

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP Exposed Pad
Supplier Device Package	PG-TQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4104f64f128baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2015-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC4[12]00 Data Sheet

Revision	History: V1.3 2015-10
	Versions:
V1.2 201	
V1.1 201	
V1.0 201	
V0.6 201	2-11
Page	Subjects
12	Added a section listing the packages of the different markings.
14	Added BA marking variant.
14	Corrected SCU_IDCHIP value of XMC4100 EES-AA/ES-AA.
36	Added footnote explaining minimum V_{BAT} requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
37	Changed pull device definition to System Requirement (SR) to reflect that the specified currents are defined by the characteristics of the external load/driver.
37	Added information that PORST Pull-up is identical to the pull-up on standard I/O pins.
42	Updated C_{AINSW} , C_{AINTOT} and R_{AIN} parameters with improved values.
56	Added footnote on test configuration for LPAC measurement.
58	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
62	Relaxed RTC_XTAL $V_{\rm PPX}$ parameter value and changed it to a system requirement.
66	Added footnote on current consumption by enabling of f_{CCU} .
67	Added Flash endurance parameter for 64 Kbytes Physical Sector PS4 $N_{\rm EPS4}$ for devices with BA marking.
many	Added PG-TQFP-64-19 and PG-VQFN-48-71 package information.
89, 91	Added tables describing the differences between PG-LQFP-64-19 to PG- TQFP-64-19 as well as PG-VQFN-48-53 to PG-VQFN-48-71 packages.
93	Updated to JEDEC standard J-STD-020D for the moisture sensitivity level and added solder temperature parameter according to the same standard.

Summary of Features

1.3 Package Variants

Different markings of the XMC4[12]00 use different package variants. Details of those packages are given in the **Package Parameters** section of the Data Sheet.

Table 2 XMC4[12]00 Package Variants

Package Variant	Marking	Package
XMC4[12]00-F64	EES-AA, ES-AA, ES-AB, AB	PG-LQFP-64-19
XMC4[12]00-Q48		PG-VQFN-48-53
XMC4[12]00-F64	BA	PG-TQFP-64-19
XMC4[12]00-Q48		PG-VQFN-48-71

1.4 Device Type Features

The following table lists the available features per device type.

Derivative ¹⁾	LEDTS Intf.	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4200-F64x256	1	1	2 x 2	N0, N1 MO[063]
XMC4200-Q48x256	1	1	2 x 2	N0, N1 MO[063]
XMC4100-F64x128	1	1	2 x 2	N0, N1 MO[063]
XMC4100-Q48x128	1	1	2 x 2	N0, N1 MO[063]
XMC4104-F64x64	1	-	2 x 2	-
XMC4104-Q48x64	1	-	2 x 2	-
XMC4104-F64x128	1	-	2 x 2	-
XMC4104-Q48x128	1	-	2 x 2	-
XMC4108-F64x64	-	-	2 x 2	N0, MO[031
XMC4108-Q48x64	-	-	2 x 2	N0, MO[031
		1	1	1

Table 3 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

Summary of Features

Table 6 SRAM	Memory Ranges	
Total SRAM Size	Program SRAM	System Data SRAM
40 Kbytes	1FFF C000 _H – 1FFF FFFF _H	2000 0000 _H – 2000 5FFF _H
20 Kbytes	1FFF E000 _H – 1FFF FFFF _H	2000 0000 _H – 2000 2FFF _H

Table 7 ADC Channels¹⁾

Package	VADC G0	VADC G1
LQFP-64, TQFP-64	CH0, CH3CH7	CH0, CH1, CH3, CH6
PG-VQFN-48	CH0, CH3CH7	CH0, CH1, CH3

1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

1.6 Identification Registers

The identification registers allow software to identify the marking.

Table 8 XMC4200 Identification Registers

Register Name	Value	Marking
SCU_IDCHIP	0004 2001 _H	EES-AA, ES-AA
SCU_IDCHIP	0004 2002 _H	ES-AB, AB
SCU_IDCHIP	0004 2003 _H	BA
JTAG IDCODE	101D D083 _H	EES-AA, ES-AA
JTAG IDCODE	201D D083 _H	ES-AB, AB
JTAG IDCODE	301D D083 _H	BA

Summary of Features

Table 9 XMC4100 lo	Table 9 XMC4100 Identification Registers							
Register Name	Value	Marking						
SCU_IDCHIP	0004 2001 _H	EES-AA, ES-AA						
SCU_IDCHIP	0004 2002 _H	ES-AB, AB						
SCU_IDCHIP	0004 1003 _H	BA						
JTAG IDCODE	101D D083 _H	EES-AA, ES-AA						
JTAG IDCODE	201D D083 _H	ES-AB, AB						
JTAG IDCODE	301D D083 _H	BA						

. . _

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 10 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	Ν	Ax	 A1+	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P0.0	2	2	A1+	
P0.1	1	1	A1+	
P0.2	64	48	A1+	
P0.3	63	47	A1+	
P0.4	62	46	A1+	
P0.5	61	45	A1+	
P0.6	60	44	A1+	
P0.7	58	43	A1+	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	57	42	A1+	After a system reset, via <u>HWSEL</u> this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	-	A1+	
P0.10	3	-	A1+	

Table 11 Package Pin Mapping

The XMC4[12]00 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

There are no dedicated connections for the analog reference V_{AREF} and V_{AGND} . Instead, they share the same pins as the analog supply pins V_{DDA} and V_{SSA} . Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 15 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol		Values			Unit	Note /	
		1		Тур.	Max.		Test Condition	
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA		
Absolute sum of all input circuit currents for one port	I _{OVG}	SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$	
group during overload condition ¹⁾			-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	-	-	80	mA	ΣI _{OVG}	

Table 15 Overload Parameters

1) The port groups are defined in **Table 18**.

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Table 22 Standard Pads Class_A1

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Input leakage current	I _{OZA1} CC	-500	500	nA	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$	
Input high voltage	$V_{\rm IHA1}~{\rm SR}$	$0.6 \times V_{\rm DDP}$	V _{DDP} + 0.3	V	max. 3.6 V	
Input low voltage	$V_{\rm ILA1}{\rm SR}$	-0.3	$0.36 imes V_{ m DD}$	- V		
Output high voltage,	V_{OHA1}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A	
$POD^{1)} = weak$	CC	2.4	-	V	$I_{OH} \ge$ -500 μ A	
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
$POD^{1)} = medium$		2.4	-	V	$I_{OH} \ge$ -2 mA	
Output low voltage	V _{OLA1} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium	
Fall time	t _{FA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium	
Rise time	t _{RA1} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	

1) POD = Pin Out Driver

Table 23 Standard Pads Class_A1+

Parameter	Symbol	Values			Unit	Note /
		Min.		Max.		Test Condition
Input leakage current	I _{OZA1+} CC	-1		1	μΑ	$0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DDP}}$
Input high voltage	$V_{\rm IHA1+}\rm SR$	$0.6 \times V_{\rm DDP}$		V_{DDP} + 0.3	V	max. 3.6 V
Input low voltage	$V_{\rm ILA1+}\rm SR$	-0.3		$0.36 \times V_{\rm DDP}$	V	

3.2.3 Digital to Analog Converters (DACx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symb	Symbol		Values	5	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
RMS supply current	I _{DD}	CC	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs	
Resolution	RES	CC	-	12	-	Bit		
Update rate	furate.	_ _A CC	_		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy	
Update rate	furate.	_F CC	_		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy	
Settling time	t _{settle}	CC	-	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB	
Slew rate	SR	CC	2	5	-	V/µs		
Minimum output voltage	V _{OUT_} N CC	MIN	-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H	
Maximum output voltage	V _{OUT_} M CC	мах	-	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H	
Integral non- linearity ¹⁾	INL	CC	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	
Differential non- linearity	DNL	CC	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	

 Table 27
 DAC Parameters (Operating Conditions apply)

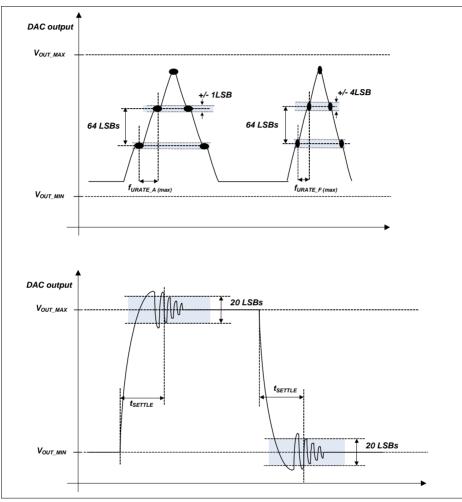


Figure 15 DAC Conversion Examples

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symb	ol		Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	$V_{\rm ODC}$	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\rm AIN} \ge V_{\rm AREF}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	_	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{\rm AIN} \leq V_{\rm AREF}$
Enable Delay	t _{OED}	CC	_	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

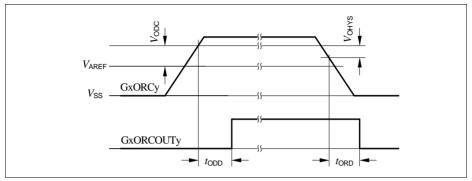


Figure 16 GxORCOUTy Trigger Generation

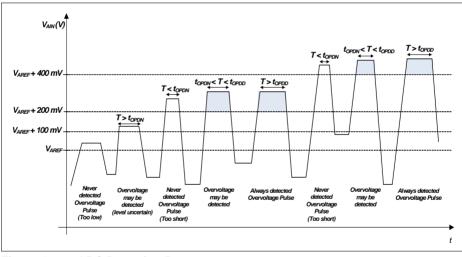


Figure 17 ORC Detection Ranges

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Con dition
Frequency	f_{eclk} SR	-	-	$f_{\rm hrpwm}/4$	MHz	
ON time	t _{oneclk} SR	$2T_{\rm ccu}^{(1)2)}$	-	-	ns	
OFF time	t _{offeclk} SR	2T _{ccu} ¹⁾²⁾	-	-	ns	Only the rising edge is used

Table 32 External clock operating conditions

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

3.2.6 Low Power Analog Comparator (LPAC)

The Low Power Analog Comparator (LPAC) triggers a wake-up event from Hibernate state or an interrupt trigger during normal operation. It does so by comparing $V_{\rm BAT}$ or another external sensor voltage $V_{\rm LPS}$ with a pre-programmed threshold voltage.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

	-					
Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
$V_{\rm BAT}$ supply voltage range for LPAC operation	$V_{\rm BAT}~{ m SR}$	2.1	-	3.6	V	
Sensor voltage range	V _{LPCS} CC	0	-	1.2	V	
Threshold step size	$V_{\rm th}$ CC	-	18.75	_	mV	
Threshold trigger accuracy	$\varDelta V_{\mathrm{th}}$ CC	-	-	±10	%	for $V_{\rm th}$ > 0.4 V
Conversion time	$t_{\rm LPCC} {\rm CC}$	-	-	250	μS	
Average current consumption over time	I _{LPCAC} CC	_	-	15	μA	conversion interval 10 ms ¹⁾
Current consumption during conversion	$I_{\rm LPCC} {\rm CC}$	_	150	_	μA	1)

Table 33Low Power Analog Comparator Parameters

1) Single channel conversion, measuring V_{BAT} = 3.3 V, 8 cycles settling time

3.2.8 USB Device Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Condition	s apply	/)					
Parameter	Sym	Symbol Values		5	Unit	Note /	
			Min.	Тур.	Max.		Test Condition
Input low voltage	V_{IL}	SR	-	-	0.8	V	
Input high voltage (driven)	V_{IH}	SR	2.0	-	-	V	
Input high voltage (floating) ¹⁾	V_{IHZ}	SR	2.7	-	3.6	V	
Differential input sensitivity	V_{DIS}	СС	0.2	-	-	V	
Differential common mode range	$V_{\rm CM}$	СС	0.8	-	2.5	V	
Output low voltage	V_{OL}	СС	0.0	-	0.3	V	1.5 kOhm pull- up to 3.6 V
Output high voltage	V _{OH}	СС	2.8	-	3.6	V	15 kOhm pull- down to 0 V
DP pull-up resistor (idle bus)	R _{PUI}	СС	900	-	1 575	Ohm	
DP pull-up resistor (upstream port receiving)	R _{PUA}	CC	1 425	-	3 090	Ohm	
Input impedance DP, DM	$Z_{\rm INP}$	СС	300	-	-	kOhm	$0 \ V \leq V_{IN} \leq V_{DDP}$
Driver output resistance DP, DM	$Z_{\rm DRV}$	СС	28	-	44	Ohm	

Table 35	USB Device Data Line (USB_DP, USB_DM) Parameters (Operating
	Conditions apply)

 Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at Bconnector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
Peripherals enabled			-	75	-		80 / 40 / 40
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	73	-		40 / 40 / 80
JCPU, JPERIPH, JCCU III WII IZ			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current Code execution from RAM Flash in Sleep mode Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz	I _{DDPA}	CC	-	24	-	mA	80 / 80 / 80
			_	19	-		80 / 40 / 40
Active supply current ²⁾	I _{DDPA}	СС	-	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: f_{CPU}/f_{PERIPH} in MHz			-	62	-	-	80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

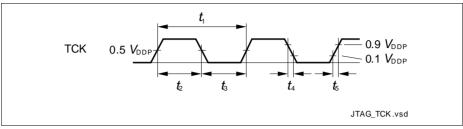
Table 38	Power Supply	Parameters
----------	--------------	------------

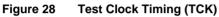
Note: These parameters are not subject to production test, but verified by design and/or characterization.

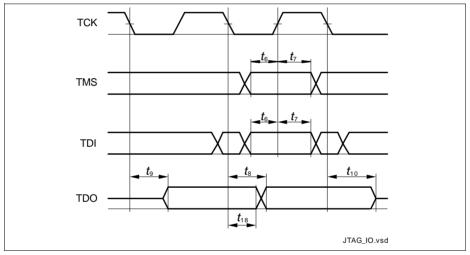
3.3.5 Internal Clock Source Characteristics

Fast Internal Clock Source

Parameter	Symbol		Values	5	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Nominal frequency	$f_{\rm OFINC}$	-	36.5	_	MHz	not calibrated	
	CC	-	24	-	MHz	calibrated	
Accuracy	<i>∆f</i> _{OFI} CC	-0.5	-	0.5	%	automatic calibration ¹⁾²⁾	
		-15	-	15	%	factory calibration, $V_{\rm DDP}$ = 3.3 V	
		-25	-	25	%	no calibration, $V_{\rm DDP}$ = 3.3 V	
		-7	-	7	%	Variation over voltage range ³⁾ $3.13 V \le V_{DDP} \le$ 3.63 V	
Start-up time	t _{OFIS} CC	-	50	-	μS		


Table 44 Fast Internal Clock Parameters


1) Error in addition to the accuracy of the reference clock.


2) Automatic calibration compensates variations of the temperature and in the V_{DDP} supply voltage.

 Deviations from the nominal V_{DDP} voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

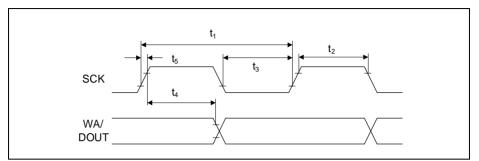


Figure 33	USIC IIS Master	Transmitter Timing	
-----------	-----------------	--------------------	--

Table 53 USIC IIS S	lave Receiver Timing
---------------------	----------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	66.6	-	-	ns	
Clock high time	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock low time	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	_	-	ns	
Hold time	<i>t</i> ₁₀ SR	0	-	-	ns	

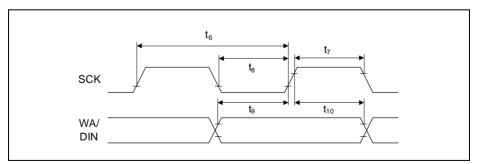


Figure 34 USIC IIS Slave Receiver Timing

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[12]00 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Operation lifetime	t _{OP} CC	20	-	-	а	$T_{\rm J} \le 109^{\circ}{ m C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	V _{HBM} SR	-	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	-	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	_	-	3	_	JEDEC J-STD-020D
Soldering temperature	T _{SDR} SR	-	-	260	°C	Profile according to JEDEC J-STD-020D

Table 58Quality Parameters