

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4100f64k128baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Derivative ¹⁾	ADC Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.
XMC4200-F64x256	10	2	2 x 4	1 x 4	1	1
XMC4200-Q48x256	9	2	2 x 4	1 x 4	1	1
XMC4100-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4100-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x64	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x64	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4108-F64x64	10	2	2 x 4	1 x 4	1	-
XMC4108-Q48x64	9	2	2 x 4	1 x 4	1	-

Table 4 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4[12]00 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Total Elach Siza	Cachod Bango	Uncached Pange
	Cached Kalige	Ulicached Kalige
256 Kbytes	0800 0000 _H -	0C00 0000 _H -
,	0803 FFFF _H	0C03 FFFF _H
128 Kbytes	0800 0000 _H -	0C00 0000 _H -
-	0801 FFFF _H	0C01 FFFF _H
64 Kbytes	0800 0000 _H -	0C00 0000 _H -
-	0800 FFFF _H	0C00 FFFF _H

Table 5 Flash Memory Ranges

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Figure 5 XMC4[12]00 PG-VQFN-48 Pin Configuration (top view)

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 10 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	N	Ax	 A1+	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P0.0	2	2	A1+	
P0.1	1	1	A1+	
P0.2	64	48	A1+	
P0.3	63	47	A1+	
P0.4	62	46	A1+	
P0.5	61	45	A1+	
P0.6	60	44	A1+	
P0.7	58	43	A1+	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	57	42	A1+	After a system reset, via <u>HWSEL</u> this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	-	A1+	
P0.10	3	-	A1+	

Table 11 Package Pin Mapping

2.2.2.1 Port I/O Function Table

Data Sheet

Table 13 Port I/O Functions

Function			Output			Input								
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D		ERU0. 0B0	USB. VBUSDETECT A		HRPWM0. C1INB		
P0.1		U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3					ERU0. 0A0			HRPWM0. C2INB		
P0.2		U1C1. SELO1	CCU80. OUT01	HRPWM0. HROUT01	U1C0. DOUT3	U1C0. HWIN3			ERU0. 3B3					
P0.3			CCU80. OUT20	HRPWM0. HROUT20	U1C0. DOUT2	U1C0. HWIN2				ERU1. 3B0				
P0.4			CCU80. OUT10	HRPWM0. HROUT21	U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3					
P0.5		U1C0. DOUT0	CCU80. OUT00	HRPWM0. HROUT00	U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0				
P0.6		U1C0. SELO0	CCU80. OUT30	HRPWM0. HROUT30				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B			
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0		HRPWM0. HROUT11		DB. TDI	U0C0. DX2B		ERU0. 2B1		CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A
P0.8	SCU. EXTCLK	U0C0. SCLKOUT		HRPWM0. HROUT10		DB. TRST	U0C0. DX1B		ERU0. 2A1		CCU80. IN1B			
P0.9	HRPWM0. HROUT31	U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0			U1C1. DX2A		ERU0. 1B0					
P0.10		U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0					
P0.11		U1C0. SCLKOUT	CCU80. OUT31					U1C0. DX1A	ERU0. 3A2					
P1.0		U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A	HRPWM0. COINA		
P1.1		U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A	HRPWM0. C1INA		
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A	HRPWM0. C2INA		
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2		POSIF0. IN0A		ERU1. 2A0	CCU40. IN0A	HRPWM0. COINB		
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33		U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. IN0C	HRPWM0. BL0A		
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23		U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C			
P1.7		U0C0. DOUT0		U1C1. SELO2						USB. VBUSDETECT B				

XMC4100 / XMC4200 XMC4000 Family

Port I/O Functions (CONt'd) Table 13

			(
Function			Output	t			Input							
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P14.9					DAC. OUT_1			VADC. G1CH1						
P14.14								VADC. G1CH6					G1ORC6	
USB_DP														
USB_DM														
HIB_IO_0	HIBOUT	WWDT. SERVICE_OUT					WAKEUPA			USB. VBUSDETECT C				
тск						DB.TCK/ SWCLK								
TMS					DB.TMS/ SWDIO									
PORST														
XTAL1							U0C0. DX0F	U0C1. DX0F	U1C0. DX0F	U1C1. DX0F				
XTAL2														
RTC_XTAL1									ERU0. 1B1					
RTC_XTAL2														

XMC4100 / XMC4200 XMC4000 Family

2.3 Power Connection Scheme

Figure 7. shows a reference power connection scheme for the XMC4[12]00.

Figure 7 Power Connection Scheme

Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\rm DDP}$ pins must be connected externally to one $V_{\rm DDP}$ net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\rm SS}$. An additional 10 µF capacitor is connected to the $V_{\rm DDP}$ nets and an additional 4.7µF capacitor to the $V_{\rm DDC}$ nets.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-	
Junction temperature	T_{J}	SR	-40	-	150	°C	-	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	$V_{\sf IN}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to V_{AGND}	$\begin{array}{c} V_{\rm AIN} \\ V_{\rm AREF} \end{array}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\sf IN}$	SR	-25	_	+25	mA		
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA		

Table 14 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 18**.

Figure 9 Input Overload Current via ESD structures

 Table 16 and Table 17 list input voltages that can be reached under overload conditions.

 Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

	Table 16	PN-Junction	Characterisitics f	or positive	Overload
--	----------	--------------------	---------------------------	-------------	----------

Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 150 °C
A1 / A1+	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN}$ = $V_{\rm DDP}$ + 0.75 V
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN}$ = $V_{\rm DDP}$ + 0.75 V

Table 17	PN-Junction	Characterisitics	for negative	Overload
----------	--------------------	-------------------------	--------------	----------

Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 150 °C
A1 / A1+	$V_{\rm IN} = V_{\rm SS}$ - 1.0 V	$V_{\rm IN}$ = $V_{\rm SS}$ - 0.75 V
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ - 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ - 0.75 V

Table 18	Port Groups for Overload and Short-Circuit Current Sum
	Parameters

Group	Pins	
1	P0.[12:0], P3.0	
2	P14.[8:0]	
3	P2.[15:0]	
4	P1.[15:0]	

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 3.2.1.

Table 19	Pad Driver	and Pad	Classes	Overview
		anaiaa	0.0000	0.0.000

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
A	3.3 V	LVTTL I/O,	A1 (e.g. GPIO)	6 MHz	100 pF	No
		LVTTL outputs	A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended

Figure 10 Output Slopes with different Pad Driver Modes

Figure 10 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

35

3.2.2 Analog to Digital Converters (ADCx)

Parameter	Symbol	0	Values	2	, Unit	Note /
	Cymbol	Min Typ Max			onne	Test Condition
Analog reference voltage	V _{AREF} SR	-	-	-	V	$V_{\text{AREF}} = V_{\text{DDA}}$ shared analog supply and reference input pin
Alternate reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{} + 0.05^{1)}$	V	
Analog reference ground	V _{AGND} SR	-	_	-	V	$V_{AGND} = V_{SSA}$ shared analog supply and reference input pin
Alternate reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	-	V _{DDA} + 0.1	V	
Analog input voltage	$V_{\rm AIN}~{\rm SR}$	V_{AGND}	_	V_{DDA}	V	
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$0.03 imes V_{ m DDA} < V_{ m AIN} < 0.97 imes V_{ m DDA}$
		-500	_	100	nA	$\begin{array}{l} 0 \hspace{0.1cm} V \leq V_{AIN} \leq 0.03 \\ \times \hspace{0.1cm} V_{DDA} \end{array}$
		-100	-	500	nA	$\begin{array}{l} \textbf{0.97} \times V_{DDA} \\ \leq V_{AIN} \leq V_{DDA} \end{array}$
Internal ADC clock	$f_{\sf ADCI}\sf CC$	2	-	30	MHz	$V_{\rm DDA}$ = 3.3 V
Switched capacitance at the analog voltage inputs ⁴⁾	C _{AINSW} CC	-	4	6.5	pF	
Total capacitance of an analog input	C_{AINTOT} CC	-	12	20	pF	
Switched capacitance at the alternate reference voltage input ⁵⁾⁶⁾	C _{AREFSW} CC	_	15	30	pF	

Table 25 ADC Parameters (Operating Conditions apply)

Parameter	Symbol		Values	S	Unit	Note /	
		Min.	Тур.	Max.	_	Test Condition	
Total capacitance of the alternate reference inputs ⁵⁾	C _{AREFTOT} CC	_	20	40	pF		
Total Unadjusted Error	TUE CC	-6	-	6	LSB	12-bit resolution;	
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-4.5	-	4.5	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$	
Gain Error ⁸⁾	EA _{GAIN} CC	-6	-	6	LSB		
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-4.5	-	4.5	LSB		
Offset Error ⁸⁾	EA _{OFF} CC	-6	-	6	LSB		
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	-	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$	
Charge consumption on alternate reference per conversion ⁵⁾	$Q_{\rm CONV}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9}$	
ON resistance of the analog input path	R _{AIN} CC	_	600	1 200	Ohm		
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm		

Table 25 ADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 14).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.

43

8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.

Figure 15 DAC Conversion Examples

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

Figure 16 GxORCOUTy Trigger Generation

Figure 17 ORC Detection Ranges

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

Figure 19 Input operation current

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol			Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
Peripherals enabled			-	75	-		80 / 40 / 40
$f_{CPU}/f_{PEPIPH}/f_{CCU}$ in MHz			-	73	-		40 / 40 / 80
JOFU JEKIFI JOCU			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current	$I_{\rm DDPA}$	СС	-	24	-	mA	80 / 80 / 80
Code execution from RAM Flash in Sleep mode Frequency:			_	19	_		80 / 40 / 40
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz							
Active supply current ²⁾	$I_{\rm DDPA}$	СС	-	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: f_{CPU}/f_{PERIPH} in MHz			-	62	-		80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

Table 38	Power	Supply	Parameters
----------	-------	--------	------------

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symb	ol		Values	5	Unit	Note / Test Condition
			Min.	Тур.	Max.		
Power Dissipation	P_{DISS}	СС	-	-	1	W	V _{DDP} = 3.6 V, T _J = 150 °C
Wake-up time from Sleep to Active mode	t _{SSA}	СС	_	6	-	cycles	
Wake-up time from Deep Sleep to Active mode			-	-	-	ms	Defined by the wake-up of the Flash module, see Section 3.2.11
Wake-up time from Hibernate mode			-	-	-	ms	Wake-up via power-on reset event, see Section 3.3.2

Table 38 Power Supply Parameters

1) CPU executing code from Flash, all peripherals idle.

2) CPU executing code from Flash. USB and CCU clock off.

3) CPU in sleep, all peripherals idle, Flash in Active mode.

- 4) CPU in sleep, Flash in Active mode.
- 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
- 6) To wake-up the Flash from its Sleep mode, $f_{CPU} \ge 1$ MHz is required.
- 7) OSC_ULP operating with external crystal on RTC_XTAL
- 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
- 9) Test Power Loop: f_{SYS} = 80 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.

The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.

- 10) $I_{\rm DDP}$ decreases typically by 3.5 mA when $f_{\rm SYS}$ decreases by 10 MHz, at constant $T_{\rm J}$
- 11) Sum of currents of all active converters (ADC and DAC)

Peripheral Idle Currents

Test conditions:

- f_{svs} and derived clocks at 80 MHz
- V_{DDP} = 3.3 V, T_a =25 °C
- all peripherals are held in reset (see the PRSTAT registers in the Reset Control Unit of the SCU)
- the peripheral clocks are disabled (see CGATSTAT registers in the Clock Control Unit of the SCU
- no I/O activity
- the given values are a result of differential measurements with asserted and deasserted peripheral reset and enabled clock of the peripheral under test

The tested peripheral is left in the state after the peripheral reset is deasserted, no further initialisation or configuration is done. E.g. no timer is running in the CCUs, no communication active in the USICs, etc.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
PORTS USB FCE WDT POSIFx ¹⁾	I _{PER} CC	-	≤ 0.3	-	mA	
MultiCAN ERU LEDTSCU0 CCU4x ¹⁾ CCU8x ¹⁾		_	≤ 1.0	_		
DAC (digital) ²⁾		-	1.3	-		
USICx		-	3.0	-		
VADC (digital) ²⁾		_	4.5	_		
DMAx		_	6.0	_		

Table 39 Peripheral Idle Currents

 Enabling the f_{CCU} clock for the POSIFx/CCU4x/CCU8x modules adds approximately I_{PER} = 1.8 mA, disregarding which and how many of those peripherals are enabled.

2) The current consumption of the analog components are given in the dedicated Data Sheet sections of the respective peripheral.

3.2.11 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per 256 Kbyte Sector	$t_{\sf ERP}\sf CC$	-	5	5.5	S	
Erase Time per 64 Kbyte Sector	$t_{\sf ERP}\sf CC$	-	1.2	1.4	S	
Erase Time per 16 Kbyte Logical Sector	$t_{\sf ERP}\sf CC$	-	0.3	0.4	S	
Program time per page ¹⁾	t _{PRP} CC	-	5.5	11	ms	
Erase suspend delay	t _{FL_ErSusp}	-	-	15	ms	
Wait time after margin change	t _{FL_Margin} _{Del} CC	10	-	-	μS	
Wake-up time	t _{WU} CC	-	-	270	μS	
Read access time	t _a CC	20	-	-	ns	For operation with $1/f_{CPU} < t_a$ wait states must be configured ²
Data Retention Time, Physical Sector ³⁾⁴⁾	t _{RET} CC	20	-	-	years	Max. 1000 erase/program cycles
Data Retention Time, Logical Sector ³⁾⁴⁾	t _{RETL} CC	20	-	-	years	Max. 100 erase/program cycles

Table 40 Flash Memory Parameters

Package and Reliability

4 Package and Reliability

The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The availability of different packages for different markings is listed in **Table 2**.

Parameter	Symbol	Symbol Limit Values			Package Types	
		Min.	Max.			
Exposed Die Pad	$Ex \times Ey$	-	5.8 imes 5.8	mm	PG-LQFP-64-19	
Dimensions	CC	-	5.7 imes 5.7	mm	PG-TQFP-64-19	
		-	5.2 imes 5.2	mm	PG-VQFN-48-53	
		-	5.2 imes 5.2	mm	PG-VQFN-48-71	
Thermal resistance	$R_{ m \Theta JA}$	-	30	K/W	PG-LQFP-64-19 ¹⁾	
Junction-Ambient	CC	-	23.4	K/W	PG-TQFP-64-19 ¹⁾	
		-	34.8	K/W	PG-VQFN-48-53 ¹⁾ PG-VQFN-48-71 ¹⁾	

 Table 55
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4[12]00 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The

www.infineon.com

Published by Infineon Technologies AG