

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4104f64f128abxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4[12]00 Data Sheet

Revision H	istory: V1.3 2015-10
Previous Ve V1.2 2014-0 V1.1 2014-0 V1.0 2013-7 V0.6 2012-7	arsions: 06 03 10 11
Page	Subjects
12	Added a section listing the packages of the different markings.
14	Added BA marking variant.
14	Corrected SCU_IDCHIP value of XMC4100 EES-AA/ES-AA.
36	Added footnote explaining minimum V_{BAT} requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
37	Changed pull device definition to System Requirement (SR) to reflect that the specified currents are defined by the characteristics of the external load/driver.
37	Added information that PORST Pull-up is identical to the pull-up on standard I/O pins.
42	Updated C_{AINSW} , C_{AINTOT} and R_{AIN} parameters with improved values.
56	Added footnote on test configuration for LPAC measurement.
58	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
62	Relaxed RTC_XTAL $V_{\rm PPX}$ parameter value and changed it to a system requirement.
66	Added footnote on current consumption by enabling of f_{CCU} .
67	Added Flash endurance parameter for 64 Kbytes Physical Sector PS4 $N_{\rm EPS4}$ for devices with BA marking.
many	Added PG-TQFP-64-19 and PG-VQFN-48-71 package information.
89, 91	Added tables describing the differences between PG-LQFP-64-19 to PG- TQFP-64-19 as well as PG-VQFN-48-53 to PG-VQFN-48-71 packages.
93	Updated to JEDEC standard J-STD-020D for the moisture sensitivity level and added solder temperature parameter according to the same standard.

Summary of Features

Derivative ¹⁾	ADC Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.						
XMC4200-F64x256	10	2	2 x 4	1 x 4	1	1						
XMC4200-Q48x256	9	2	2 x 4	1 x 4	1	1						
XMC4100-F64x128	10	2	2 x 4	1 x 4	1	1						
XMC4100-Q48x128	9	2	2 x 4	1 x 4	1	1						
XMC4104-F64x64	10	2	2 x 4	1 x 4	1	1						
XMC4104-Q48x64	9	2	2 x 4	1 x 4	1	1						
XMC4104-F64x128	10	2	2 x 4	1 x 4	1	1						
XMC4104-Q48x128	9	2	2 x 4	1 x 4	1	1						
XMC4108-F64x64	10	2	2 x 4	1 x 4	1	-						
XMC4108-Q48x64	9	2	2 x 4	1 x 4	1	-						

Table 4 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4[12]00 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Total Elach Siza	Cachod Bango	Uncached Pange
	Cached Kalige	Ulicached Kalige
256 Kbytes	0800 0000 _H -	0C00 0000 _H -
,	0803 FFFF _H	0C03 FFFF _H
128 Kbytes	0800 0000 _H -	0C00 0000 _H -
-	0801 FFFF _H	0C01 FFFF _H
64 Kbytes	0800 0000 _H -	0C00 0000 _H -
-	0800 FFFF _H	0C00 FFFF _H

Table 5 Flash Memory Ranges

General Device Information

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
VSSO	41	-	Power	
VSS	Exp. Pad	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Table 11 Package Pin Mapping (cont'd)

2.2.2.1 Port I/O Function Table

Data Sheet

Table 13 Port I/O Functions

Function	ction Output					Input									
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input	
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D		ERU0. 0B0	USB. VBUSDETECT A		HRPWM0. C1INB			
P0.1		U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3					ERU0. 0A0			HRPWM0. C2INB			
P0.2		U1C1. SELO1	CCU80. OUT01	HRPWM0. HROUT01	U1C0. DOUT3	U1C0. HWIN3			ERU0. 3B3						
P0.3			CCU80. OUT20	HRPWM0. HROUT20	U1C0. DOUT2	U1C0. HWIN2				ERU1. 3B0					
P0.4			CCU80. OUT10	HRPWM0. HROUT21	U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3						
P0.5		U1C0. DOUT0	CCU80. OUT00	HRPWM0. HROUT00	U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0					
P0.6		U1C0. SELO0	CCU80. OUT30	HRPWM0. HROUT30				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B				
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0		HRPWM0. HROUT11		DB. TDI	U0C0. DX2B		ERU0. 2B1		CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A	
P0.8	SCU. EXTCLK	U0C0. SCLKOUT		HRPWM0. HROUT10		DB. TRST	U0C0. DX1B		ERU0. 2A1		CCU80. IN1B				
P0.9	HRPWM0. HROUT31	U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0			U1C1. DX2A		ERU0. 1B0						
P0.10		U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0						
P0.11		U1C0. SCLKOUT	CCU80. OUT31					U1C0. DX1A	ERU0. 3A2						
P1.0		U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A	HRPWM0. COINA			
P1.1		U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A	HRPWM0. C1INA			
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A	HRPWM0. C2INA			
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2		POSIF0. IN0A		ERU1. 2A0	CCU40. IN0A	HRPWM0. COINB			
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33		U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. IN0C	HRPWM0. BL0A			
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23		U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C				
P1.7		U0C0. DOUT0		U1C1. SELO2						USB. VBUSDETECT B					

XMC4100 / XMC4200 XMC4000 Family

3 Electrical Parameters

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4[12]00 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column "Symbol":

• CC

Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4[12]00 and must be regarded for system design.

• SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC4[12]00 is designed in.

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 15 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol			Values	;	Unit	Note /	
			Min.	Тур.	yp. Max.		Test Condition	
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA		
Absolute sum of all input circuit currents for one port	$I_{\rm OVG}$	SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$	
group during overload condition ¹⁾			-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	_	-	80	mA	$\Sigma I_{\rm OVG}$	

Table 15 Overload Parameters

1) The port groups are defined in **Table 18**.

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

3.2.2 Analog to Digital Converters (ADCx)

Parameter	Symbol	0	Values	2	, Unit	Note /		
	Cymbol	Min	Tur	Moy	onne	Test Condition		
Analog reference voltage	V _{AREF} SR	-	-	-	V	$V_{\text{AREF}} = V_{\text{DDA}}$ shared analog supply and reference input pin		
Alternate reference voltage ⁵⁾	V_{AREF} SR	V _{AGND} + 1	-	$V_{\rm DDA}^{} + 0.05^{1)}$	V			
Analog reference ground	V _{AGND} SR	-	_	-	V	$V_{AGND} = V_{SSA}$ shared analog supply and reference input pin		
Alternate reference voltage range ²⁾⁵⁾	V_{AREF} - V_{AGND} SR	1	-	V _{DDA} + 0.1	V			
Analog input voltage	$V_{\rm AIN}~{\rm SR}$	V_{AGND}	_	V_{DDA}	V			
Input leakage at analog inputs ³⁾	I _{OZ1} CC	-100	-	200	nA	$0.03 imes V_{ m DDA} < V_{ m AIN} < 0.97 imes V_{ m DDA}$		
		-500	_	100	nA	$\begin{array}{l} 0 \hspace{0.1cm} V \leq V_{AIN} \leq 0.03 \\ \times \hspace{0.1cm} V_{DDA} \end{array}$		
		-100	-	500	nA	$\begin{array}{l} \textbf{0.97} \times V_{DDA} \\ \leq V_{AIN} \leq V_{DDA} \end{array}$		
Internal ADC clock	$f_{\rm ADCI}{ m CC}$	2	-	30	MHz	$V_{\rm DDA}$ = 3.3 V		
Switched capacitance at the analog voltage inputs ⁴⁾	C _{AINSW} CC	-	4	6.5	pF			
Total capacitance of an analog input	C_{AINTOT} CC	-	12	20	pF			
Switched capacitance at the alternate reference voltage input ⁵⁾⁶⁾	C _{AREFSW} CC	_	15	30	pF			

Table 25 ADC Parameters (Operating Conditions apply)

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symbol			Values	3	Unit	Note /
			Min.	Тур.	Гур. Мах.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	-	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{AIN} \leq V_{AREF}$
Enable Delay	t _{OED}	CC	-	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

CMP and 10-bit DAC characteristics (Operating Conditions apply)										
Parameter	Symbol		Values	5	Unit	Note /				
		Min.	Тур.	Max.		Test Condition				
CSG Output Jitter	D _{CSG} CC	-	-	1	clk					
Bias startup time	t _{start} CC	-	-	98	us					
Bias supply current	I _{DDbias} CC	-	-	400	μA					
CSGy startup time	t _{CSGS} CC	-	-	2	μS					
Input operation current ¹⁾	I _{DDCIN} CC	-10	-	33	μA	See Figure 19				
High Speed Mode	1	1		-1						
DAC output voltage range	V _{DOUT} CC	$V_{\rm SS}$	-	V_{DDP}	V					
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20				
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20				
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns					
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	-	30	MHz					
Supply current	I _{DDhs} CC	-	-	940	μA					
Low Speed Mode										
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V					
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20				
Input Selector propagation delay - Full Scale	t _{DIs} CC	-	-	200	ns	See Figure 20				
Comparator bandwidth	t _{Dls} CC	20	-	-	ns					
DAC CLK frequency	$f_{\rm clk}$ SR	-	-	30	MHz					
Supply current	I _{DDIs} CC	-	-	300	μA					

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

3.2.5.3 Clocks

HRPWM DAC Conversion Clock

The DAC conversion clock can be generated internally or it can be controlled via a HRPWM module pin.

|--|

Parameter	Symb	ool	V	alues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition
Frequency	$f_{\rm etrg}$	SR	-	_	30 ²⁾	MHz	
ON time	t _{onetrg}	SR	2T _{ccu} ¹⁾²⁾	_	_	ns	
OFF time	t _{offetrg}	SR	$2T_{ccu}^{(1)2)}$	-	-	ns	

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

CSG External Clock

It is possible to select an external source, that can be used as a clock for the slope generation, HRPWMx.ECLKy. This clock is synchronized internally with the module clock and therefore the external clock needs to meet the criterion described on Table 32.

3.2.7 Die Temperature Sensor

The Die Temperature Sensor (DTS) measures the junction temperature T_{1} .

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		,	Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Temperature sensor range	$T_{\rm SR}$	SR	-40	-	150	°C	
Linearity Error (to the below defined formula)	$\Delta T_{\rm LE}$	СС	-	±1	-	°C	per $\Delta T_{\rm J} \leq$ 30 °C
Offset Error	ΔT_{OE}	СС	-	±6	-	°C	$\Delta T_{\rm OE} = T_{\rm J} - T_{\rm DTS}$ $V_{\rm DDP} \le 3.3 \ {\rm V}^{1)}$
Measurement time	t _M	СС	-	-	100	μs	
Start-up time after reset inactive	t _{TSST}	SR	-	-	10	μS	

Table 34 Die Temperature Sensor Parameters

1) At $V_{\text{DDP max}} = 3.63 \text{ V}$ the typical offset error increases by an additional $\Delta T_{\text{OE}} = \pm 1 \text{ °C}$.

The following formula calculates the temperature measured by the DTS in [°C] from the RESULT bit field of the DTSSTAT register.

Temperature T_{DTS} = (RESULT - 605) / 2.05 [°C]

This formula and the values defined in **Table 34** apply with the following calibration values:

- DTSCON.BGTRIM = 8_H
- DTSCON.REFTRIM = 4_H

Figure 22 Oscillator in Direct Input Mode

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol			Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
Peripherals enabled			-	75	-		80 / 40 / 40
$f_{CPU}/f_{PEPIPH}/f_{CCU}$ in MHz			-	73	-		40 / 40 / 80
JOFU JEKIFI JOCU			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current	I _{DDPA}	CC	-	24	-	mA	80 / 80 / 80
Code execution from RAM Flash in Sleep mode Frequency:			_	19	_		80 / 40 / 40
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz							
Active supply current ²⁾	$I_{\rm DDPA}$	СС	_	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: f_{CPU}/f_{PERIPH} in MHz			-	62	-		80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

Table 38	Power	Supply	Parameters
----------	-------	--------	------------

Note: These parameters are not subject to production test, but verified by design and/or characterization.

- 2) Maximum threshold for reset deassertion.
- 3) The V_{DDP} monitoring has a typical hysteresis of V_{PORHYS} = 180 mV.

Figure 27 Power-Up Behavior

3.3.3 Power Sequencing

While starting up and shutting down as well as when switching power modes of the system it is important to limit the current load steps. A typical cause for such load steps is changing the CPU frequency $f_{\rm CPU}$. Load steps exceeding the below defined values may cause a power on reset triggered by the supply monitor.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 42 Power Sequencing Parameters

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Positive Load Step Current	$\Delta I_{PLS}SR$	-	-	50	mA	Load increase on V_{DDP} $\Delta t \le 10 \text{ ns}$
Negative Load Step Current	$\Delta I_{\sf NLS}\sf SR$	-	-	150	mA	Load decrease on V_{DDP} $\Delta t \le 10 \text{ ns}$
V _{DDC} Voltage Over- / Undershoot from Load Step	$\Delta V_{\rm LS}$ CC	-	_	±100	mV	For maximum positive or negative load step
Positive Load Step Settling Time	t _{PLSS} SR	50	-	-	μS	
Negative Load Step Settling Time	t _{NLSS} SR	100	-	-	μS	
External Buffer Capacitor on $V_{\rm DDC}$	C _{EXT} SR	3	4.7	6	μF	In addition C = 100 nF capacitor on each V_{DDC} pin

Positive Load Step Examples

System assumptions:

 $f_{CPU} = f_{SYS}$, target frequency $f_{CPU} = 80$ MHz, main PLL $f_{VCO} = 480$ MHz, stepping done by K2 divider, t_{PLSS} between individual steps:

24 MHz - 48 MHz - 80 MHz (K2 steps 20 - 10 - 6) 24 MHz - 60 MHz - 80 MHz (K2 steps 20 - 8 - 6)

3.3.8.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 50	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Figure 32 USIC IIC Stand and Fast Mode Timing

3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 52	USIC IIS Master	Transmitter	Timing
----------	-----------------	-------------	--------

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	_	_	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	_	_	0.15 x	ns	
				t _{1min}		

Package and Reliability

4 Package and Reliability

The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The availability of different packages for different markings is listed in **Table 2**.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad Dimensions	Ex × Ey	-	$\textbf{5.8} \times \textbf{5.8}$	mm	PG-LQFP-64-19	
	CC	-	5.7 imes 5.7	mm	PG-TQFP-64-19	
		-	5.2 imes 5.2	mm	PG-VQFN-48-53	
		-	5.2 imes 5.2	mm	PG-VQFN-48-71	
Thermal resistance	$R_{ m \Theta JA}$	-	30	K/W	PG-LQFP-64-19 ¹⁾	
Junction-Ambient	CC	-	23.4	K/W	PG-TQFP-64-19 ¹⁾	
		-	34.8	K/W	PG-VQFN-48-53 ¹⁾ PG-VQFN-48-71 ¹⁾	

 Table 55
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4[12]00 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The

Package and Reliability

4.2 Package Outlines

The availability of different packages for different devices types is listed in **Table 1**, specific packages for different device markings are listed in **Table 2**.

The exposed die pad dimensions are listed in Table 55.

Table 56 Differences PG-LQFP-64-19 to PG-TQFP-64-19

Change	PG-LQFP-64-19	PG-TQFP-64-19	
Thermal Resistance Junction Ambient ($R_{\Theta JA}$)	30 K/W	23.4 K/W	
Package thickness	1.4 ^{±0.05} mm	1.0 ^{±0.05} mm	
	1.6 mm MAX	1.2 mm MAX	
Exposed Die Pad size	5.8 mm × 5.8 mm	5.7 mm × 5.7 mm	

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[12]00 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Values	6	Unit	Note /
		Min.	Тур.	Max.	İ	Test Condition
Operation lifetime	t _{OP} CC	20	-	_	а	$T_{\rm J} \le 109^{\circ}{\rm C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	_	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	_	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	_	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{\rm SDR}$ SR	_	-	260	°C	Profile according to JEDEC J-STD-020D

Table 58Quality Parameters