

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 9x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-53
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4100q48k128baxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

Table 9 XMC4100 Identification Registers									
Register Name	Value	Marking							
SCU_IDCHIP	0004 2001 _H	EES-AA, ES-AA							
SCU_IDCHIP	0004 2002 _H	ES-AB, AB							
SCU_IDCHIP	0004 1003 _H	BA							
JTAG IDCODE	101D D083 _H	EES-AA, ES-AA							
JTAG IDCODE	201D D083 _H	ES-AB, AB							
JTAG IDCODE	301D D083 _H	BA							

. . _

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 10 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	Ν	Ax	 A1+	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes		
P0.0	2	2	A1+			
P0.1	1	1	A1+			
P0.2	64	48	A1+			
P0.3	63	47	A1+			
P0.4	62	46	A1+			
P0.5	61	45	A1+			
P0.6	60	44	A1+			
P0.7	58	43	A1+	After a system reset, via HWSEL this pin selects the DB.TDI function.		
P0.8	57	42	A1+	After a system reset, via <u>HWSEL</u> this pin selects the DB.TRST function, with a weak pull-down active.		
P0.9	4	-	A1+			
P0.10	3	-	A1+			

Table 11 Package Pin Mapping

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Table 11	Package Pin Mapping (cont'd)								
Function	LQFP-64 VQFN-48 TQFP-64		Pad Type	Notes					
P14.9	23	19	AN/DAC/DIG_IN						
P14.14	14	-	AN/DIG_IN						
USB_DP	7	4	special						
USB_DM	6	3	special						
HIB_IO_0	10	7	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.					
тск	45	34	A1	Weak pull-down active.					
TMS	44	33	A1+	Weak pull-up active. As output the strong-soft driver mode is active.					
PORST	43	32	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.					
XTAL1	39	29	clock_IN						
XTAL2	40	30	clock_O						
RTC_XTAL1	11	8	clock_IN						
RTC_XTAL2	12	9	clock_O						
VBAT	13	10	Power	When VDDP is supplied VBAT has to be supplied as well.					
VDDA/VAREF	22	18	AN_Power/AN_ Ref	Shared analog supply and reference voltage pin.					
VSSA/VAGND	21	17	AN_Power/AN_ Ref	Shared analog supply and reference ground pin.					
VDDC	9	6	Power						
VDDC	42	31	Power						
VDDP	8	5	Power						
VDDP	38	28	Power						
VDDP	56	41	Power						
VSS	37	27	Power						

Table 11 Package Pin Mapping (cont'd)

The XMC4[12]00 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

There are no dedicated connections for the analog reference V_{AREF} and V_{AGND} . Instead, they share the same pins as the analog supply pins V_{DDA} and V_{SSA} . Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Con dition
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-
Junction temperature	TJ	SR	-40	_	150	°C	-
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	V _{IN}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Voltage on any analog input pin with respect to V_{AGND}	V_{AIN} V_{AREF}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA	
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\rm IN}$	SR	-25	-	+25	mA	
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	_	+100	mA	

Table 14 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 18**.

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 3.2.1.

Table 19 Pad Driver and Pad	Classes Overview
-----------------------------	------------------

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
Α	3.3 V	LVTTL I/O,	A1 (e.g. GPIO)	6 MHz	100 pF	No
_		LVTTL outputs	A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended

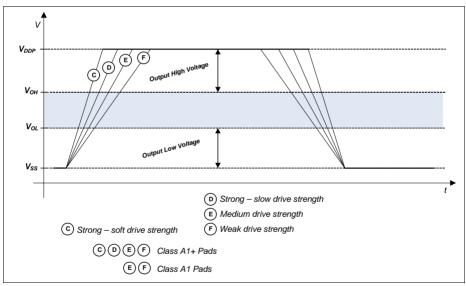
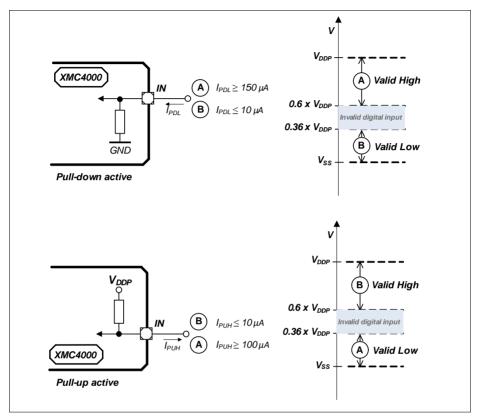


Figure 10 Output Slopes with different Pad Driver Modes


Figure 10 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

35

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

Figure 11 Pull Device Input Characteristics

Figure 11 visualizes the input characteristics with an active internal pull device:

- in the cases "A" the internal pull device is overridden by a strong external driver;
- in the cases "B" the internal pull device defines the input logical state against a weak external load.

Table 22 Standard Pads Class_A1

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Input leakage current	I _{OZA1} CC	-500	500	nA	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$	
Input high voltage	$V_{\rm IHA1}~{\rm SR}$	$0.6 \times V_{\rm DDP}$	V _{DDP} + 0.3	V	max. 3.6 V	
Input low voltage	$V_{\rm ILA1}{\rm SR}$	-0.3	$0.36 imes V_{ m DD}$	- V		
Output high voltage,	V_{OHA1}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A	
POD ¹⁾ = weak	CC	2.4	-	V	$I_{OH} \ge$ -500 μ A	
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
$POD^{1)} = medium$		2.4	-	V	$I_{OH} \ge$ -2 mA	
Output low voltage	V _{OLA1} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium	
Fall time	t _{FA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium	
Rise time	t _{RA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	

1) POD = Pin Out Driver

Table 23 Standard Pads Class_A1+

Parameter	Symbol Values			Unit	Note /	
		Min.		Max.		Test Condition
Input leakage current	I _{OZA1+} CC	-1		1	μΑ	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1+}\rm SR$	$0.6 \times V_{\rm DDP}$		V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1+}\rm SR$	-0.3		$0.36 \times V_{\rm DDP}$	V	

Parameter	Symbol	Va	lues	Unit	Note /
		Min.	Max.		Test Condition
Input leakage current	I _{OZHIB} CC	-500	500	nA	$0 \ V \le V_{IN} \le V_{BAT}$
Input high voltage	V _{IHHIB} SR	$0.6 imes V_{BAT}$	V _{BAT} + 0.3	V	max. 3.6 V
Input low voltage	V _{ILHIB} SR	-0.3	$0.36 imes V_{BAT}$	V	
Input Hysteresis for	HYSHIB	$0.1 imes V_{BAT}$	-	V	$V_{\rm BAT} \ge$ 3.13 V
HIB_IO pins ¹⁾	CC	$0.06 imes V_{BAT}$	-	V	$V_{\rm BAT}$ < 3.13 V
Output high voltage, POD ¹⁾ = medium	V _{OHHIB} CC	V _{BAT} - 0.4	-	V	I _{OH} ≥ -1.4 mA
Output low voltage	V _{OLHIB} CC	-	0.4	V	$I_{\rm OL} \le 2 {\rm mA}$
Fall time	t _{FHIB} CC	-	50	ns	$V_{\rm BAT} \ge 3.13 \text{ V}$ $C_{\rm L}$ = 50 pF
		-	100	ns	$V_{\rm BAT}$ < 3.13 V $C_{\rm L}$ = 50 pF
Rise time	t _{RHIB} CC	-	50	ns	$V_{\rm BAT} \ge 3.13 \ { m V}$ $C_{\rm L}$ = 50 pF
		-	100	ns	$V_{\rm BAT}$ < 3.13 V $C_{\rm L}$ = 50 pF

Table 24 HIB_IO Class_A1 special Pads

1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Total capacitance of the alternate reference inputs ⁵⁾	C _{AREFTOT} CC	-	20	40	pF	
Total Unadjusted Error	TUE CC	-6	-	6	LSB	12-bit resolution;
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-4.5	-	4.5	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$
Gain Error ⁸⁾	EA _{GAIN} CC	-6	-	6	LSB	
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-4.5	-	4.5	LSB	
Offset Error ⁸⁾	EA _{OFF} CC	-6	-	6	LSB	
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	-	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 ^{\circ}\text{C}$
Charge consumption on alternate reference per conversion ⁵⁾	$Q_{\rm CONV}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9}$
ON resistance of the analog input path	R _{AIN} CC	-	600	1 200	Ohm	
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm	

Table 25 ADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 14).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.

43

8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.

3.2.3 Digital to Analog Converters (DACx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symb	Symbol		Values	5	Unit	Note /
	Min. Typ.		Max.	_	Test Condition		
RMS supply current	I _{DD}	CC	_	2.5	4	mA	per active DAC channel, without load currents of DAC outputs
Resolution	RES	CC	-	12	-	Bit	
Update rate	furate.	_ _A CC	_		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy
Update rate	furate	_F CC	_		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy
Settling time	t _{SETTLE}	E CC	-	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB
Slew rate	SR	CC	2	5	-	V/µs	
Minimum output voltage	V _{OUT_} r CC	MIN	_	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H
Maximum output voltage	V _{OUT_} r CC	МАХ	-	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H
Integral non- linearity ¹⁾	INL	CC	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$
Differential non- linearity	DNL	CC	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$

 Table 27
 DAC Parameters (Operating Conditions apply)

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symb	ol		Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	$V_{\rm ODC}$	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\rm AIN} \ge V_{\rm AREF}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	_	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{\rm AIN} \leq V_{\rm AREF}$
Enable Delay	t _{OED}	CC	_	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
CSG Output Jitter	D _{CSG} CC	-	-	1	clk	
Bias startup time	t _{start} CC	-	-	98	us	
Bias supply current	I _{DDbias} CC	-	-	400	μA	
CSGy startup time	t _{CSGS} CC	-	-	2	μS	
Input operation current ¹⁾	I _{DDCIN} CC	-10	-	33	μA	See Figure 19
High Speed Mode						
DAC output voltage range	V _{DOUT} CC	V _{SS}	-	V_{DDP}	V	
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	-	30	MHz	
Supply current	I _{DDhs} CC	-	-	940	μA	
Low Speed Mode				L		
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V	
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20
Input Selector propagation delay - Full Scale	t _{DIs} CC	-	-	200	ns	See Figure 20
Comparator bandwidth	t _{Dls} CC	20	-	-	ns	
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	_	30	MHz	
Supply current	I _{DDIs} CC	-	-	300	μA	

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Con dition
Frequency	f_{eclk} SR	-	-	$f_{\rm hrpwm}/4$	MHz	
ON time	t _{oneclk} SR	$2T_{\rm ccu}^{(1)2)}$	-	-	ns	
OFF time	t _{offeclk} SR	2T _{ccu} ¹⁾²⁾	-	-	ns	Only the rising edge is used

Table 32 External clock operating conditions

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

3.2.6 Low Power Analog Comparator (LPAC)

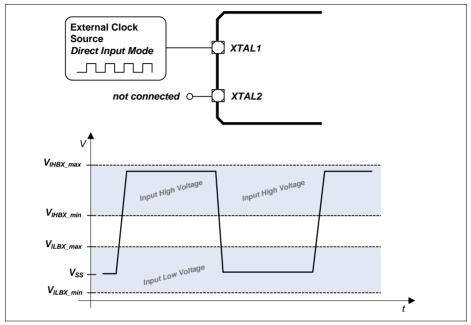
The Low Power Analog Comparator (LPAC) triggers a wake-up event from Hibernate state or an interrupt trigger during normal operation. It does so by comparing $V_{\rm BAT}$ or another external sensor voltage $V_{\rm LPS}$ with a pre-programmed threshold voltage.

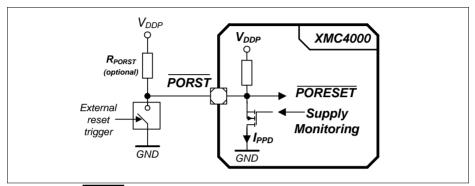
Note: These parameters are not subject to production test, but verified by design and/or characterization.

	-					
Parameter	Symbol		Values	;	Unit	Note /
		Min. Typ.		Max.		Test Condition
$V_{\rm BAT}$ supply voltage range for LPAC operation	$V_{\rm BAT}~{ m SR}$	2.1	-	3.6	V	
Sensor voltage range	V _{LPCS} CC	0	-	1.2	V	
Threshold step size	$V_{\rm th}$ CC	-	18.75	_	mV	
Threshold trigger accuracy	$\varDelta V_{\mathrm{th}}$ CC	-	-	±10	%	for $V_{\rm th}$ > 0.4 V
Conversion time	$t_{\rm LPCC} {\rm CC}$	-	-	250	μS	
Average current consumption over time	I _{LPCAC} CC	_	-	15	μA	conversion interval 10 ms ¹⁾
Current consumption during conversion	$I_{\rm LPCC} {\rm CC}$	_	150	_	μA	1)

Table 33Low Power Analog Comparator Parameters

1) Single channel conversion, measuring V_{BAT} = 3.3 V, 8 cycles settling time




Figure 22 Oscillator in Direct Input Mode

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

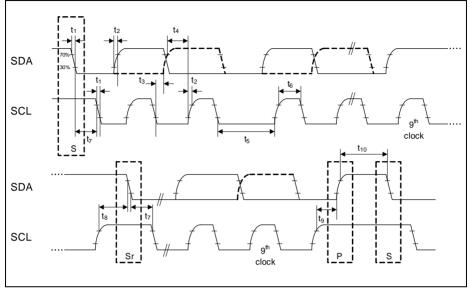

Figure 26 PORST Circuit

Table 41	Supply Monit	toring Parameters
----------	--------------	-------------------

Parameter	Symbol		Value	s	Unit	Note /
		Min. Typ		Max.		Test Condition
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	_	3.05 ²⁾	V	3)
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	_	_	2	μs	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{\rm DDC}$ ramp up time	t _{VCR} CC	-	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of $V_{\rm POR}$ or $V_{\rm PV}$

1) Minimum threshold for reset assertion.

Figure 32 USIC IIC Stand and Fast Mode Timing

3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 52	USIC IIS Master	Transmitter Timing
----------	-----------------	---------------------------

Parameter	Symbol		Values	6	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	_	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

3.3.9 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Rise time	t _R	CC	4	-	20	ns	C _L = 50 pF
Fall time	t _F	CC	4	-	20	ns	C _L = 50 pF
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	-	111.11	%	C _L = 50 pF
Crossover voltage	V _{CRS}	CC	1.3	-	2.0	V	C _L = 50 pF

 Table 54
 USB Timing Parameters (operating conditions apply)

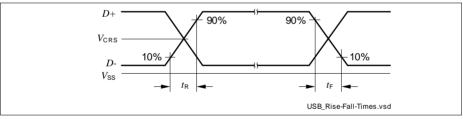


Figure 35 USB Signal Timing

Package and Reliability

power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

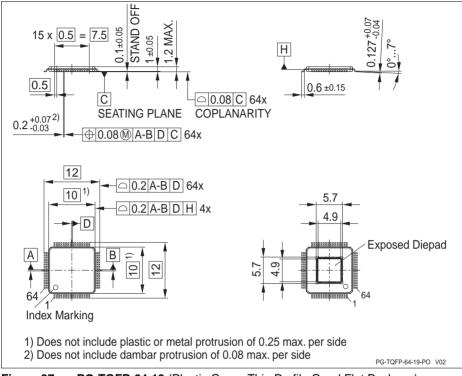


Figure 37 PG-TQFP-64-19 (Plastic Green Thin Profile Quad Flat Package)

Table 57 Differences PG-VQFN-48-53 to PG-VQFN-48-71

Change	PG-VQFN-48-53	PG-VQFN-48-71
Package corner	chamfered	right-angled
Lead width	0.23 ^{±0.05} mm	0.25 ^(+0.05, -0.07) mm
Lead height	0.4 ^{±0.07} mm	0.4 ^{±0.05} mm