E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, SD, SPI, UART/USART
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 22x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk30dx128vlh7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PK30 and MK30.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K30
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
Μ	Flash memory type	 N = Program flash only X = Program flash and FlexMemory

Table continues on the next page...

reminology and guidelines

Field	Description	Values
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) MP = 64 MAPBGA (5 mm x 5 mm) LK = 80 LQFP (12 mm x 12 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MJ = 256 MAPBGA (17 mm x 17 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
N	Packaging type	 R = Tape and reel (Blank) = Trays

2.4 Example

This is an example part number:

MK30DN512ZVMD10

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

3.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

3.5 Result of exceeding a rating

Terminology and guidelines

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level		3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V

Table continues on the next page ...

5.2.3	Voltage and current operating behaviors
	Table 4. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$	V _{DD} – 0.5	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$	—	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	-	1	μA	1
l _{IN}	Input leakage current (per pin) at 25°C	_	0.025	μA	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- Flash clock = 24 MHz

5.3 Switching specifications

5.3.1 Device clock specifications

Table 8. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mode	9		•	
f _{SYS}	System and core clock	_	72	MHz	
f _{BUS}	Bus clock	_	50	MHz	
f _{FLASH}	Flash clock	_	25	MHz	
f _{LPTMR}	LPTMR clock		25	MHz	
	VLPR mode ¹				
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock		4	MHz	
f _{FLASH}	Flash clock		0.5	MHz	
f _{ERCLK}	External reference clock		16	MHz	
f _{LPTMR_pin}	LPTMR clock		25	MHz	
f _{LPTMR_ERCLK}	LPTMR external reference clock	_	16	MHz	
f _{FlexCAN_ERCLK}	FlexCAN external reference clock	_	8	MHz	
f _{I2S_MCLK}	I2S master clock	_	12.5	MHz	
f _{I2S_BCLK}	I2S bit clock	_	4	MHz	

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	16	—	ns	3
	External reset pulse width (digital glitch filter disabled)	100		ns	3

Table 9. General switching specifications

Table continues on the next page...

5.4.2 Thermal attributes

Board type Symbol Description		Description	64 LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	59	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	41	°C/W	1, 3
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	48	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	35	°C/W	1,3
_	R _{θJB}	Thermal resistance, junction to board	23	°C/W	4
-	R _{θJC}	Thermal resistance, junction to case	11	°C/W	5
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	3	°C/W	6

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.
- 3. Determined according to JEDEC Standard JESD51-6, *Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air)* with the board horizontal. For the LQFP, the board meets the JESD51-7 specification.
- 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.
- 5. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

Figure 8. Test Access Port timing

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

rempheral operating requirements and behaviors

6.3.1 MCG specifications Table 14. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — nominal VDD and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25	_	39.0625	kHz	
Δ _{fdco_res_t}	Resolution of trimr frequency at fixed using SCTRIM and	ned average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimr frequency at fixed using SCTRIM onl	ned average DCO output voltage and temperature — y	_	± 0.2	± 0.5	%f _{dco}	1
Δf _{dco_t}	Total deviation of t frequency over vo	trimmed average DCO output Itage and temperature	—	+0.5/-0.7	_	%f _{dco}	1
∆f _{dco_t}	Total deviation of t frequency over fixe range of 0–70°C	trimmed average DCO output ed voltage and temperature	_	± 0.3	± 0.3	%f _{dco}	1
f _{intf_ft}	Internal reference factory trimmed at	frequency (fast clock) — nominal VDD and 25°C		4	_	MHz	
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al VDD and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_		kHz	
		FI	ĹĹ				
f _{fll_ref}	FLL reference free	luency range	31.25	—	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	-
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll ref}	80	83.89	100	MHz	-
f _{dco_t_DMX32}	DCO output frequency	Low range (DRS=00)		23.99		MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}		47.97		MHz	
		Mid-high range (DRS=10) — 71.99		—	MHz		
		High range (DRS=11) 2929 × f _{fll_ref}	_	95.98	_	MHz	

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	—	200	_	μA	
	• 8 MHz (RANGE=01)	—	300	_	μA	
	• 16 MHz	—	950	_	μA	
	• 24 MHz	—	1.2	_	mA	
	• 32 MHz	—	1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	—	400	_	μA	
	• 8 MHz (RANGE=01)	—	500	_	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	—	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_			MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	-
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)		200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_		kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	

6.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{vfykey}	Verify Backdoor Access Key execution time	—	_	30	μs	1
	Swap Control execution time					
t _{swapx01}	 control code 0x01 	_	200	—	μs	
t _{swapx02}	control code 0x02	_	70	150	μs	
t _{swapx04}	 control code 0x04 	_	70	150	μs	
t _{swapx08}	control code 0x08	_	—	30	μs	
	Program Partition for EEPROM execution time					
t _{pgmpart32k}	• 32 KB FlexNVM	_	70	—	ms	
	Set FlexRAM Function execution time:					
t _{setramff}	Control Code 0xFF	_	50	—	μs	
t _{setram8k}	8 KB EEPROM backup	_	0.3	0.5	ms	
t _{setram32k}	32 KB EEPROM backup	_	0.7	1.0	ms	
	Byte-write to FlexRAM	for EEPROM	l operation			
t _{eewr8bers}	Byte-write to erased FlexRAM location execution time	_	175	260	μs	3
	Byte-write to FlexRAM execution time:					
t _{eewr8b8k}	8 KB EEPROM backup	_	340	1700	μs	
t _{eewr8b16k}	16 KB EEPROM backup	_	385	1800	μs	
t _{eewr8b32k}	32 KB EEPROM backup	_	475	2000	μs	
	Word-write to FlexRAM	for EEPRON	A operation		1	
t _{eewr16bers}	Word-write to erased FlexRAM location execution time	_	175	260	μs	
	Word-write to FlexRAM execution time:					
t _{eewr16b8k}	8 KB EEPROM backup	_	340	1700	μs	
t _{eewr16b16k}	16 KB EEPROM backup	_	385	1800	μs	
t _{eewr16b32k}	32 KB EEPROM backup	_	475	2000	μs	
	Longword-write to FlexRA	M for EEPR	OM operation	1	1	
t _{eewr32bers}	Longword-write to erased FlexRAM location execution time		360	540	μs	
	Longword-write to FlexRAM execution time:					
t _{eewr32b8k}	8 KB EEPROM backup	_	545	1950	μs	
t _{eewr32b16k}	16 KB EEPROM backup	—	630	2050	μs	
t _{eewr32b32k}	32 KB EEPROM backup	—	810	2250	μs	

Table 20. Flash command timing specifications (continued)

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.

rempheral operating requirements and behaviors

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

 $Writes_subsystem = \frac{EEPROM - 2 \times EEESPLIT \times EEESIZE}{EEESPLIT \times EEESIZE} \times Write_efficiency \times n_{nvmcycd}$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance (the following graph assumes 10,000 cycles)

rempheral operating requirements and behaviors

6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled (ADC_PGA[PGACHPb] =0) Table 27. 16-bit ADC with PGA characteristics

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
I _{DDA_PGA}	Supply current	Low power (ADC_PGA[PGALPb]=0)	_	420	644	μΑ	2
I _{DC_PGA}	Input DC current		$\frac{2}{R_{\text{PGAD}}} \left(\frac{1}{2}\right)$	V _{REFPGA} ×0.5 (Gain+	83)–V _{CM})	A	3
		Gain =1, V_{REFPGA} =1.2V, V_{CM} =0.5V	—	1.54		μA	
		Gain =64, V_{REFPGA} =1.2V, V_{CM} =0.1V	—	0.57	—	μΑ	
G	Gain ⁴	PGAG=0	0.95	1	1.05		$R_{AS} < 100\Omega$
		PGAG=1	1.9	2	2.1		
		• PGAG=2	3.8	4	4.2		
		• PGAG=3	7.6	8	8.4		
		• PGAG=4	15.2	16	16.6		
		• PGAG=5	30.0	31.6	33.2		
		• PGAG=6	58.8	63.3	67.8		
BW	Input signal	16-bit modes	—	—	4	kHz	
	bandwidth	 < 16-bit modes 	_	_	40	kHz	
PSRR	Power supply rejection ratio	Gain=1	_	-84	_	dB	V _{DDA} = 3V ±100mV, f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	—	-84	_	dB	V _{CM} =
	rejection ratio	• Gain=64	_	-85	—	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage		_	0.2	—	mV	Output offset = V _{OFS} *(Gain+1)
T _{GSW}	Gain switching settling time		_	_	10	μs	5
dG/dT	Gain drift over full	• Gain=1	—	6	10	ppm/°C	
	temperature range	• Gain=64	—	31	42	ppm/°C	
dG/dV _{DDA}	Gain drift over	• Gain=1	—	0.07	0.21	%/V	V _{DDA} from 1.71
	supply voltage	• Gain=64		0.14	0.31	%/V	to 3.6V
EIL	Input leakage error	All modes		$I_{\text{In}} \times R_{\text{AS}}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{PP,DIFF}	Maximum differential input signal swing		$\left(\frac{\min(V)}{V}\right)$	√ _x ,V _{DDA} −V _x) Gain	<u>-0.2)×4</u>)	V	6
			where $V_X = V_{REFPGA} \times 0.583$				
SNR	Signal-to-noise	Gain=1	80	90		dB	16-bit
	ratio	• Gain=64	52	66	_	dB	differential mode, Average=32
THD	Total harmonic	Gain=1	85	100	—	dB	16-bit
	distortion	• Gain=64	49	95	_	dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free dynamic range	Gain=1	85	105	—	dB	16-bit
		• Gain=64	53	88	_	dB	differential mode, Average=32, f _{in} =100Hz
ENOB	Effective number	Gain=1, Average=4	11.6	13.4		bits	16-bit
	of bits	Gain=64, Average=4	7.2	9.6	_	bits	differential mode.f _{in} =100Hz
		Gain=1, Average=32	12.8	14.5	—	bits	
		Gain=2, Average=32	11.0	14.3	_	bits	
		Gain=4, Average=32	7.9	13.8	_	bits	
		Gain=8, Average=32	7.3	13.1	_	bits	
		Gain=16, Average=32	6.8	12.5	_	bits	
		Gain=32, Average=32	6.8	11.5	_	bits	
		• Gain=64, Average=32	7.5	10.6		bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 27. 16-bit ADC with PGA characteristics (continued)

- 1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK} =6MHz unless otherwise stated.
- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 28. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71		3.6	V

Table continues on the next page...

rempheral operating requirements and behaviors

Figure 17. Typical INL error vs. digital code

Table 41. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	—	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	53	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Figure 25. I2S/SAI timing — master modes

Table 42. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	7.6	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	67	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{ELE}	Electrode oscillator current source base current • 2 µA setting (EXTCHRG = 0)	_	2	3	μA	2, 7
	 32 µA setting (EXTCHRG = 15) 	_	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	—	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.008	1.46	—	fF/count	11
Res	Resolution	_	—	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode		55		μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μÂ	13

Table 43. TSI electrical specifications (continued)

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

 $I_{ext} = 6 \ \mu A \ (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 \ \mu A \ (REFCHRG = 7), C_{ref} = 1.0 \ pF$

The minimum value is calculated with the following configuration:

I_{ext} = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 μA (REFCHRG = 15), C_{ref} = 0.5 pF

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

6.9.2 LCD electrical characteristics

Table 44. LCD electricals

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{Frame}	LCD frame frequency	28	30	58	Hz	
C _{LCD}	LCD charge pump capacitance — nominal value	—	100	—	nF	1
C _{BYLCD}	LCD bypass capacitance — nominal value	—	100	—	nF	1
C _{Glass}	LCD glass capacitance	_	2000	8000	pF	2

Table continues on the next page...

8 Pinout

8.1 K30 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
_QFN											
1	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0		UART1_TX			I2C1_SDA	RTC_CLKOUT	
2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0		UART1_RX			I2C1_SCL		
3	VDD	VDD	VDD								
4	VSS	VSS	VSS								
5	PTE16	ADC0_SE4a	ADC0_SE4a	PTE16	SPI0_PCS0	UART2_TX	FTM_CLKIN0		FTM0_FLT3		
6	PTE17	ADC0_SE5a	ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	FTM_CLKIN1		LPTMR0_ALT3		
7	PTE18	ADC0_SE6a	ADC0_SE6a	PTE18	SPI0_SOUT	UART2_CTS_b	I2C0_SDA				
8	PTE19	ADC0_SE7a	ADC0_SE7a	PTE19	SPI0_SIN	UART2_RTS_b	I2C0_SCL				
9	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
10	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
11	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
12	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
13	VDDA	VDDA	VDDA								
14	VREFH	VREFH	VREFH								
15	VREFL	VREFL	VREFL								
16	VSSA	VSSA	VSSA								
17	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
18	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
19	XTAL32	XTAL32	XTAL32								
20	EXTAL32	EXTAL32	EXTAL32								

Figure 27. K30 64 LQFP/QFN Pinout Diagram

9 Revision History

The following table provides a revision history for this document.