# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                       |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 72MHz                                                                 |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, SD, SPI, UART/USART                   |
| Peripherals                | DMA, I <sup>2</sup> S, LCD, LVD, POR, PWM, WDT                        |
| Number of I/O              | 40                                                                    |
| Program Memory Size        | 256KB (256K x 8)                                                      |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | 2K x 8                                                                |
| RAM Size                   | 64K x 8                                                               |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                          |
| Data Converters            | A/D 22x16b; D/A 1x12b                                                 |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                    |
| Mounting Type              | Surface Mount                                                         |
| Package / Case             | 64-LQFP                                                               |
| Supplier Device Package    | 64-LQFP (10x10)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mk30dx256vlh7 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





# 1 Ordering parts

# 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PK30 and MK30.

# 2 Part identification

### 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

# 2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

# 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description          | Values                                                                                     |
|-------|----------------------|--------------------------------------------------------------------------------------------|
| Q     | Qualification status | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul> |
| K##   | Kinetis family       | • K30                                                                                      |
| A     | Key attribute        | <ul> <li>D = Cortex-M4 w/ DSP</li> <li>F = Cortex-M4 w/ DSP and FPU</li> </ul>             |
| Μ     | Flash memory type    | <ul> <li>N = Program flash only</li> <li>X = Program flash and FlexMemory</li> </ul>       |

Table continues on the next page...



#### reminology and guidelines

| Field | Description                 | Values                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FFF   | Program flash memory size   | <ul> <li>32 = 32 KB</li> <li>64 = 64 KB</li> <li>128 = 128 KB</li> <li>256 = 256 KB</li> <li>512 = 512 KB</li> <li>1M0 = 1 MB</li> </ul>                                                                                                                                                                                                                                                                                                      |
| R     | Silicon revision            | <ul> <li>Z = Initial</li> <li>(Blank) = Main</li> <li>A = Revision after main</li> </ul>                                                                                                                                                                                                                                                                                                                                                      |
| Т     | Temperature range (°C)      | <ul> <li>V = -40 to 105</li> <li>C = -40 to 85</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                     |
| PP    | Package identifier          | <ul> <li>FM = 32 QFN (5 mm x 5 mm)</li> <li>FT = 48 QFN (7 mm x 7 mm)</li> <li>LF = 48 LQFP (7 mm x 7 mm)</li> <li>LH = 64 LQFP (10 mm x 10 mm)</li> <li>MP = 64 MAPBGA (5 mm x 5 mm)</li> <li>LK = 80 LQFP (12 mm x 12 mm)</li> <li>LL = 100 LQFP (14 mm x 14 mm)</li> <li>MC = 121 MAPBGA (8 mm x 8 mm)</li> <li>LQ = 144 LQFP (20 mm x 20 mm)</li> <li>MD = 144 MAPBGA (13 mm x 13 mm)</li> <li>MJ = 256 MAPBGA (17 mm x 17 mm)</li> </ul> |
| СС    | Maximum CPU frequency (MHz) | <ul> <li>5 = 50 MHz</li> <li>7 = 72 MHz</li> <li>10 = 100 MHz</li> <li>12 = 120 MHz</li> <li>15 = 150 MHz</li> </ul>                                                                                                                                                                                                                                                                                                                          |
| N     | Packaging type              | <ul> <li>R = Tape and reel</li> <li>(Blank) = Trays</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                |

### 2.4 Example

This is an example part number:

MK30DN512ZVMD10

# 3 Terminology and guidelines

### 3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.



### 3.1.1 Example

This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:

| Symbol          | Description                  | Min. | Max. | Unit |
|-----------------|------------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply<br>voltage | 0.9  | 1.1  | V    |

### 3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

### 3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

| Symbol          | Description                                  | Min. | Max. | Unit |
|-----------------|----------------------------------------------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak pullup/<br>pulldown current | 10   | 130  | μA   |

# 3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

### 3.3.1 Example

This is an example of an attribute:

| Symbol | Description                        | Min. | Max. | Unit |
|--------|------------------------------------|------|------|------|
| CIN_D  | Input capacitance:<br>digital pins | _    | 7    | pF   |



**Terminology and guidelines** 





# 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.



### 3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10   | 70   | 130  | μΑ   |

### 3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:



# 3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

| Symbol          | Description          | Value | Unit |
|-----------------|----------------------|-------|------|
| T <sub>A</sub>  | Ambient temperature  | 25    | C°   |
| V <sub>DD</sub> | 3.3 V supply voltage | 3.3   | V    |



| Symbol           | Description                                                    | Min.                  | Max.                  | Unit |
|------------------|----------------------------------------------------------------|-----------------------|-----------------------|------|
| I <sub>DD</sub>  | Digital supply current                                         | —                     | 185                   | mA   |
| V <sub>DIO</sub> | Digital input voltage (except RESET, EXTAL, and XTAL)          | -0.3                  | 5.5                   | V    |
| V <sub>AIO</sub> | Analog <sup>1</sup> , RESET, EXTAL, and XTAL input voltage     | -0.3                  | V <sub>DD</sub> + 0.3 | V    |
| I <sub>D</sub>   | Maximum current single pin limit (applies to all digital pins) | -25                   | 25                    | mA   |
| V <sub>DDA</sub> | Analog supply voltage                                          | V <sub>DD</sub> – 0.3 | V <sub>DD</sub> + 0.3 | V    |
| V <sub>BAT</sub> | RTC battery supply voltage                                     | -0.3                  | 3.8                   | V    |

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

### 5 General

### 5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.



The midpoint is  $V_{IL} + (V_{IH} - V_{IL})/2$ .

#### Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
  - have  $C_L=30$  pF loads,
  - are configured for fast slew rate (PORTx\_PCRn[SRE]=0), and
  - are configured for high drive strength (PORTx\_PCRn[DSE]=1)
- 2. input pins
  - have their passive filter disabled (PORTx\_PCRn[PFE]=0)

### 5.2 Nonswitching electrical specifications



| 5.2.3 | Voltage and current operating behaviors          |
|-------|--------------------------------------------------|
|       | Table 4. Voltage and current operating behaviors |

| Symbol           | Description                                                                                           | Min.                  | Max.  | Unit | Notes |
|------------------|-------------------------------------------------------------------------------------------------------|-----------------------|-------|------|-------|
| V <sub>OH</sub>  | Output high voltage — high drive strength                                                             |                       |       |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -9mA                                   | V <sub>DD</sub> – 0.5 | _     | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -3\text{mA}$    | V <sub>DD</sub> – 0.5 | _     | V    |       |
|                  | Output high voltage — low drive strength                                                              |                       |       |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -2mA                                   | V <sub>DD</sub> – 0.5 | _     | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$ | V <sub>DD</sub> – 0.5 | _     | V    |       |
| I <sub>OHT</sub> | Output high current total for all ports                                                               | _                     | 100   | mA   |       |
| V <sub>OL</sub>  | Output low voltage — high drive strength                                                              |                       |       |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 9mA                                    | _                     | 0.5   | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3\text{mA}$     | —                     | 0.5   | V    |       |
|                  | Output low voltage — low drive strength                                                               |                       |       |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 2mA                                    | _                     | 0.5   | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$  | _                     | 0.5   | V    |       |
| I <sub>OLT</sub> | Output low current total for all ports                                                                | _                     | 100   | mA   |       |
| I <sub>IN</sub>  | Input leakage current (per pin) for full temperature range                                            | -                     | 1     | μA   | 1     |
| l <sub>IN</sub>  | Input leakage current (per pin) at 25°C                                                               | _                     | 0.025 | μA   | 1     |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                                                            | _                     | 1     | μA   |       |
| R <sub>PU</sub>  | Internal pullup resistors                                                                             | 20                    | 50    | kΩ   | 2     |
| R <sub>PD</sub>  | Internal pulldown resistors                                                                           | 20                    | 50    | kΩ   | 3     |

1. Measured at VDD=3.6V

2. Measured at V<sub>DD</sub> supply voltage = V<sub>DD</sub> min and Vinput = V<sub>SS</sub>

3. Measured at  $V_{\text{DD}}$  supply voltage =  $V_{\text{DD}}$  min and Vinput =  $V_{\text{DD}}$ 

### 5.2.4 Power mode transition operating behaviors

All specifications except  $t_{POR}$ , and VLLSx $\rightarrow$ RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- Flash clock = 24 MHz





Figure 2. Run mode supply current vs. core frequency

rempheral operating requirements and behaviors

### 6.3.1 MCG specifications Table 14. MCG specifications

| Symbol                   | Description                                                    |                                                                  | Min.  | Тур.      | Max.    | Unit              | Notes |
|--------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------|-----------|---------|-------------------|-------|
| f <sub>ints_ft</sub>     | Internal reference<br>factory trimmed at                       | frequency (slow clock) —<br>nominal VDD and 25 °C                | _     | 32.768    | —       | kHz               |       |
| f <sub>ints_t</sub>      | Internal reference<br>trimmed                                  | 31.25                                                            | _     | 39.0625   | kHz     |                   |       |
| Δ <sub>fdco_res_t</sub>  | Resolution of trimr<br>frequency at fixed<br>using SCTRIM and  | ned average DCO output<br>voltage and temperature —<br>d SCFTRIM | _     | ± 0.3     | ± 0.6   | %f <sub>dco</sub> | 1     |
| $\Delta f_{dco\_res\_t}$ | Resolution of trimr<br>frequency at fixed<br>using SCTRIM onl  | ned average DCO output<br>voltage and temperature —<br>y         | _     | ± 0.2     | ± 0.5   | %f <sub>dco</sub> | 1     |
| Δf <sub>dco_t</sub>      | Total deviation of t<br>frequency over vo                      | trimmed average DCO output<br>Itage and temperature              | —     | +0.5/-0.7 | _       | %f <sub>dco</sub> | 1     |
| ∆f <sub>dco_t</sub>      | Total deviation of t<br>frequency over fixe<br>range of 0–70°C | trimmed average DCO output<br>ed voltage and temperature         | _     | ± 0.3     | ± 0.3   | %f <sub>dco</sub> | 1     |
| f <sub>intf_ft</sub>     | Internal reference<br>factory trimmed at                       |                                                                  | 4     | _         | MHz     |                   |       |
| f <sub>intf_t</sub>      | Internal reference<br>trimmed at nomina                        | 3                                                                | _     | 5         | MHz     |                   |       |
| f <sub>loc_low</sub>     | Loss of external cl<br>RANGE = 00                              | (3/5) x<br>f <sub>ints_t</sub>                                   | _     |           | kHz     |                   |       |
| f <sub>loc_high</sub>    | Loss of external cl<br>RANGE = 01, 10,                         | (16/5) x<br>f <sub>ints_t</sub>                                  | _     |           | kHz     |                   |       |
|                          |                                                                | FI                                                               | ĹĹ    |           |         |                   |       |
| f <sub>fll_ref</sub>     | FLL reference free                                             | luency range                                                     | 31.25 | —         | 39.0625 | kHz               |       |
| f <sub>dco</sub>         | DCO output<br>frequency range                                  | Low range (DRS=00)<br>640 × f <sub>fll ref</sub>                 | 20    | 20.97     | 25      | MHz               | 2, 3  |
|                          |                                                                | Mid range (DRS=01)<br>1280 × f <sub>fll_ref</sub>                | 40    | 41.94     | 50      | MHz               | -     |
|                          |                                                                | Mid-high range (DRS=10)<br>1920 × f <sub>fll_ref</sub>           | 60    | 62.91     | 75      | MHz               |       |
|                          |                                                                | High range (DRS=11)<br>2560 × f <sub>fll ref</sub>               | 80    | 83.89     | 100     | MHz               | -     |
| f <sub>dco_t_DMX32</sub> | DCO output<br>frequency                                        | Low range (DRS=00)                                               |       | 23.99     |         | MHz               | 4, 5  |
|                          |                                                                | Mid range (DRS=01)<br>1464 × f <sub>fll_ref</sub>                |       | 47.97     |         | MHz               |       |
|                          |                                                                | Mid-high range (DRS=10)<br>2197 × f <sub>fll ref</sub>           | _     | 71.99     | —       | MHz               |       |
|                          |                                                                | High range (DRS=11)<br>2929 × f <sub>fll_ref</sub>               | _     | 95.98     | _       | MHz               |       |

Table continues on the next page...



### 6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                    | Description                              | Min. | Тур. | Max. | Unit | Notes |
|---------------------------|------------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>       | Longword Program high-voltage time       | _    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub>     | Sector Erase high-voltage time           | —    | 13   | 113  | ms   | 1     |
| t <sub>hversblk32k</sub>  | Erase Block high-voltage time for 32 KB  | _    | 52   | 452  | ms   | 1     |
| t <sub>hversblk256k</sub> | Erase Block high-voltage time for 256 KB |      | 104  | 904  | ms   | 1     |

#### Table 19. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

#### 6.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications

| Symbol                  | Description                                           | Min. | Тур. | Max. | Unit | Notes |
|-------------------------|-------------------------------------------------------|------|------|------|------|-------|
|                         | Read 1s Block execution time                          |      |      |      |      |       |
| t <sub>rd1blk32k</sub>  | • 32 KB data flash                                    | —    | —    | 0.5  | ms   |       |
| t <sub>rd1blk256k</sub> | • 256 KB program flash                                | _    | —    | 1.7  | ms   |       |
| t <sub>rd1sec1k</sub>   | Read 1s Section execution time (data flash sector)    | _    | _    | 60   | μs   | 1     |
| t <sub>rd1sec2k</sub>   | Read 1s Section execution time (program flash sector) | _    |      | 60   | μs   | 1     |
| t <sub>pgmchk</sub>     | Program Check execution time                          | _    | _    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>     | Read Resource execution time                          | _    | _    | 30   | μs   | 1     |
| t <sub>pgm4</sub>       | Program Longword execution time                       |      | 65   | 145  | μs   |       |
|                         | Erase Flash Block execution time                      |      |      |      |      | 2     |
| t <sub>ersblk32k</sub>  | 32 KB data flash                                      | —    | 55   | 465  | ms   |       |
| t <sub>ersblk256k</sub> | • 256 KB program flash                                | —    | 122  | 985  | ms   |       |
| t <sub>ersscr</sub>     | Erase Flash Sector execution time                     | —    | 14   | 114  | ms   | 2     |
|                         | Program Section execution time                        |      |      |      |      |       |
| t <sub>pgmsec512p</sub> | • 512 B program flash                                 | _    | 2.4  | —    | ms   |       |
| t <sub>pgmsec512d</sub> | • 512 B data flash                                    | _    | 4.7  | _    | ms   |       |
| t <sub>pgmsec1kp</sub>  | <ul> <li>1 KB program flash</li> </ul>                | _    | 4.7  | _    | ms   |       |
| t <sub>pgmsec1kd</sub>  | • 1 KB data flash                                     | _    | 9.3  |      | ms   |       |
| t <sub>rd1all</sub>     | Read 1s All Blocks execution time                     | _    | —    | 1.8  | ms   |       |
| t <sub>rdonce</sub>     | Read Once execution time                              |      |      | 25   | μs   | 1     |
| t <sub>pgmonce</sub>    | Program Once execution time                           |      | 65   |      | μs   |       |
| t <sub>ersall</sub>     | Erase All Blocks execution time                       | —    | 175  | 1500 | ms   | 2     |

Table continues on the next page...



### 6.4.1.3 Flash high voltage current behaviors Table 21. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation | —    | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       | —    | 1.5  | 4.0  | mA   |

### 6.4.1.4 Reliability specifications Table 22. NVM reliability specifications

| Symbol                   | Description                                              | Min.     | Typ. <sup>1</sup> | Max. | Unit   | Notes |  |  |  |  |
|--------------------------|----------------------------------------------------------|----------|-------------------|------|--------|-------|--|--|--|--|
|                          | Program                                                  | n Flash  |                   |      |        |       |  |  |  |  |
| t <sub>nvmretp10k</sub>  | Data retention after up to 10 K cycles                   | 5        | 50                | —    | years  |       |  |  |  |  |
| t <sub>nvmretp1k</sub>   | Data retention after up to 1 K cycles                    | 20       | 100               | —    | years  |       |  |  |  |  |
| n <sub>nvmcycp</sub>     | Cycling endurance                                        | 10 K     | 50 K              | _    | cycles | 2     |  |  |  |  |
|                          | Data Flash                                               |          |                   |      |        |       |  |  |  |  |
| t <sub>nvmretd10k</sub>  | Data retention after up to 10 K cycles                   | 5        | 50                | _    | years  |       |  |  |  |  |
| t <sub>nvmretd1k</sub>   | Data retention after up to 1 K cycles                    | 20       | 100               | —    | years  |       |  |  |  |  |
| n <sub>nvmcycd</sub>     | Cycling endurance                                        | 10 K     | 50 K              |      | cycles | 2     |  |  |  |  |
|                          | FlexRAM a                                                | s EEPROM |                   |      |        |       |  |  |  |  |
| t <sub>nvmretee100</sub> | Data retention up to 100% of write endurance             | 5        | 50                | —    | years  |       |  |  |  |  |
| t <sub>nvmretee10</sub>  | Data retention up to 10% of write endurance              | 20       | 100               |      | years  |       |  |  |  |  |
|                          | Write endurance                                          |          |                   |      |        | 3     |  |  |  |  |
| n <sub>nvmwree16</sub>   | <ul> <li>EEPROM backup to FlexRAM ratio = 16</li> </ul>  | 35 K     | 175 K             | —    | writes |       |  |  |  |  |
| n <sub>nvmwree128</sub>  | <ul> <li>EEPROM backup to FlexRAM ratio = 128</li> </ul> | 315 K    | 1.6 M             | _    | writes |       |  |  |  |  |
| n <sub>nvmwree512</sub>  | <ul> <li>EEPROM backup to FlexRAM ratio = 512</li> </ul> | 1.27 M   | 6.4 M             | _    | writes |       |  |  |  |  |
| n <sub>nvmwree4k</sub>   | EEPROM backup to FlexRAM ratio = 4096                    | 10 M     | 50 M              | _    | writes |       |  |  |  |  |
| n <sub>nvmwree8k</sub>   | EEPROM backup to FlexRAM ratio = 8192                    | 20 M     | 100 M             | _    | writes |       |  |  |  |  |
|                          |                                                          |          |                   |      |        |       |  |  |  |  |

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C  $\leq$  T<sub>i</sub>  $\leq$  125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.

### 6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.



rempheral operating requirements and behaviors



Figure 12. ADC input impedance equivalency diagram

### 6.6.1.2 16-bit ADC electrical characteristics Table 25. 16-bit ADC characteristics (V<sub>REFH</sub> = V<sub>DDA</sub>, V<sub>REFL</sub> = V<sub>SSA</sub>)

| Symbol               | Description                  | Conditions <sup>1</sup>                       | Min.  | Typ. <sup>2</sup> | Max.         | Unit             | Notes               |  |  |  |
|----------------------|------------------------------|-----------------------------------------------|-------|-------------------|--------------|------------------|---------------------|--|--|--|
| I <sub>DDA_ADC</sub> | Supply current               |                                               | 0.215 | —                 | 1.7          | mA               | 3                   |  |  |  |
|                      | ADC                          | • ADLPC = 1, ADHSC = 0                        | 1.2   | 2.4               | 3.9          | MHz              | $t_{ADACK} = 1/$    |  |  |  |
|                      | asynchronous<br>clock source | • ADLPC = 1, ADHSC = 1                        | 2.4   | 4.0               | 6.1          | MHz              | † <sub>ADACK</sub>  |  |  |  |
| † <sub>ADACK</sub>   |                              | • ADLPC = 0, ADHSC = 0                        | 3.0   | 5.2               | 7.3          | MHz              |                     |  |  |  |
|                      |                              | • ADLPC = 0, ADHSC = 1                        | 4.4   | 6.2               | 9.5          | MHz              |                     |  |  |  |
|                      | Sample Time                  | See Reference Manual chapter for sample times |       |                   |              |                  |                     |  |  |  |
| TUE                  | Total unadjusted             | 12-bit modes                                  |       | ±4                | ±6.8         | LSB <sup>4</sup> | 5                   |  |  |  |
|                      | error                        | • <12-bit modes                               | —     | ±1.4              | ±2.1         |                  |                     |  |  |  |
| DNL                  | Differential non-            | 12-bit modes                                  |       | ±0.7              | -1.1 to +1.9 | LSB <sup>4</sup> | 5                   |  |  |  |
|                      | linearity                    |                                               |       |                   | -0.3 to 0.5  |                  |                     |  |  |  |
|                      |                              | <ul> <li>&lt;12-bit modes</li> </ul>          | _     | ±0.2              |              |                  |                     |  |  |  |
| INL                  | Integral non-                | 12-bit modes                                  |       | ±1.0              | -2.7 to +1.9 | LSB <sup>4</sup> | 5                   |  |  |  |
|                      | linearity                    |                                               |       |                   | -0.7 to +0.5 |                  |                     |  |  |  |
|                      |                              | <ul> <li>&lt;12-bit modes</li> </ul>          |       | ±0.5              |              |                  |                     |  |  |  |
| E <sub>FS</sub>      | Full-scale error             | 12-bit modes                                  | _     | -4                | -5.4         | LSB <sup>4</sup> | V <sub>ADIN</sub> = |  |  |  |
|                      |                              | <ul> <li>&lt;12-bit modes</li> </ul>          | _     | -1.4              | -1.8         |                  | V <sub>DDA</sub>    |  |  |  |
|                      |                              |                                               |       |                   |              |                  | 5                   |  |  |  |

Table continues on the next page...



| Symbol              | Description                     | Conditions <sup>1</sup>                                     | Min. | Typ. <sup>2</sup>      | Max. | Unit             | Notes                                                                     |
|---------------------|---------------------------------|-------------------------------------------------------------|------|------------------------|------|------------------|---------------------------------------------------------------------------|
| Eq                  | Quantization                    | 16-bit modes                                                | —    | -1 to 0                | —    | LSB <sup>4</sup> |                                                                           |
|                     | enor                            | <ul> <li>≤13-bit modes</li> </ul>                           | _    | _                      | ±0.5 |                  |                                                                           |
| ENOB                | Effective number                | 16-bit differential mode                                    |      |                        |      |                  | 6                                                                         |
|                     | OT DITS                         | • Avg = 32                                                  | 12.8 | 14.5                   | —    | bits             |                                                                           |
|                     |                                 | • Avg = 4                                                   | 11.9 | 13.8                   | _    | bits             |                                                                           |
|                     |                                 | 16-bit single-ended mode                                    |      |                        |      |                  |                                                                           |
|                     |                                 | • $Avg = 4$                                                 | 12.2 | 13.9                   | —    | bits             |                                                                           |
|                     |                                 |                                                             | 11.4 | 13.1                   |      | bits             |                                                                           |
| SINAD               | Signal-to-noise plus distortion | See ENOB                                                    | 6.02 | 2 × ENOB +             | dB   |                  |                                                                           |
| THD                 | Total harmonic distortion       | <ul><li>16-bit differential mode</li><li>Avg = 32</li></ul> | _    | -94                    | _    | dB               | 7                                                                         |
|                     |                                 | <ul><li>16-bit single-ended mode</li><li>Avg = 32</li></ul> | _    | -85                    | _    | dB               |                                                                           |
| SFDR                | Spurious free<br>dynamic range  | <ul><li>16-bit differential mode</li><li>Avg = 32</li></ul> | 82   | 95                     | _    | dB               | 7                                                                         |
|                     |                                 | <ul><li>16-bit single-ended mode</li><li>Avg = 32</li></ul> | 78   | 90                     | _    | dB               |                                                                           |
| EIL                 | Input leakage<br>error          |                                                             |      | $I_{ln} \times R_{AS}$ |      | mV               | I <sub>In</sub> =<br>leakage<br>current                                   |
|                     |                                 |                                                             |      |                        |      |                  | (refer to<br>the MCU's<br>voltage<br>and current<br>operating<br>ratings) |
|                     | Temp sensor<br>slope            | Across the full temperature range of the device             |      | 1.715                  |      | mV/°C            |                                                                           |
| V <sub>TEMP25</sub> | Temp sensor<br>voltage          | 25 °C                                                       | —    | 719                    | —    | mV               |                                                                           |

#### Table 25. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with  $V_{REFH} = V_{DDA}$
- Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25°C, f<sub>ADCK</sub> = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB =  $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.



rempheral operating requirements and behaviors

### 6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled (ADC\_PGA[PGACHPb] =0) Table 27. 16-bit ADC with PGA characteristics

| Symbol               | Description                     | Conditions                                      | Min.                                                 | Typ. <sup>1</sup>                    | Max.                  | Unit   | Notes                                                                  |
|----------------------|---------------------------------|-------------------------------------------------|------------------------------------------------------|--------------------------------------|-----------------------|--------|------------------------------------------------------------------------|
| I <sub>DDA_PGA</sub> | Supply current                  | Low power<br>(ADC_PGA[PGALPb]=0)                | _                                                    | 420                                  | 644                   | μΑ     | 2                                                                      |
| I <sub>DC_PGA</sub>  | Input DC current                |                                                 | $\frac{2}{R_{\text{PGAD}}} \left(\frac{1}{2}\right)$ | V <sub>REFPGA</sub> ×0.5<br>(Gain+   | 83)–V <sub>CM</sub> ) | A      | 3                                                                      |
|                      |                                 | Gain =1, $V_{REFPGA}$ =1.2V,<br>$V_{CM}$ =0.5V  | —                                                    | 1.54                                 |                       | μA     |                                                                        |
|                      |                                 | Gain =64, $V_{REFPGA}$ =1.2V,<br>$V_{CM}$ =0.1V | -                                                    | 0.57                                 | —                     | μΑ     |                                                                        |
| G                    | Gain <sup>4</sup>               | PGAG=0                                          | 0.95                                                 | 1                                    | 1.05                  |        | $R_{AS} < 100\Omega$                                                   |
|                      |                                 | PGAG=1                                          | 1.9                                                  | 2                                    | 2.1                   |        |                                                                        |
|                      |                                 | • PGAG=2                                        | 3.8                                                  | 4                                    | 4.2                   |        |                                                                        |
|                      |                                 | • PGAG=3                                        | 7.6                                                  | 8                                    | 8.4                   |        |                                                                        |
|                      |                                 | • PGAG=4                                        | 15.2                                                 | 16                                   | 16.6                  |        |                                                                        |
|                      |                                 | • PGAG=5                                        | 30.0                                                 | 31.6                                 | 33.2                  |        |                                                                        |
|                      |                                 | • PGAG=6                                        | 58.8                                                 | 63.3                                 | 67.8                  |        |                                                                        |
| BW                   | Input signal                    | 16-bit modes                                    | —                                                    | —                                    | 4                     | kHz    |                                                                        |
|                      | bandwidth                       | <ul> <li>&lt; 16-bit modes</li> </ul>           | _                                                    | _                                    | 40                    | kHz    |                                                                        |
| PSRR                 | Power supply rejection ratio    | Gain=1                                          | _                                                    | -84                                  | _                     | dB     | V <sub>DDA</sub> = 3V<br>±100mV,<br>f <sub>VDDA</sub> = 50Hz,<br>60Hz  |
| CMRR                 | Common mode                     | Gain=1                                          | —                                                    | -84                                  | _                     | dB     | V <sub>CM</sub> =                                                      |
|                      | rejection ratio                 | • Gain=64                                       | _                                                    | -85                                  | —                     | dB     | 500mVpp,<br>f <sub>VCM</sub> = 50Hz,<br>100Hz                          |
| V <sub>OFS</sub>     | Input offset<br>voltage         |                                                 | _                                                    | 0.2                                  | —                     | mV     | Output offset =<br>V <sub>OFS</sub> *(Gain+1)                          |
| T <sub>GSW</sub>     | Gain switching<br>settling time |                                                 | _                                                    | _                                    | 10                    | μs     | 5                                                                      |
| dG/dT                | Gain drift over full            | • Gain=1                                        | —                                                    | 6                                    | 10                    | ppm/°C |                                                                        |
|                      | temperature range               | • Gain=64                                       | —                                                    | 31                                   | 42                    | ppm/°C |                                                                        |
| dG/dV <sub>DDA</sub> | Gain drift over                 | • Gain=1                                        | —                                                    | 0.07                                 | 0.21                  | %/V    | V <sub>DDA</sub> from 1.71                                             |
|                      | supply voltage                  | • Gain=64                                       |                                                      | 0.14                                 | 0.31                  | %/V    | to 3.6V                                                                |
| EIL                  | Input leakage<br>error          | All modes                                       |                                                      | $I_{\text{In}} \times R_{\text{AS}}$ |                       | mV     | I <sub>In</sub> = leakage<br>current                                   |
|                      |                                 |                                                 |                                                      |                                      |                       |        | (refer to the<br>MCU's voltage<br>and current<br>operating<br>ratings) |

Table continues on the next page ...



Peripheral operating requirements and behaviors

| Symbol               | Description                                   | Conditions            | Min.                             | Typ. <sup>1</sup>                                          | Max.                 | Unit | Notes                                                          |
|----------------------|-----------------------------------------------|-----------------------|----------------------------------|------------------------------------------------------------|----------------------|------|----------------------------------------------------------------|
| V <sub>PP,DIFF</sub> | Maximum<br>differential input<br>signal swing |                       | $\left(\frac{\min(V)}{V}\right)$ | √ <sub>x</sub> ,V <sub>DDA</sub> −V <sub>x</sub> )<br>Gain | <u>-0.2)×4</u> )     | V    | 6                                                              |
|                      |                                               |                       | where V <sub>2</sub>             | $K = V_{\text{REFPG}}$                                     | <sub>A</sub> × 0.583 |      |                                                                |
| SNR                  | Signal-to-noise                               | Gain=1                | 80                               | 90                                                         |                      | dB   | 16-bit                                                         |
| ratio                | ratio                                         | • Gain=64             | 52                               | 66                                                         | _                    | dB   | differential<br>mode,<br>Average=32                            |
| THD Total harmonic   | Total harmonic                                | Gain=1                | 85                               | 100                                                        | —                    | dB   | 16-bit                                                         |
|                      | distortion                                    | • Gain=64             | 49                               | 95                                                         | _                    | dB   | differential<br>mode,<br>Average=32,<br>f <sub>in</sub> =100Hz |
| SFDR                 | Spurious free                                 | Gain=1                | 85                               | 105                                                        | —                    | dB   | 16-bit                                                         |
|                      | dynamic range                                 | • Gain=64             | 53                               | 88                                                         | _                    | dB   | differential<br>mode,<br>Average=32,<br>f <sub>in</sub> =100Hz |
| ENOB                 | Effective number                              | Gain=1, Average=4     | 11.6                             | 13.4                                                       |                      | bits | 16-bit                                                         |
|                      | of bits                                       | Gain=64, Average=4    | 7.2                              | 9.6                                                        | _                    | bits | differential<br>mode.f <sub>in</sub> =100Hz                    |
|                      |                                               | Gain=1, Average=32    | 12.8                             | 14.5                                                       | —                    | bits |                                                                |
|                      |                                               | Gain=2, Average=32    | 11.0                             | 14.3                                                       | _                    | bits |                                                                |
|                      |                                               | Gain=4, Average=32    | 7.9                              | 13.8                                                       | _                    | bits |                                                                |
|                      |                                               | Gain=8, Average=32    | 7.3                              | 13.1                                                       | _                    | bits |                                                                |
|                      |                                               | Gain=16, Average=32   | 6.8                              | 12.5                                                       | _                    | bits |                                                                |
|                      |                                               | Gain=32, Average=32   | 6.8                              | 11.5                                                       | _                    | bits |                                                                |
|                      |                                               | • Gain=64, Average=32 | 7.5                              | 10.6                                                       |                      | bits |                                                                |
| SINAD                | Signal-to-noise<br>plus distortion<br>ratio   | See ENOB              | 6.02                             | × ENOB +                                                   | 1.76                 | dB   |                                                                |

#### Table 27. 16-bit ADC with PGA characteristics (continued)

- 1. Typical values assume V<sub>DDA</sub> =3.0V, Temp=25°C,  $f_{ADCK}$ =6MHz unless otherwise stated.
- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V<sub>CM</sub>) and the PGA gain.
- 4. Gain =  $2^{PGAG}$
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

# 6.6.2 CMP and 6-bit DAC electrical specifications

#### Table 28. Comparator and 6-bit DAC electrical specifications

| Symbol          | Description    | Min. | Тур. | Max. | Unit |
|-----------------|----------------|------|------|------|------|
| V <sub>DD</sub> | Supply voltage | 1.71 |      | 3.6  | V    |

Table continues on the next page...



#### rempheral operating requirements and behaviors

| Symbol             | Description                                         | Min.                  | Тур. | Max.            | Unit             |
|--------------------|-----------------------------------------------------|-----------------------|------|-----------------|------------------|
| I <sub>DDHS</sub>  | Supply current, High-speed mode (EN=1, PMODE=1)     | —                     | —    | 200             | μA               |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN=1, PMODE=0)      | —                     | _    | 20              | μA               |
| V <sub>AIN</sub>   | Analog input voltage                                | V <sub>SS</sub> – 0.3 | —    | V <sub>DD</sub> | V                |
| V <sub>AIO</sub>   | Analog input offset voltage                         | _                     | _    | 20              | mV               |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>           |                       |      |                 |                  |
|                    | • CR0[HYSTCTR] = 00                                 | —                     | 5    | —               | mV               |
|                    | • CR0[HYSTCTR] = 01                                 | —                     | 10   | —               | mV               |
|                    | • CR0[HYSTCTR] = 10                                 | _                     | 20   | —               | mV               |
|                    | • CR0[HYSTCTR] = 11                                 | _                     | 30   | _               | mV               |
| V <sub>CMPOh</sub> | Output high                                         | V <sub>DD</sub> – 0.5 |      | _               | V                |
| V <sub>CMPOI</sub> | Output low                                          | —                     | _    | 0.5             | V                |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN=1, PMODE=1)  | 20                    | 50   | 200             | ns               |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN=1, PMODE=0)   | 80                    | 250  | 600             | ns               |
|                    | Analog comparator initialization delay <sup>2</sup> | —                     | _    | 40              | μs               |
| I <sub>DAC6b</sub> | 6-bit DAC current adder (enabled)                   | —                     | 7    | —               | μA               |
| INL                | 6-bit DAC integral non-linearity                    | -0.5                  | —    | 0.5             | LSB <sup>3</sup> |
| DNL                | 6-bit DAC differential non-linearity                | -0.3                  | —    | 0.3             | LSB              |

#### Table 28. Comparator and 6-bit DAC electrical specifications (continued)

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V<sub>DD</sub>-0.6V.

2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.

3. 1 LSB =  $V_{reference}/64$ 



rempheral operating requirements and behaviors



Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

### 6.6.3 12-bit DAC electrical characteristics

### 6.6.3.1 12-bit DAC operating requirements Table 29. 12-bit DAC operating requirements

| Symbol            | Desciption              | Min.                      | Max.                    | Unit | Notes |
|-------------------|-------------------------|---------------------------|-------------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage          | 1.71 3.6                  |                         | V    |       |
| V <sub>DACR</sub> | Reference voltage       | 1.13                      | 3.6                     | V    | 1     |
| T <sub>A</sub>    | Temperature             | Operating t<br>range of t | emperature<br>he device | °C   |       |
| CL                | Output load capacitance | _                         | 100                     | pF   | 2     |
| ١L                | Output load current     |                           | 1                       | mA   |       |

1. The DAC reference can be selected to be V<sub>DDA</sub> or the voltage output of the VREF module (VREF\_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC



#### 6.6.3.2 12-bit DAC operating behaviors Table 30. 12-bit DAC operating behaviors

| Symbol                     | Description                                                                         | Min.                      | Тур.     | Max.              | Unit   | Notes |
|----------------------------|-------------------------------------------------------------------------------------|---------------------------|----------|-------------------|--------|-------|
| I <sub>DDA_DACL</sub><br>P | Supply current — low-power mode                                                     | _                         | _        | 150               | μΑ     |       |
| I <sub>DDA_DACH</sub>      | Supply current — high-speed mode                                                    | _                         | _        | 700               | μΑ     |       |
| tDACLP                     | Full-scale settling time (0x080 to 0xF7F) —<br>low-power mode                       | _                         | 100      | 200               | μs     | 1     |
| t <sub>DACHP</sub>         | Full-scale settling time (0x080 to 0xF7F) — high-power mode                         | —                         | 15       | 30                | μs     | 1     |
| t <sub>CCDACLP</sub>       | Code-to-code settling time (0xBF8 to 0xC08)<br>— low-power mode and high-speed mode | _                         | 0.7      | 1                 | μs     | 1     |
| V <sub>dacoutl</sub>       | DAC output voltage range low — high-speed mode, no load, DAC set to 0x000           | _                         | _        | 100               | mV     |       |
| V <sub>dacouth</sub>       | DAC output voltage range high — high-<br>speed mode, no load, DAC set to 0xFFF      | V <sub>DACR</sub><br>-100 | _        | V <sub>DACR</sub> | mV     |       |
| INL                        | Integral non-linearity error — high speed mode                                      | —                         | _        | ±8                | LSB    | 2     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> > 2<br>V                       | —                         | _        | ±1                | LSB    | 3     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> = VREF_OUT                     | —                         |          | ±1                | LSB    | 4     |
| VOFFSET                    | Offset error                                                                        | —                         | ±0.4     | ±0.8              | %FSR   | 5     |
| E <sub>G</sub>             | Gain error                                                                          | _                         | ±0.1     | ±0.6              | %FSR   | 5     |
| PSRR                       | Power supply rejection ratio, $V_{DDA} \ge 2.4 V$                                   | 60                        | —        | 90                | dB     |       |
| T <sub>CO</sub>            | Temperature coefficient offset voltage                                              | _                         | 3.7      | _                 | μV/C   | 6     |
| T <sub>GE</sub>            | Temperature coefficient gain error                                                  | _                         | 0.000421 | _                 | %FSR/C |       |
| Rop                        | Output resistance load = $3 \text{ k}\Omega$                                        | _                         | —        | 250               | Ω      |       |
| SR                         | Slew rate -80h→ F7Fh→ 80h                                                           |                           |          |                   | V/µs   |       |
|                            | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                                    | 1.2                       | 1.7      | —                 |        |       |
|                            | Low power (SP <sub>LP</sub> )                                                       | 0.05                      | 0.12     | _                 |        |       |
| СТ                         | Channel to channel cross talk                                                       | —                         | —        | -80               | dB     |       |
| BW                         | 3dB bandwidth                                                                       |                           |          |                   | kHz    |       |
|                            | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul>                                    | 550                       | _        | —                 |        |       |
|                            | Low power (SP <sub>LP</sub> )                                                       | 40                        | _        | —                 |        |       |

1. Settling within ±1 LSB

- 2. The INL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV
- 3. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV
- 4. The DNL is measured for 0 + 100 mV to V\_{DACR} –100 mV with V\_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V\_{SS} + 100 mV to V\_{DACR} 100 mV
- V<sub>DDA</sub> = 3.0 V, reference select set for V<sub>DDA</sub> (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device



| Num  | Description                              | Min.                      | Max.                      | Unit |
|------|------------------------------------------|---------------------------|---------------------------|------|
|      | Operating voltage                        | 2.7                       | 3.6                       | V    |
|      | Frequency of operation                   |                           | 12.5                      | MHz  |
| DS9  | DSPI_SCK input cycle time                | 4 x t <sub>BUS</sub>      | _                         | ns   |
| DS10 | DSPI_SCK input high/low time             | (t <sub>SCK</sub> /2) – 2 | (t <sub>SCK</sub> /2) + 2 | ns   |
| DS11 | DSPI_SCK to DSPI_SOUT valid              | _                         | 10                        | ns   |
| DS12 | DSPI_SCK to DSPI_SOUT invalid            | 0                         | _                         | ns   |
| DS13 | DSPI_SIN to DSPI_SCK input setup         | 2                         | —                         | ns   |
| DS14 | DSPI_SCK to DSPI_SIN input hold          | 7                         | —                         | ns   |
| DS15 | DSPI_SS active to DSPI_SOUT driven       | —                         | 14                        | ns   |
| DS16 | DSPI_SS inactive to DSPI_SOUT not driven |                           | 14                        | ns   |





Figure 20. DSPI classic SPI timing — slave mode

### 6.8.3 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

| Num | Description                | Min.                 | Max. | Unit | Notes |
|-----|----------------------------|----------------------|------|------|-------|
|     | Operating voltage          | 1.71                 | 3.6  | V    | 1     |
|     | Frequency of operation     | —                    | 12.5 | MHz  |       |
| DS1 | DSPI_SCK output cycle time | 4 x t <sub>BUS</sub> | _    | ns   |       |

Table 37. Master mode DSPI timing (full voltage range)

Table continues on the next page...



| 64<br>LQFP<br>QFN | Pin Name          | Default                                       | ALTO                                          | ALT1              | ALT2                            | ALT3                            | ALT4         | ALT5     | ALT6            | ALT7                   | EzPort   |
|-------------------|-------------------|-----------------------------------------------|-----------------------------------------------|-------------------|---------------------------------|---------------------------------|--------------|----------|-----------------|------------------------|----------|
| 21                | VBAT              | VBAT                                          | VBAT                                          |                   |                                 |                                 |              |          |                 |                        |          |
| 22                | PTA0              | JTAG_TCLK/<br>SWD_CLK/<br>EZP_CLK             | TSI0_CH1                                      | PTA0              | UART0_CTS_<br>b/<br>UART0_COL_b | FTM0_CH5                        |              |          |                 | JTAG_TCLK/<br>SWD_CLK  | EZP_CLK  |
| 23                | PTA1              | JTAG_TDI/<br>EZP_DI                           | TSI0_CH2                                      | PTA1              | UART0_RX                        | FTM0_CH6                        |              |          |                 | JTAG_TDI               | EZP_DI   |
| 24                | PTA2              | JTAG_TDO/<br>TRACE_SWO/<br>EZP_DO             | TSI0_CH3                                      | PTA2              | UART0_TX                        | FTM0_CH7                        |              |          |                 | JTAG_TDO/<br>TRACE_SWO | EZP_DO   |
| 25                | PTA3              | JTAG_TMS/<br>SWD_DIO                          | TSI0_CH4                                      | PTA3              | UARTO_RTS_b                     | FTM0_CH0                        |              |          |                 | JTAG_TMS/<br>SWD_DIO   |          |
| 26                | PTA4/<br>LLWU_P3  | NMI_b/<br>EZP_CS_b                            | TSI0_CH5                                      | PTA4/<br>LLWU_P3  |                                 | FTM0_CH1                        |              |          |                 | NMI_b                  | EZP_CS_b |
| 27                | PTA5              | DISABLED                                      |                                               | PTA5              |                                 | FTM0_CH2                        |              | CMP2_OUT | I2S0_TX_BCLK    | JTAG_TRST_b            |          |
| 28                | PTA12             | CMP2_IN0                                      | CMP2_IN0                                      | PTA12             | CAN0_TX                         | FTM1_CH0                        |              |          | I2S0_TXD0       | FTM1_QD_<br>PHA        |          |
| 29                | PTA13/<br>LLWU_P4 | CMP2_IN1                                      | CMP2_IN1                                      | PTA13/<br>LLWU_P4 | CAN0_RX                         | FTM1_CH1                        |              |          | 12S0_TX_FS      | FTM1_QD_<br>PHB        |          |
| 30                | VDD               | VDD                                           | VDD                                           |                   |                                 |                                 |              |          |                 |                        |          |
| 31                | VSS               | VSS                                           | VSS                                           |                   |                                 |                                 |              |          |                 |                        |          |
| 32                | PTA18             | EXTALO                                        | EXTALO                                        | PTA18             |                                 | FTM0_FLT2                       | FTM_CLKIN0   |          |                 |                        |          |
| 33                | PTA19             | XTAL0                                         | XTAL0                                         | PTA19             |                                 | FTM1_FLT0                       | FTM_CLKIN1   |          | LPTMR0_ALT1     |                        |          |
| 34                | RESET_b           | RESET_b                                       | RESET_b                                       |                   |                                 |                                 |              |          |                 |                        |          |
| 35                | PTB0/<br>LLWU_P5  | LCD_P0/<br>ADC0_SE8/<br>ADC1_SE8/<br>TSI0_CH0 | LCD_P0/<br>ADC0_SE8/<br>ADC1_SE8/<br>TSI0_CH0 | PTB0/<br>LLWU_P5  | I2C0_SCL                        | FTM1_CH0                        |              |          | FTM1_QD_<br>PHA | LCD_P0                 |          |
| 36                | PTB1              | LCD_P1/<br>ADC0_SE9/<br>ADC1_SE9/<br>TSI0_CH6 | LCD_P1/<br>ADC0_SE9/<br>ADC1_SE9/<br>TSI0_CH6 | PTB1              | I2C0_SDA                        | FTM1_CH1                        |              |          | FTM1_QD_<br>PHB | LCD_P1                 |          |
| 37                | PTB2              | LCD_P2/<br>ADC0_SE12/<br>TSI0_CH7             | LCD_P2/<br>ADC0_SE12/<br>TSI0_CH7             | PTB2              | I2C0_SCL                        | UARTO_RTS_b                     |              |          | FTM0_FLT3       | LCD_P2                 |          |
| 38                | PTB3              | LCD_P3/<br>ADC0_SE13/<br>TSI0_CH8             | LCD_P3/<br>ADC0_SE13/<br>TSI0_CH8             | PTB3              | I2C0_SDA                        | UART0_CTS_<br>b/<br>UART0_COL_b |              |          | FTM0_FLT0       | LCD_P3                 |          |
| 39                | PTB16             | LCD_P12/<br>TSI0_CH9                          | LCD_P12/<br>TSI0_CH9                          | PTB16             |                                 | UARTO_RX                        |              |          | EWM_IN          | LCD_P12                |          |
| 40                | PTB17             | LCD_P13/<br>TSI0_CH10                         | LCD_P13/<br>TSI0_CH10                         | PTB17             |                                 | UART0_TX                        |              |          | EWM_OUT_b       | LCD_P13                |          |
| 41                | PTB18             | LCD_P14/<br>TSI0_CH11                         | LCD_P14/<br>TSI0_CH11                         | PTB18             | CAN0_TX                         | FTM2_CH0                        | I2S0_TX_BCLK |          | FTM2_QD_<br>PHA | LCD_P14                |          |
| 42                | PTB19             | LCD_P15/<br>TSI0_CH12                         | LCD_P15/<br>TSI0_CH12                         | PTB19             | CAN0_RX                         | FTM2_CH1                        | 12S0_TX_FS   |          | FTM2_QD_<br>PHB | LCD_P15                |          |
| 43                | PTC0              | LCD_P20/<br>ADC0_SE14/<br>TSI0_CH13           | LCD_P20/<br>ADC0_SE14/<br>TSI0_CH13           | PTC0              | SPI0_PCS4                       | PDB0_EXTRG                      |              |          | I2S0_TXD1       | LCD_P20                |          |