

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 10x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4104f64k128baxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes				
P14.9	23	19	AN/DAC/DIG_IN					
P14.14	14	-	AN/DIG_IN					
USB_DP	7	4	special					
USB_DM	6	3	special					
HIB_IO_0	10	7	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.				
ТСК	45	34	A1	Weak pull-down active.				
TMS	44	33	A1+	Weak pull-up active. As output the strong-soft driver mode is active.				
PORST	43	32	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.				
XTAL1	39	29	clock_IN					
XTAL2	40	30	clock_O					
RTC_XTAL1	11	8	clock_IN					
RTC_XTAL2	12	9	clock_O					
VBAT	13	10	Power	When VDDP is supplied VBAT has to be supplied as well.				
VDDA/VAREF	22	18	AN_Power/AN_ Ref	Shared analog supply and reference voltage pin.				
VSSA/VAGND	21	17	AN_Power/AN_ Ref	Shared analog supply and reference ground pin.				
VDDC	9	6	Power					
VDDC	42	31	Power					
VDDP	8	5	Power					
VDDP	38	28	Power					
VDDP	56	41	Power					
VSS	37	27	Power					

Table 11 Package Pin Mapping (cont'd)

The XMC4[12]00 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

There are no dedicated connections for the analog reference V_{AREF} and V_{AGND} . Instead, they share the same pins as the analog supply pins V_{DDA} and V_{SSA} . Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

3 Electrical Parameters

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4[12]00 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column "Symbol":

• CC

Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4[12]00 and must be regarded for system design.

• SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC4[12]00 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /
			Min.	Тур.	Max.		Test Con dition
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-
Junction temperature	T_{J}	SR	-40	-	150	°C	-
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	$V_{\sf IN}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Voltage on any analog input pin with respect to V_{AGND}	$\begin{array}{c} V_{\rm AIN} \\ V_{\rm AREF} \end{array}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA	
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\sf IN}$	SR	-25	_	+25	mA	
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA	

Table 14 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 18**.

3.2 DC Parameters

3.2.1 Input/Output Pins

The digital input stage of the shared analog/digital input pins is identical to the input stage of the standard digital input/output pins.

The pull-up characteristics (I_{PUH}) and the input high and low voltage levels (V_{IH} and V_{IL}) of the PORST pin are identical to the respective values of the standard digital input/output pins.

Parameter	Symbol	Valu	les	Unit	Note / Test Condition	
		Min.	Max.			
Pin capacitance (digital inputs/outputs)	C _{IO} CC	-	10	pF		
Pull-down current	$ I_{\rm PDL} $	150	-	μA	$^{1)}V_{\rm IN} \ge 0.6 \times V_{\rm DDP}$	
	SR	-	10	μA	$^{2)}V_{\mathrm{IN}} \leq 0.36 imes V_{\mathrm{DDP}}$	
Pull-up current	$ I_{\rm PUH} $	-	10	μA	$^{2)}V_{\mathrm{IN}} \ge 0.6 imes V_{\mathrm{DDP}}$	
	SR	100	-	μA	${}^{\rm 1)}V_{\rm IN} \le 0.36 \times V_{\rm DDP}$	
Input Hysteresis for pads of all A classes ³⁾	HYSA CC	$0.1 \times V_{\text{DDP}}$	-	V		
PORST spike filter always blocked pulse duration	t _{SF1} CC	_	10	ns		
PORST spike filter pass-through pulse duration	t _{SF2} CC	100	-	ns		
PORST pull-down current	I _{PPD} CC	13	-	mA	<i>V</i> _i = 1.0 V	

Table 21 Standard Pad Parameters

Current required to override the pull device with the opposite logic level ("force current").
 With active pull device, at load currents between force and keep current the input state is undefined.

 Load current at which the pull device still maintains the valid logic level ("keep current"). With active pull device, at load currents between force and keep current the input state is undefined.

 Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can not be guaranteed that it suppresses switching due to external system noise.

37

Table 23 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Output high voltage,	V _{OHA1+}	$V_{\rm DDP}$ - 0.4	_	V	$I_{OH} \ge$ -400 μ A	
$POD^{(1)} = weak$	CC	2.4	_	V	$I_{\rm OH} \ge$ -500 μA	
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
POD ¹⁾ = medium		2.4	-	V	$I_{\rm OH} \ge$ -2 mA	
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
$POD^{(i)} = strong$		2.4	_	V	$I_{\rm OH} \ge$ -2 mA	
Output low voltage	V _{OLA1+} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong	
Fall time	t _{FA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium	
		_	28	ns	$C_{\rm L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow	
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft;	
Rise time	t _{RA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	
		-	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow	
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft	

1) POD = Pin Out Driver

9) The resulting current for a conversion can be calculated with $I_{AREF} = Q_{CONV} / t_c$. The fastest 12-bit post-calibrated conversion of $t_c = 566$ ns results in a typical average current of $I_{AREF} = 53 \mu A$.

Figure 12 VADC Reference Voltage Range

3.2.3 Digital to Analog Converters (DACx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol			Values	5	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
RMS supply current	I _{DD} C	C	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs	
Resolution	RES 0	СС	-	12	-	Bit		
Update rate	f _{urate_a} (CC	-		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy	
Update rate	furate_f	СС	-		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy	
Settling time	t _{settle} (CC	_	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB	
Slew rate	SR C	C	2	5	-	V/µs		
Minimum output voltage	V _{OUT_MIN} CC		-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H	
Maximum output voltage	V _{OUT_MAX} CC	K	_	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H	
Integral non- linearity ¹⁾	INL	СС	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$	
Differential non- linearity	DNL (CC	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm}, \\ C_L \leq 50 \text{ pF} \end{array}$	

 Table 27
 DAC Parameters (Operating Conditions apply)

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symb	ol		Values	3	Unit	Note /
				Тур.	Max.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	-	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{AIN} \leq V_{AREF}$
Enable Delay	t _{OED}	CC	-	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

Table 38 Power Supply Parameters

Parameter	Symbol		Values	5	Unit	Note /	
		Min.	Тур.	Max.		Test Condition	
Sleep supply current ³⁾	I _{DDPS} CC	-	76	-	mA	80 / 80 / 80	
Peripherals enabled		-	73	-		80 / 40 / 40	
frequency:		-	70	-	_	40 / 40 / 80	
JCPU, JPERIPH, JCCU		-	56	-		24 / 24 / 24	
		-	47	-		1/1/1	
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100	
Sleep supply current ⁴⁾	I _{DDPS} CC	-	59	-	mA	80 / 80 / 80	
Peripherals disabled		-	58	-		80 / 40 / 40	
form / formul / foot in MHz		-	57	-	_	40 / 40 / 80	
JCPU, JPERIPH, JCCU		-	51	-		24 / 24 / 24	
		-	46	-		1/1/1	
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100	
Deep Sleep supply	I _{DDPD} CC	-	6.9	-	mA	24 / 24 / 24	
current ⁵⁾		-	4.3	-	_	4 / 4 / 4	
Flash in Sleep mode		-	3.8	-	-	1/1/1	
$f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz							
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz	Ť	_	4.5	-		100 / 100 / 100 ₆₎	
Hibernate supply current	I _{DDPH} CC	-	10.8	-	μA	$V_{\rm BAT}$ = 3.3 V	
RTC on ⁷⁾		-	8.0	-		$V_{\rm BAT}$ = 2.4 V	
		-	6.8	-		$V_{\rm BAT}$ = 2.0 V	
Hibernate supply current	I _{DDPH} CC	-	10.3	-	μA	$V_{\rm BAT}$ = 3.3 V	
RTC off ⁸⁾		-	7.5	-		$V_{\rm BAT}$ = 2.4 V	
		-	6.3	-		$V_{\rm BAT}$ = 2.0 V	
Worst case active supply current ⁹⁾	I _{DDPA} CC	-	-	140 ¹⁰⁾	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 \text{ °C}$	
$V_{\rm DDA}$ power supply current	I _{DDA} CC	-	-	_11)	mA		
I_{DDP} current at PORST Low	I _{DDP_PORST} CC	-	-	24	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 \text{ °C}$	

Parameter	Symb	Symbol		Values	6	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Power Dissipation	P_{DISS}	СС	-	-	1	W	V _{DDP} = 3.6 V, T _J = 150 °C
Wake-up time from Sleep to Active mode	t _{SSA}	СС	_	6	-	cycles	
Wake-up time from Deep Sleep to Active mode			-	-	-	ms	Defined by the wake-up of the Flash module, see Section 3.2.11
Wake-up time from Hibernate mode			_	-	-	ms	Wake-up via power-on reset event, see Section 3.3.2

Table 38 Power Supply Parameters

1) CPU executing code from Flash, all peripherals idle.

2) CPU executing code from Flash. USB and CCU clock off.

3) CPU in sleep, all peripherals idle, Flash in Active mode.

- 4) CPU in sleep, Flash in Active mode.
- 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
- 6) To wake-up the Flash from its Sleep mode, $f_{CPU} \ge 1$ MHz is required.
- 7) OSC_ULP operating with external crystal on RTC_XTAL
- 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
- 9) Test Power Loop: f_{SYS} = 80 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.

The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.

- 10) I_{DDP} decreases typically by 3.5 mA when f_{SYS} decreases by 10 MHz, at constant T_{J}
- 11) Sum of currents of all active converters (ADC and DAC)

Table 40 Flash Memory Parameters

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Data Retention Time, User Configuration Block (UCB) ³⁾⁴⁾	t _{RTU} CC	20	-	-	years	Max. 4 erase/program cycles per UCB
Endurance on 64 Kbyte Physical Sector PS4	N _{EPS4} CC	10000	-	-	cycles	BA-marking devices only! Cycling distributed over life time ⁵⁾

1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms.

2) The following formula applies to the wait state configuration: FCON.WSPFLASH × (1 / f_{CPU}) $\geq t_a$.

3) Storage and inactive time included.

4) Values given are valid for an average weighted junction temperature of $T_{\rm J}$ = 110°C.

5) Only valid with robust EEPROM emulation algorithm, equally cycling the logical sectors. For more details see the Reference Manual.

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Figure 26 PORST Circuit

Table 41	Supply Monitoring Parameters
----------	------------------------------

Parameter	Symbol		Value	s	Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	-	3.05 ²⁾	V	3)
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V	
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V	
PORST rise time	t _{PR} SR	-	_	2	μs	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction
$V_{\rm DDC}$ ramp up time	t _{VCR} CC	-	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of V_{POR} or V_{PV}

1) Minimum threshold for reset assertion.

Table 42 Power Sequencing Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Positive Load Step Current	$\Delta I_{PLS}SR$	-	-	50	mA	Load increase on V_{DDP} $\Delta t \le 10 \text{ ns}$
Negative Load Step Current	$\Delta I_{\sf NLS}\sf SR$	-	-	150	mA	Load decrease on V_{DDP} $\Delta t \le 10 \text{ ns}$
V _{DDC} Voltage Over- / Undershoot from Load Step	$\Delta V_{\rm LS}$ CC	-	_	±100	mV	For maximum positive or negative load step
Positive Load Step Settling Time	t _{PLSS} SR	50	-	-	μS	
Negative Load Step Settling Time	t _{NLSS} SR	100	-	-	μS	
External Buffer Capacitor on $V_{\rm DDC}$	C _{EXT} SR	3	4.7	6	μF	In addition C = 100 nF capacitor on each V_{DDC} pin

Positive Load Step Examples

System assumptions:

 $f_{CPU} = f_{SYS}$, target frequency $f_{CPU} = 80$ MHz, main PLL $f_{VCO} = 480$ MHz, stepping done by K2 divider, t_{PLSS} between individual steps:

24 MHz - 48 MHz - 80 MHz (K2 steps 20 - 10 - 6) 24 MHz - 60 MHz - 80 MHz (K2 steps 20 - 8 - 6)

3.3.4 Phase Locked Loop (PLL) Characteristics

Main and USB PLL

Table 43PLL Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Accumulated Jitter	D _P CC	-	-	±5	ns	accumulated over 300 cycles f_{SYS} = 80 MHz
Duty Cycle ¹⁾	D _{DC} CC	46	50	54	%	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	$f_{PLLBASE}$	30	-	140	MHz	
VCO input frequency	$f_{\sf REF}\sf CC$	4	-	16	MHz	
VCO frequency range	$f_{\rm VCO}{\rm CC}$	260	-	520	MHz	
PLL lock-in time	t _L CC	-	-	400	μS	

1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values.

Figure 32 USIC IIC Stand and Fast Mode Timing

3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 52	USIC IIS Master	Transmitter	Timing
----------	-----------------	-------------	--------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	-	_	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	_	-	0.15 x	ns	
				t _{1min}		

3.3.9 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Rise time	t _R	CC	4	-	20	ns	C _L = 50 pF
Fall time	t _F	CC	4	-	20	ns	C _L = 50 pF
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	-	111.11	%	C _L = 50 pF
Crossover voltage	V _{CRS}	CC	1.3	-	2.0	V	C _L = 50 pF

 Table 54
 USB Timing Parameters (operating conditions apply)

Figure 35 USB Signal Timing

Package and Reliability

power dissipation must be limited so that the average junction temperature does not exceed 150 °C.

The difference between junction temperature and ambient temperature is determined by $\Delta T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$ (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as $P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}}-V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$

The dynamic external power consumption caused by the output drivers (P_{IODYN}) depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce V_{DDP} , if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

Package and Reliability

Figure 37 PG-TQFP-64-19 (Plastic Green Thin Profile Quad Flat Package)

Table 57 Differences PG-VQFN-48-53 to PG-VQFN-48-71

Change	PG-VQFN-48-53	PG-VQFN-48-71
Package corner	chamfered	right-angled
Lead width	0.23 ^{±0.05} mm	0.25 ^(+0.05, -0.07) mm
Lead height	0.4 ^{±0.07} mm	0.4 ^{±0.05} mm

XMC4100 / XMC4200 XMC4000 Family

Package and Reliability

Figure 38 PG-VQFN-48-53 (Plastic Green Very Thin Profile Flat Non Leaded Package)

Figure 39 PG-VQFN-48-71 (Plastic Green Very Thin Profile Flat Non Leaded Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages