Parameters

4.6.2.2 Wakeup Clock

When wakeup operation is selected (SYSCON0.CLKSEL = 00_B), the system clock is derived from the low-frequency wakeup clock source:

 $f_{SYS} = f_{WU}$.

In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption.

4.6.2.3 Selecting and Changing the Operating Frequency

When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bit fields, to avoid unintended intermediate states.

Many applications change the frequency of the system clock (f_{SYS}) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply.

To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage.

To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer's Guide.

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC2765X. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain)

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /	
		Min.	Тур.	Max.	_	Test Condition	
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input = clock signal	
		4	_	16	MHz	Input = crystal or ceramic resonator	
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA		
Input clock high time	t ₁ SR	6	-	-	ns		
Input clock low time	$t_2 \mathrm{SR}$	6	-	-	ns		
Input clock rise time	t ₃ SR	-	-	8	ns		
Input clock fall time	t ₄ SR	-	-	8	ns		
Input voltage amplitude on XTAL1 ¹⁾	$V_{\rm AX1}{ m SR}$	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	4 to 16 MHz	
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	16 to 25 MHz	
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	25 to 40 MHz	
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)	

Table 25 External Clock Input Characteristics

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Variable Memory Cycles

External bus cycles of the XC2765X are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 29	Programmable Bus Cv	vcle Phases (see timino	diagrams)

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase $(1 \dots 2 \text{ TCS})$ can be extended by $0 \dots 3 \text{ TCS}$ if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	03	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Table 31 EBC External Bus Timing for Lower Voltage Range

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
$\frac{\text{Output valid delay for } \overline{\text{RD}},}{\text{WR}(L/H)}$	<i>t</i> ₁₀ CC	-	11	20	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	10	21	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	-	11	22	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	10	22	ns	
Output valid delay for CS	t ₁₄ CC	-	10	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	-	10	22	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	<i>t</i> ₁₆ CC	-	10	22	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	8	10	ns	
Output hold time for \overline{BHE} , ALE	<i>t</i> ₂₁ CC	-2	8	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	8	10	ns	
Output hold time for CS	t ₂₄ CC	-3	8	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	8	10	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	29	17	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-9	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

Table 33 USIC SSC Master Mode Timing for Lower Voltage Ran	je (cont'd)
--	--------------------

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Receive data input setup time to SCLKOUT receive edge	t ₄ SR	40	-	-	ns	
Data input DX0 hold time from SCLKOUT receive edge	t ₅ SR	-5	_	-	ns	

1) $t_{SYS} = 1 / f_{SYS}$

Table 34 USIC SSC Slave Mode Timing for Upper Voltage Range

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	<i>t</i> ₁₀ SR	7	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	7	-	_	ns	
Receive data input setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	7	_	-	ns	
Data input DX0 hold time from clock input DX1 receive edge ¹⁾	<i>t</i> ₁₃ SR	5	-	-	ns	
Data output DOUT valid time	<i>t</i> ₁₄ CC	7	-	33	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 26 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted.