

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4100f64k128abxqsa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

1 Summary of Features

The XMC4[12]00 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- One General Purpose DMA with up-to 8 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests

9

• Flexible CRC Engine (FCE) for multiple bit error detection

Data Sheet

Summary of Features

1.3 Package Variants

Different markings of the XMC4[12]00 use different package variants. Details of those packages are given in the **Package Parameters** section of the Data Sheet.

Table 2 XMC4[12]00 Package Variants

Package Variant	Marking	Package
XMC4[12]00-F64	EES-AA, ES-AA, ES-AB, AB	PG-LQFP-64-19
XMC4[12]00-Q48		PG-VQFN-48-53
XMC4[12]00-F64	BA	PG-TQFP-64-19
XMC4[12]00-Q48		PG-VQFN-48-71

1.4 Device Type Features

The following table lists the available features per device type.

Derivative ¹⁾	LEDTS Intf.	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4200-F64x256	1	1	2 x 2	N0, N1 MO[063]
XMC4200-Q48x256	1	1	2 x 2	N0, N1 MO[063]
XMC4100-F64x128	1	1	2 x 2	N0, N1 MO[063]
XMC4100-Q48x128	1	1	2 x 2	N0, N1 MO[063]
XMC4104-F64x64	1	-	2 x 2	-
XMC4104-Q48x64	1	-	2 x 2	-
XMC4104-F64x128	1	-	2 x 2	-
XMC4104-Q48x128	1	-	2 x 2	-
XMC4108-F64x64	-	-	2 x 2	N0, MO[031
XMC4108-Q48x64	-	-	2 x 2	N0, MO[031
		1	1	1

Table 3 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Table 11	Package Pil	n Mapping (c	ont'd)	
Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P14.9	23	19	AN/DAC/DIG_IN	
P14.14	14	-	AN/DIG_IN	
USB_DP	7	4	special	
USB_DM	6	3	special	
HIB_IO_0	10	7	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.
тск	45	34	A1	Weak pull-down active.
TMS	44	33	A1+	Weak pull-up active. As output the strong-soft driver mode is active.
PORST	43	32	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.
XTAL1	39	29	clock_IN	
XTAL2	40	30	clock_O	
RTC_XTAL1	11	8	clock_IN	
RTC_XTAL2	12	9	clock_O	
VBAT	13	10	Power	When VDDP is supplied VBAT has to be supplied as well.
VDDA/VAREF	22	18	AN_Power/AN_ Ref	Shared analog supply and reference voltage pin.
VSSA/VAGND	21	17	AN_Power/AN_ Ref	Shared analog supply and reference ground pin.
VDDC	9	6	Power	
VDDC	42	31	Power	
VDDP	8	5	Power	
VDDP	38	28	Power	
VDDP	56	41	Power	
VSS	37	27	Power	

Table 11 Package Pin Mapping (cont'd)

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Total capacitance of the alternate reference inputs ⁵⁾	C _{AREFTOT} CC	-	20	40	pF	
Total Unadjusted Error	TUE CC	-6	-	6	LSB	12-bit resolution;
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-4.5	-	4.5	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$
Gain Error ⁸⁾	EA _{GAIN} CC	-6	-	6	LSB	
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-4.5	-	4.5	LSB	
Offset Error ⁸⁾	EA _{OFF} CC	-6	-	6	LSB	
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	-	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 ^{\circ}\text{C}$
Charge consumption on alternate reference per conversion ⁵⁾	$Q_{\rm CONV}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9}$
ON resistance of the analog input path	R _{AIN} CC	-	600	1 200	Ohm	
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm	

Table 25 ADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 14).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.

43

8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.

Figure 15 DAC Conversion Examples

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symb	ol		Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\rm AIN} \ge V_{\rm AREF}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	_	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{\rm AIN} \leq V_{\rm AREF}$
Enable Delay	t _{OED}	CC	_	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

3.2.5 High Resolution PWM (HRPWM)

The following chapters describe the operating conditions, characteristics and timing requirements, for all the components inside the HRPWM module. Each description is given for just one sub unit, e.g., one CSG or one HRC.

All the timing information is related to the module clock, f_{hrowm} .

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.2.5.1 HRC characteristics

Table 29 summarizes the characteristics of the HRC units.

Table 29	HRC characteristics (Operating Conditi	ons apply)
----------	--	------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
High resolution step size ¹⁾²⁾	t _{HRS} CC	-	150	-	ps	
Startup time (after reset release)	t _{start} CC	-	-	2	μS	

1) The step size for clock frequencies equal to 180, 120 and 80 MHz is 150 ps.

 The step size for clock frequencies different from 180, 120 and 80 MHz but within the range from 180 to 64 MHz can be between 118 to 180 ps (fixed over process and operating conditions)

3.2.5.2 CMP and 10-bit DAC characteristics

The Table 30 summarizes the characteristics of the CSG unit.

The specified characteristics require that the setup of the HRPWM follows the initialization sequence as documented in the Reference Manual.

Table 30	CMP and 10-bit DAC characteristics (Operating Conditions apply)
----------	--

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAC Resolution	RES CC		10		bits	
DAC differential nonlinearity	DNL CC	-1	-	1.5	LSB	Monotonic behavior, See Figure 18
DAC integral nonlinearity	INL CC	-3	-	3	LSB	See Figure 18

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
CSG Output Jitter	D _{CSG} CC	-	-	1	clk	
Bias startup time	t _{start} CC	-	-	98	us	
Bias supply current	I _{DDbias} CC	-	-	400	μA	
CSGy startup time	t _{CSGS} CC	-	-	2	μS	
Input operation current ¹⁾	I _{DDCIN} CC	-10	-	33	μA	See Figure 19
High Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	V _{SS}	-	V_{DDP}	V	
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}$ SR	-	-	30	MHz	
Supply current	I _{DDhs} CC	-	-	940	μA	
Low Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V	
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20
Input Selector propagation delay - Full Scale	t _{DIs} CC	-	-	200	ns	See Figure 20
Comparator bandwidth	t _{Dls} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	_	_	30	MHz	
Supply current	I _{DDIs} CC	-	-	300	μΑ	

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

3.2.5.3 Clocks

HRPWM DAC Conversion Clock

The DAC conversion clock can be generated internally or it can be controlled via a HRPWM module pin.

Table 31 External DAC conversion trigger operating conditions

Parameter	Symbol	Symbol Va			Unit	Note /
		Min.	Тур.	Max.		Test Con dition
Frequency	$f_{\rm etrg}$ SR	_	-	30 ²⁾	MHz	
ON time	t _{onetrg} SR	2T _{ccu} ¹⁾²⁾	-	-	ns	
OFF time	t _{offetrg} SR	2T _{ccu} ¹⁾²⁾	-	-	ns	

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

CSG External Clock

It is possible to select an external source, that can be used as a clock for the slope generation, HRPWMx.ECLKy. This clock is synchronized internally with the module clock and therefore the external clock needs to meet the criterion described on Table 32.

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol			Values			Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾ Peripherals enabled Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
			-	75	-		80 / 40 / 40
			-	73	-		40 / 40 / 80
			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current	I _{DDPA}	СС	-	24	-	mA	80 / 80 / 80
Code execution from RAM Flash in Sleep mode Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			_	19	-		80 / 40 / 40
Active supply current ²⁾	I _{DDPA}	СС	-	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: $f_{\rm CPU}/f_{\rm PERIPH}$ in MHz			-	62	-	-	80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

Table 38	Power Supply	Parameters
----------	--------------	------------

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Peripheral Idle Currents

Test conditions:

- f_{svs} and derived clocks at 80 MHz
- V_{DDP} = 3.3 V, T_a =25 °C
- all peripherals are held in reset (see the PRSTAT registers in the Reset Control Unit of the SCU)
- the peripheral clocks are disabled (see CGATSTAT registers in the Clock Control Unit of the SCU
- no I/O activity
- the given values are a result of differential measurements with asserted and deasserted peripheral reset and enabled clock of the peripheral under test

The tested peripheral is left in the state after the peripheral reset is deasserted, no further initialisation or configuration is done. E.g. no timer is running in the CCUs, no communication active in the USICs, etc.

Parameter	meter Symbol Val		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
PORTS USB FCE WDT POSIFx ¹⁾	I _{PER} CC	-	≤ 0.3	-	mA	
MultiCAN ERU LEDTSCU0 CCU4x ¹⁾ CCU8x ¹⁾		-	≤ 1.0	-		
DAC (digital) ²⁾	-	-	1.3	-		
USICx		-	3.0	-	1	
VADC (digital) ²⁾		-	4.5	_	1	
DMAx		-	6.0	-		

Table 39 Peripheral Idle Currents

 Enabling the f_{CCU} clock for the POSIFx/CCU4x/CCU8x modules adds approximately I_{PER} = 1.8 mA, disregarding which and how many of those peripherals are enabled.

 The current consumption of the analog components are given in the dedicated Data Sheet sections of the respective peripheral.

3.2.11 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per 256 Kbyte Sector	t _{ERP} CC	-	5	5.5	S	
Erase Time per 64 Kbyte Sector	t _{ERP} CC	-	1.2	1.4	S	
Erase Time per 16 Kbyte Logical Sector	t _{ERP} CC	-	0.3	0.4	S	
Program time per page ¹⁾	$t_{\sf PRP}\sf CC$	-	5.5	11	ms	
Erase suspend delay	t _{FL_ErSusp}	-	-	15	ms	
Wait time after margin change	t _{FL_Margin} _{Del} CC	10	-	-	μS	
Wake-up time	t _{WU} CC	-	-	270	μs	
Read access time	t _a CC	20	-	-	ns	For operation with $1/f_{CPU} < t_a$ wait states must be configured ²
Data Retention Time, Physical Sector ³⁾⁴⁾	t _{RET} CC	20	-	-	years	Max. 1000 erase/program cycles
Data Retention Time, Logical Sector ³⁾⁴⁾	t _{RETL} CC	20	-	-	years	Max. 100 erase/program cycles

Table 40 Flash Memory Parameters

Table 40 Flash Memory Parameters

Parameter	Symbol		Values	5	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Data Retention Time, User Configuration Block (UCB) ³⁾⁴⁾	t _{RTU} CC	20	-	-	years	Max. 4 erase/program cycles per UCB
Endurance on 64 Kbyte Physical Sector PS4	N _{EPS4} CC	10000	-	-	cycles	BA-marking devices only! Cycling distributed over life time ⁵⁾

1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms.

2) The following formula applies to the wait state configuration: FCON.WSPFLASH × (1 / f_{CPU}) $\geq t_a$.

3) Storage and inactive time included.

4) Values given are valid for an average weighted junction temperature of $T_{\rm J}$ = 110°C.

5) Only valid with robust EEPROM emulation algorithm, equally cycling the logical sectors. For more details see the Reference Manual.

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 26 PORST Circuit

Table 41	Supply Monit	toring Parameters
----------	--------------	-------------------

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	_	3.05 ²⁾	V	3)
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	_	_	2	μs	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{ m DDC}$ ramp up time	t _{VCR} CC	_	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of $V_{\rm POR}$ or $V_{\rm PV}$

1) Minimum threshold for reset assertion.

Table 42Power Sequencing Parameters

Parameter	Symbol		Value	s	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Positive Load Step Current	$\Delta I_{PLS}SR$	-	-	50	mA	Load increase on V_{DDP} $\Delta t \le 10 \text{ ns}$
Negative Load Step Current	$\Delta I_{\rm NLS}{\rm SR}$	-	-	150	mA	Load decrease on V_{DDP} $\Delta t \le 10 \text{ ns}$
V _{DDC} Voltage Over- / Undershoot from Load Step	$\Delta V_{\rm LS}$ CC	-	_	±100	mV	For maximum positive or negative load step
Positive Load Step Settling Time	t _{PLSS} SR	50	-	-	μS	
Negative Load Step Settling Time	t _{NLSS} SR	100	-	-	μS	
External Buffer Capacitor on $V_{\rm DDC}$	C _{EXT} SR	3	4.7	6	μF	In addition C = 100 nF capacitor on each V_{DDC} pin

Positive Load Step Examples

System assumptions:

 $f_{CPU} = f_{SYS}$, target frequency $f_{CPU} = 80$ MHz, main PLL $f_{VCO} = 480$ MHz, stepping done by K2 divider, t_{PLSS} between individual steps:

24 MHz - 48 MHz - 80 MHz (K2 steps 20 - 10 - 6) 24 MHz - 60 MHz - 80 MHz (K2 steps 20 - 8 - 6)

3.3.4 Phase Locked Loop (PLL) Characteristics

Main and USB PLL

Table 43PLL Parameters

Parameter	Symbol		Values	S	Unit	Note / Test Condition
		Min.	Тур.	Max.		
Accumulated Jitter	D _P CC	-	-	±5	ns	accumulated over 300 cycles f_{SYS} = 80 MHz
Duty Cycle ¹⁾	D _{DC} CC	46	50	54	%	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	f _{pllbase} CC	30	-	140	MHz	
VCO input frequency	$f_{\sf REF}\sf CC$	4	-	16	MHz	
VCO frequency range	$f_{\rm VCO}$ CC	260	-	520	MHz	
PLL lock-in time	t _L CC	-	-	400	μS	

1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values.

3.3.9 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Rise time	t _R	CC	4	-	20	ns	C _L = 50 pF
Fall time	t _F	CC	4	-	20	ns	C _L = 50 pF
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	-	111.11	%	C _L = 50 pF
Crossover voltage	V _{CRS}	CC	1.3	-	2.0	V	C _L = 50 pF

 Table 54
 USB Timing Parameters (operating conditions apply)

Figure 35 USB Signal Timing

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[12]00 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Operation lifetime	t _{OP} CC	20	-	-	а	$T_{\rm J} \le 109^{\circ}{ m C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	-	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	-	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	_	-	3	_	JEDEC J-STD-020D
Soldering temperature	T _{SDR} SR	-	-	260	°C	Profile according to JEDEC J-STD-020D

Table 58Quality Parameters