

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP Exposed Pad
Supplier Device Package	PG-TQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4100f64f128baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2015-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Summary of Features

			evice Type			
Derivative ¹⁾	ADC Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.
XMC4200-F64x256	10	2	2 x 4	1 x 4	1	1
XMC4200-Q48x256	9	2	2 x 4	1 x 4	1	1
XMC4100-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4100-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x64	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x64	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4108-F64x64	10	2	2 x 4	1 x 4	1	-
XMC4108-Q48x64	9	2	2 x 4	1 x 4	1	-

Table 4 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4[12]00 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Total Flash Size	Cached Range	Uncached Range
256 Kbytes	0800 0000 _H – 0803 FFFF _H	0C00 0000 _н – 0C03 FFFF _н
128 Kbytes	0800 0000 _H – 0801 FFFF _H	0C00 0000 _н – 0C01 FFFF _H
64 Kbytes	0800 0000 _H – 0800 FFFF _H	0С00 0000 _н – 0С00 FFFF _н

Table 5 Flash Memory Ranges

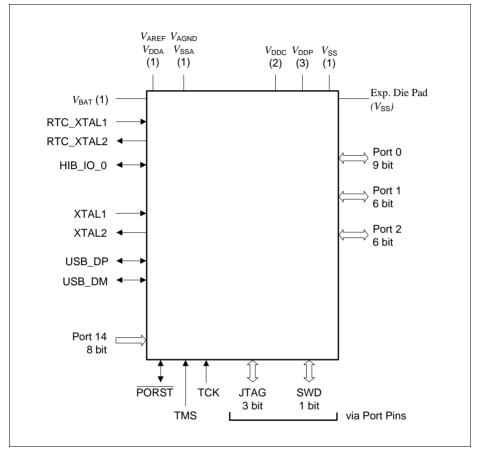
Summary of Features

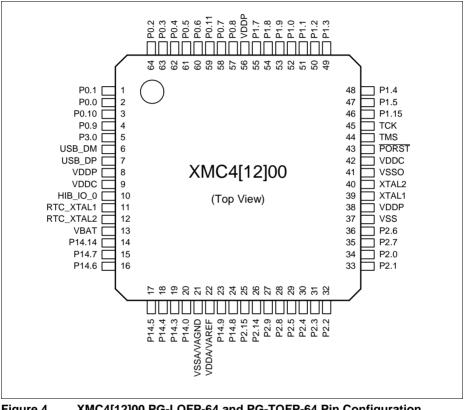
Table 9 XMC4100 Identification Registers									
Register Name	Value	Marking							
SCU_IDCHIP	0004 2001 _H	EES-AA, ES-AA							
SCU_IDCHIP	0004 2002 _H	ES-AB, AB							
SCU_IDCHIP	0004 1003 _H	BA							
JTAG IDCODE	101D D083 _H	EES-AA, ES-AA							
JTAG IDCODE	201D D083 _H	ES-AB, AB							
JTAG IDCODE	301D D083 _H	BA							

. . _

XMC4100 / XMC4200 XMC4000 Family

General Device Information




Figure 3 XMC4[12]00 Logic Symbol PG-VQFN-48

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC4[12]00 PG-LQFP-64 and PG-TQFP-64 Pin Configuration (top view)

XMC4100 / XMC4200 XMC4000 Family

General Device Information

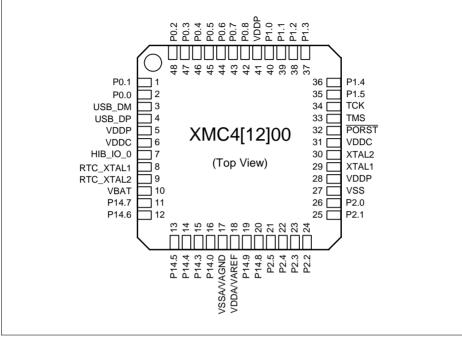


Figure 5 XMC4[12]00 PG-VQFN-48 Pin Configuration (top view)

Figure 8 explains the input voltage ranges of $V_{\rm IN}$ and $V_{\rm AIN}$ and its dependency to the supply level of $V_{\rm DDP}$. The input voltage must not exceed 4.3 V, and it must not be more than 1.0 V above $V_{\rm DDP}$. For the range up to $V_{\rm DDP}$ + 1.0 V also see the definition of the overload conditions in Section 3.1.3.

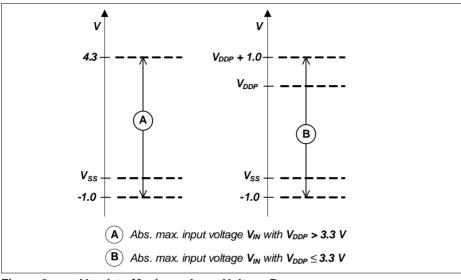


Figure 8 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 15 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol		Values			Unit	Note /
			Min. Typ.		Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents for one port	I _{OVG}	SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$
group during overload condition ¹⁾			-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	80	mA	ΣI _{OVG}

Table 15 Overload Parameters

1) The port groups are defined in **Table 18**.

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Table 22 Standard Pads Class_A1

Parameter	Symbol	Va	lues	Unit	Note /
		Min. Max.			Test Condition
Input leakage current	I _{OZA1} CC	-500	500	nA	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1}~{\rm SR}$	$0.6 \times V_{\rm DDP}$	V _{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1}{\rm SR}$	-0.3	$0.36 imes V_{ m DD}$	- V	
Output high voltage,	V_{OHA1}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A
$POD^{1)} = weak$	CC	2.4	-	V	$I_{OH} \ge$ -500 μ A
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA
$POD^{1)} = medium$		2.4	-	V	$I_{OH} \ge$ -2 mA
Output low voltage	V _{OLA1} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
Fall time	t _{FA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{\rm L} = 50 \text{ pF};$ POD ¹⁾ = medium
Rise time	t _{RA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium

1) POD = Pin Out Driver

Table 23 Standard Pads Class_A1+

Parameter	Symbol	Values		Values		Note /
		Min.		Max.		Test Condition
Input leakage current	I _{OZA1+} CC	-1		1	μΑ	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1+}\rm SR$	$0.6 \times V_{\rm DDP}$		V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1+}\rm SR$	-0.3		$0.36 \times V_{\rm DDP}$	V	

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

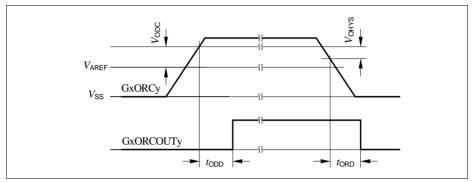


Figure 16 GxORCOUTy Trigger Generation

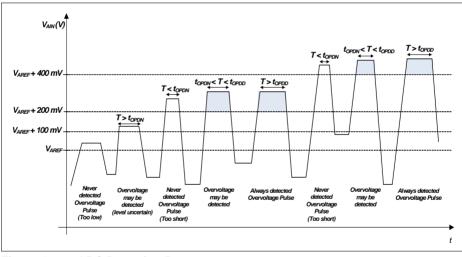


Figure 17 ORC Detection Ranges

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
CSG Output Jitter	D _{CSG} CC	-	-	1	clk	
Bias startup time	t _{start} CC	-	-	98	us	
Bias supply current	I _{DDbias} CC	-	-	400	μA	
CSGy startup time	t _{CSGS} CC	-	-	2	μS	
Input operation current ¹⁾	I _{DDCIN} CC	-10	-	33	μA	See Figure 19
High Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	V _{SS}	-	V_{DDP}	V	
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}$ SR	-	-	30	MHz	
Supply current	I _{DDhs} CC	-	-	940	μA	
Low Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V	
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20
Input Selector propagation delay - Full Scale	t _{DIs} CC	-	-	200	ns	See Figure 20
Comparator bandwidth	t _{Dls} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	_	-	30	MHz	
Supply current	I _{DDIs} CC	-	-	300	μΑ	

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

3.2.7 Die Temperature Sensor

The Die Temperature Sensor (DTS) measures the junction temperature T_{1} .

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
			Min. Typ.		Max.		Test Condition
Temperature sensor range	$T_{\rm SR}$	SR	-40	-	150	°C	
Linearity Error (to the below defined formula)	$\Delta T_{\rm LE}$	СС	-	±1	-	°C	per $\Delta T_{\rm J} \leq 30 {\rm °C}$
Offset Error	$\Delta T_{\rm OE}$	СС	-	±6	-	°C	$\Delta T_{\rm OE} = T_{\rm J} - T_{\rm DTS}$ $V_{\rm DDP} \le 3.3 \ {\rm V}^{1)}$
Measurement time	t _M	СС	-	-	100	μS	
Start-up time after reset inactive	t _{TSST}	SR	_	-	10	μS	

Table 34 Die Temperature Sensor Parameters

1) At $V_{\text{DDP max}}$ = 3.63 V the typical offset error increases by an additional ΔT_{OE} = ±1 °C.

The following formula calculates the temperature measured by the DTS in [°C] from the RESULT bit field of the DTSSTAT register.

Temperature T_{DTS} = (RESULT - 605) / 2.05 [°C]

This formula and the values defined in **Table 34** apply with the following calibration values:

- DTSCON.BGTRIM = 8_H
- DTSCON.REFTRIM = 4_H

3.2.9 Oscillator Pins

- Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 21) or in direct input mode (see Figure 22).

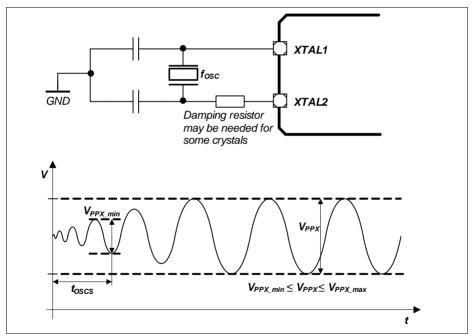


Figure 21 Oscillator in Crystal Mode

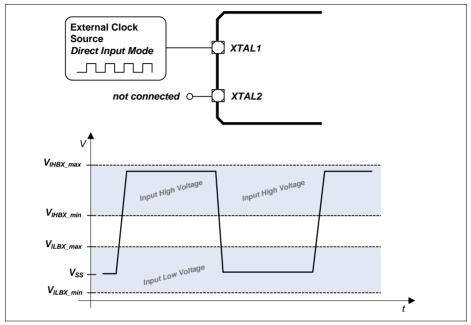
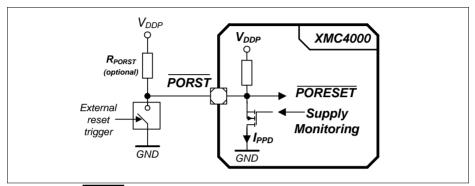


Figure 22 Oscillator in Direct Input Mode

Table 38 Power Supply Parameters


Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Sleep supply current ³⁾	I _{DDPS} CC	-	76	-	mA	80 / 80 / 80
Peripherals enabled		-	73	-		80 / 40 / 40
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz		_	70	-		40 / 40 / 80
JCPU' JPERIPH' JCCU III IVII 12		-	56	-		24 / 24 / 24
		-	47	-		1/1/1
$f_{CPU}/f_{PERIPH}/f_{CCU}$ in kHz	-	_	46	-	-	100 / 100 / 100
Sleep supply current ⁴⁾	I _{DDPS} CC	-	59	-	mA	80 / 80 / 80
Peripherals disabled		-	58	-		80 / 40 / 40
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz		-	57	-		40 / 40 / 80
JCPU, JPERIPH, JCCU		_	51	-		24 / 24 / 24
		_	46	-	-	1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100
Deep Sleep supply	I _{DDPD} CC	-	6.9	-	mA	24 / 24 / 24
current ⁵⁾		_	4.3	-		4 / 4 / 4
Flash in Sleep mode Frequency:		-	3.8	-	-	1/1/1
$\frac{f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU} \text{ in MHz}}{f_{\rm CCU}}$						
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	4.5	-		100 / 100 / 100 ₆₎
Hibernate supply current	I _{DDPH} CC	-	10.8	-	μA	$V_{\rm BAT}$ = 3.3 V
RTC on ⁷⁾		-	8.0	-		$V_{\rm BAT}$ = 2.4 V
		_	6.8	-		$V_{\rm BAT}$ = 2.0 V
Hibernate supply current	I _{DDPH} CC	-	10.3	-	μA	$V_{\rm BAT}$ = 3.3 V
RTC off ⁸⁾		_	7.5	-		$V_{\rm BAT}$ = 2.4 V
		-	6.3	-		$V_{\rm BAT}$ = 2.0 V
Worst case active supply current ⁹⁾	I _{DDPA} CC	-	-	140 10)	mA	V _{DDP} = 3.6 V, T _J = 150 °C
$V_{\rm DDA}$ power supply current	I _{DDA} CC	-	-	_11)	mA	
I_{DDP} current at PORST Low	I _{DDP_PORST} CC	_	-	24	mA	V _{DDP} = 3.6 V, T _J = 150 °C

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

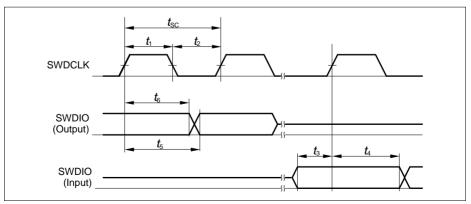
Figure 26 PORST Circuit

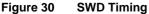
Table 41	Supply Monit	toring Parameters
----------	--------------	-------------------

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	_	3.05 ²⁾	V	3)
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	_	_	2	μs	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{ m DDC}$ ramp up time	t _{VCR} CC	_	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of $V_{\rm POR}$ or $V_{\rm PV}$

1) Minimum threshold for reset assertion.

3.3.7 Serial Wire Debug Port (SW-DP) Timing


The following parameters are applicable for communication through the SW-DP interface.


Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 47	SWD Interface Timing Parameters (Operating Conditions apply)
----------	--

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	C _L = 30 pF
			40	-	-	ns	C _L = 50 pF
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	_	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns	
SWDIO output valid time	t_5	CC	-	-	17	ns	C _L = 50 pF
after SWDCLK rising edge			-	-	13	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	_	ns	

Package and Reliability

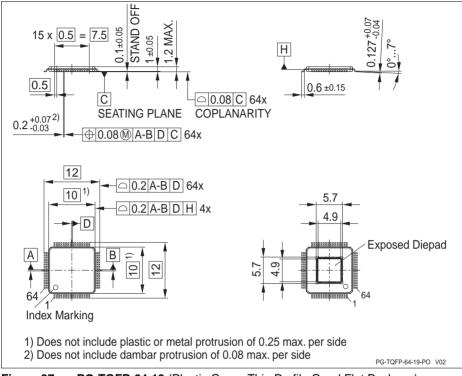


Figure 37 PG-TQFP-64-19 (Plastic Green Thin Profile Quad Flat Package)

Table 57 Differences PG-VQFN-48-53 to PG-VQFN-48-71

Change	PG-VQFN-48-53	PG-VQFN-48-71
Package corner	chamfered	right-angled
Lead width	0.23 ^{±0.05} mm	0.25 ^(+0.05, -0.07) mm
Lead height	0.4 ^{±0.07} mm	0.4 ^{±0.05} mm

XMC4100 / XMC4200 XMC4000 Family

Package and Reliability



Figure 38 PG-VQFN-48-53 (Plastic Green Very Thin Profile Flat Non Leaded Package)

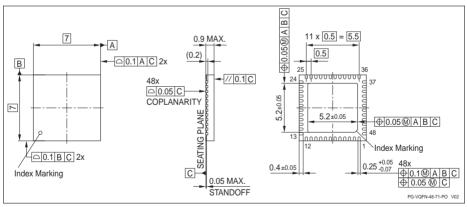


Figure 39 PG-VQFN-48-71 (Plastic Green Very Thin Profile Flat Non Leaded Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

www.infineon.com

Published by Infineon Technologies AG