

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 9x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-54
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4100q48k128abxlsa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2015-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

 $\mathsf{ARM}^{\texttt{®}}, \, \mathsf{ARM} \, \mathsf{Powered}^{\texttt{®}}, \, \mathsf{Cortex}^{\texttt{®}}, \, \mathsf{Thumb}^{\texttt{B}} \, \mathsf{and} \, \, \mathsf{AMBA}^{\texttt{B}} \, \mathsf{are} \, \, \mathsf{registered} \, \, \mathsf{trademarks} \, \, \mathsf{of} \, \, \mathsf{ARM}, \, \mathsf{Limited}.$

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

Synopsys[™] is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table of Contents

Table of Contents

1 1.1 1.2 1.3 1.4 1.5 1.6	Summary of Features Ordering Information Device Types Package Variants Device Type Features Definition of Feature Variants Identification Registers	11 11 12 12 13
2 2.1 2.2 2.2.1 2.2.2 2.2.2.1 2.3	General Device Information Logic Symbols Pin Configuration and Definition Package Pin Summary Port I/O Functions Port I/O Function Table Power Connection Scheme	16 18 20 24 25
3 3.1 3.1.1	Electrical Parameters	30
3.1.2 3.1.3	Absolute Maximum Ratings Pin Reliability in Overload	31
3.1.4 3.1.5	Pad Driver and Pad Classes Summary	35
3.2 3.2.1	DC Parameters	37
3.2.2 3.2.3	Analog to Digital Converters (ADCx) Digital to Analog Converters (DACx)	42
3.2.4 3.2.5	Out-of-Range Comparator (ORC)	50
3.2.5.1	HRC characteristics	52
3.2.5.2 3.2.5.3	Clocks	55
3.2.6 3.2.7	Low Power Analog Comparator (LPAC) Die Temperature Sensor	57
3.2.8 3.2.9	USB Device Interface DC Characteristics	
3.2.10 3.2.11	Power Supply Current	
3.3 3.3.1	AC Parameters	
3.3.2 3.3.3	Power-Up and Supply Monitoring	70

Summary of Features

On-Chip Memories

- 16 KB on-chip boot ROM
- up to 16 KB on-chip high-speed program memory
- up to 24 KB on-chip high speed data memory
- up to 256 KB on-chip Flash Memory with 1 KB instruction cache

Communication Peripherals

- Universal Serial Bus, USB 2.0 device, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes, 64 message objects (MO), data rate up to 1 MBit/s
- Four Universal Serial Interface Channels (USIC), providing four serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- Two Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 4 (CCU4) for use as general purpose timers
- One Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four High Resoultion PWM (HRPWM) channels
- One Position Interface (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

On-Chip Debug Support

- Full support for debug features: 8 breakpoints, CoreSight, trace
- Various interfaces: ARM-JTAG, SWD, single wire trace

Summary of Features

			evice Type			
Derivative ¹⁾	ADC Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.
XMC4200-F64x256	10	2	2 x 4	1 x 4	1	1
XMC4200-Q48x256	9	2	2 x 4	1 x 4	1	1
XMC4100-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4100-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x64	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x64	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4108-F64x64	10	2	2 x 4	1 x 4	1	-
XMC4108-Q48x64	9	2	2 x 4	1 x 4	1	-

Table 4 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4[12]00 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Total Flash Size	Cached Range	Uncached Range
256 Kbytes	0800 0000 _H – 0803 FFFF _H	0C00 0000 _н – 0C03 FFFF _н
128 Kbytes	0800 0000 _H – 0801 FFFF _H	0C00 0000 _н – 0C01 FFFF _H
64 Kbytes	0800 0000 _H – 0800 FFFF _H	0С00 0000 _н – 0С00 FFFF _н

Table 5 Flash Memory Ranges

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Figure 5 XMC4[12]00 PG-VQFN-48 Pin Configuration (top view)

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 10 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	Ν	Ax	 A1+	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P0.0	2	2	A1+	
P0.1	1	1	A1+	
P0.2	64	48	A1+	
P0.3	63	47	A1+	
P0.4	62	46	A1+	
P0.5	61	45	A1+	
P0.6	60	44	A1+	
P0.7	58	43	A1+	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8 57		42	A1+	After a system reset, via <u>HWSEL</u> this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	-	A1+	
P0.10	3	-	A1+	

Table 11 Package Pin Mapping

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Table 11	Package Pin Mapping (cont'd)								
Function	LQFP-64 TQFP-64			Notes					
P0.11	59	-	A1+						
P1.0	52	40	A1+						
P1.1	51	39	A1+						
P1.2	50	38	A1+						
P1.3	49	37	A1+						
P1.4	48	36	A1+						
P1.5	47	35	A1+						
P1.7	55	-	A1+						
P1.8	54	-	A1+						
P1.9	53	-	A1+						
P1.15	46	-	A1+						
P2.0	34	26	A1+						
P2.1	33	25	A1+	After a system reset, via HWSEL this pin selects the DB.TDO function.					
P2.2	32	24	A1+						
P2.3	31	23	A1+						
P2.4	30	22	A1+						
P2.5	29	21	A1+						
P2.6	36	-	A1+						
P2.7	35	-	A1+						
P2.8	28	-	A1+						
P2.9	27	-	A1+						
P2.14	26	-	A1+						
P2.15	25	-	A1+						
P3.0	5	-	A1+						
P14.0	20	16	AN/DIG_IN						
P14.3	19	15	AN/DIG_IN						
P14.4	18	14	AN/DIG_IN						
P14.5	17	13	AN/DIG_IN						
P14.6	16	12	AN/DIG_IN						
P14.7	15	11	AN/DIG_IN						
P14.8	24	20	AN/DAC/DIG_IN						

Table 11 Package Pin Mapping (cont'd)

General Device Information

2.2.2 Port I/O Functions

The following general scheme is used to describe each PORT pin:

Table 12 Port I/O Function Description

Function		Outputs			Inputs	Inputs	
	ALT1	ALTn	HWO0	HWI0	Input	Input	
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA		
Pn.y	MODA.OUT				MODA.INA	MODC.INB	

Figure 6 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

2.2.2.1 Port I/O Function Table

Data Sheet

Table 13 Port I/O Functions

Function		Output					Input							
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D		ERU0. 0B0	USB. VBUSDETECT A		HRPWM0. C1INB		
P0.1		U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3					ERU0. 0A0			HRPWM0. C2INB		
P0.2		U1C1. SELO1	CCU80. OUT01	HRPWM0. HROUT01	U1C0. DOUT3	U1C0. HWIN3			ERU0. 3B3					
P0.3			CCU80. OUT20	HRPWM0. HROUT20	U1C0. DOUT2	U1C0. HWIN2				ERU1. 3B0				
P0.4			CCU80. OUT10	HRPWM0. HROUT21	U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3					
P0.5		U1C0. DOUT0	CCU80. OUT00	HRPWM0. HROUT00	U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0				
P0.6		U1C0. SELO0	CCU80. OUT30	HRPWM0. HROUT30				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B			
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0		HRPWM0. HROUT11		DB. TDI	U0C0. DX2B		ERU0. 2B1		CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A
P0.8	SCU. EXTCLK	U0C0. SCLKOUT		HRPWM0. HROUT10		DB. TRST	U0C0. DX1B		ERU0. 2A1		CCU80. IN1B			
P0.9	HRPWM0. HROUT31	U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0			U1C1. DX2A		ERU0. 1B0					
P0.10		U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0					
P0.11		U1C0. SCLKOUT	CCU80. OUT31					U1C0. DX1A	ERU0. 3A2					
P1.0		U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A	HRPWM0. COINA		
P1.1		U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A	HRPWM0. C1INA		
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A	HRPWM0. C2INA		
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2		POSIF0. IN0A		ERU1. 2A0	CCU40. IN0A	HRPWM0. COINB		
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33		U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. INOC	HRPWM0. BL0A		
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23		U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C			
P1.7		U0C0. DOUT0		U1C1. SELO2						USB. VBUSDETECT B				

XMC4100 / XMC4200 XMC4000 Family

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 3.2.1.

Table 19 Pad Driver and Pad	Classes Overview
-----------------------------	------------------

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
Α	3.3 V	LVTTL I/O,	A1 (e.g. GPIO)	6 MHz	100 pF	No
_		LVTTL outputs	A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended

Figure 10 Output Slopes with different Pad Driver Modes

Figure 10 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

35

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The pull-up characteristics (I_{PUH}) and the input high and low voltage levels (V_{IH} and V_{IL}) of the PORST pin are identical to the respective values of the standard digital input/output pins.

Parameter	Symbol	Va	alues	Unit	Note / Test Condition
		Min.	Max.		
Pin capacitance (digital inputs/outputs)	C _{IO} CC	-	10	pF	
Pull-down current	$ I_{PDL} $	150	-	μA	$^{1)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$
	SR	_	10	μA	$^{2)}V_{\rm IN} \leq 0.36 imes V_{\rm DDP}$
Pull-up current	$ I_{\rm PUH} $	-	10	μA	$^{2)}V_{\mathrm{IN}} \ge 0.6 imes V_{\mathrm{DDP}}$
	SR	100	-	μA	$^{1)}V_{\rm IN} \le 0.36 \times V_{\rm DDP}$
Input Hysteresis for pads of all A classes ³⁾	HYSA CC	$0.1 \times V_{\text{DDP}}$	-	V	
PORST spike filter always blocked pulse duration	t _{SF1} CC	-	10	ns	
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns	
PORST pull-down current	I _{PPD} CC	13	-	mA	<i>V</i> _i = 1.0 V

Table 21 Standard Pad Parameters

 Current required to override the pull device with the opposite logic level ("force current"). With active pull device, at load currents between force and keep current the input state is undefined.

 Load current at which the pull device still maintains the valid logic level ("keep current"). With active pull device, at load currents between force and keep current the input state is undefined.

 Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

37

9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 566$ ns results in a typical average current of $I_{AREF} = 53 \mu A$.

Figure 12 VADC Reference Voltage Range

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
CSG Output Jitter	D _{CSG} CC	-	-	1	clk	
Bias startup time	t _{start} CC	-	-	98	us	
Bias supply current	I _{DDbias} CC	-	-	400	μA	
CSGy startup time	t _{CSGS} CC	-	-	2	μS	
Input operation current ¹⁾	I _{DDCIN} CC	-10	-	33	μA	See Figure 19
High Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	V _{SS}	-	V_{DDP}	V	
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	-	30	MHz	
Supply current	I _{DDhs} CC	-	-	940	μA	
Low Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V	
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20
Input Selector propagation delay - Full Scale	t _{DIs} CC	-	-	200	ns	See Figure 20
Comparator bandwidth	t _{Dls} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	-	30	MHz	
Supply current	I _{DDIs} CC	-	-	300	μA	

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 24 Testing Waveform, Output Delay

Figure 25 Testing Waveform, Output High Impedance

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 26 PORST Circuit

Table 41	Supply Monit	toring Parameters
----------	--------------	-------------------

Parameter	Symbol	Values			Unit	Note /
		Min. Typ. Max.		Max.		Test Condition
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	_	3.05 ²⁾	V	3)
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	_	_	2	μs	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{\rm DDC}$ ramp up time	t _{VCR} CC	_	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of $V_{\rm POR}$ or $V_{\rm PV}$

1) Minimum threshold for reset assertion.

3.3.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Parameter		mbol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁	SR	30	-	-	ns	For $C_L = 20 \text{ pF}$ on TDO
TCK clock period	<i>t</i> ₁	SR	40	-	-	ns	For $C_L = 50 \text{ pF}$ on TDO
TCK high time	<i>t</i> ₂	SR	10	-	-	ns	
TCK low time	<i>t</i> ₃	SR	10	-	-	ns	
TCK clock rise time	t_4	SR	-	-	4	ns	
TCK clock fall time	t_5	SR	-	_	4	ns	
TDI/TMS setup to TCK rising edge	t ₆	SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇	SR	6	-	-	ns	
TDO valid after TCK falling	<i>t</i> ₈	СС	-	_	17	ns	C _L = 50 pF
edge ¹⁾ (propagation delay)			3	-	-	ns	C _L = 20 pF
TDO hold after TCK falling edge ¹⁾	t ₁₈	СС	2	-	-	ns	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉	CC	-	-	14	ns	C _L = 50 pF
TDO valid to high imped. from TCK falling edge ¹⁾	<i>t</i> ₁₀	СС	-	-	13.5	ns	C _L = 50 pF

Table 46 JTAG Interface Timing Parameters

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 47	SWD Interface Timing Parameters (Operating Conditions apply)
----------	--

Parameter		nbol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	C _L = 30 pF
			40	-	-	ns	C _L = 50 pF
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	_	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns	
SWDIO output valid time	t_5	CC	-	-	17	ns	C _L = 50 pF
after SWDCLK rising edge			-	-	13	ns	C _L = 30 pF
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	_	ns	

3.3.8.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 50	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Typ. Max			Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Package and Reliability

power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers