

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 9x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-53
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4104q48f128baxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4[12]00 Data Sheet

Revision H	istory: V1.3 2015-10
Previous Ve V1.2 2014-0 V1.1 2014-0 V1.0 2013-7 V0.6 2012-7	arsions: 06 03 10 11
Page	Subjects
12	Added a section listing the packages of the different markings.
14	Added BA marking variant.
14	Corrected SCU_IDCHIP value of XMC4100 EES-AA/ES-AA.
36	Added footnote explaining minimum V_{BAT} requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
37	Changed pull device definition to System Requirement (SR) to reflect that the specified currents are defined by the characteristics of the external load/driver.
37	Added information that PORST Pull-up is identical to the pull-up on standard I/O pins.
42	Updated C_{AINSW} , C_{AINTOT} and R_{AIN} parameters with improved values.
56	Added footnote on test configuration for LPAC measurement.
58	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
62	Relaxed RTC_XTAL $V_{\rm PPX}$ parameter value and changed it to a system requirement.
66	Added footnote on current consumption by enabling of f_{CCU} .
67	Added Flash endurance parameter for 64 Kbytes Physical Sector PS4 $N_{\rm EPS4}$ for devices with BA marking.
many	Added PG-TQFP-64-19 and PG-VQFN-48-71 package information.
89, 91	Added tables describing the differences between PG-LQFP-64-19 to PG- TQFP-64-19 as well as PG-VQFN-48-53 to PG-VQFN-48-71 packages.
93	Updated to JEDEC standard J-STD-020D for the moisture sensitivity level and added solder temperature parameter according to the same standard.

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4[12]00 series devices.

The document describes the characteristics of a superset of the XMC4[12]00 series devices. For simplicity, the various device types are referred to by the collective term XMC4[12]00 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

Summary of Features

1 Summary of Features

The XMC4[12]00 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- One General Purpose DMA with up-to 8 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests

9

• Flexible CRC Engine (FCE) for multiple bit error detection

Data Sheet

Summary of Features

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC4<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - E: LFBGA
 - F: LQFP, TQFP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - K: -40°C to 125°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC4[12]00 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC4100 and XMC4200 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC4[12]00 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative ¹⁾	Package	Flash Kbytes	SRAM Kbytes
XMC4200-F64x256	PG-yQFP-64 ²⁾	256	40
XMC4200-Q48x256	PG-VQFN-48	256	40
XMC4100-F64x128	PG-yQFP-64 ²⁾	128	20
XMC4100-Q48x128	PG-VQFN-48	128	20
XMC4104-F64x64	PG-yQFP-64 ²⁾	64	20
XMC4104-Q48x64	PG-VQFN-48	64	20
XMC4104-F64x128	PG-yQFP-64 ²⁾	128	20
XMC4104-Q48x128	PG-VQFN-48	128	20
XMC4108-F64x64	PG-yQFP-64 ²⁾	64	20
XMC4108-Q48x64	PG-VQFN-48	64	20

 Table 1
 Synopsis of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

2) y is a placeholder for the QFP package variant, LQFP or TQFP depending on the stepping, see Section 1.3.

Summary of Features

Derivative ¹⁾	ADC Chan.	DAC Chan.	CCU4 Slice	CCU8 Slice	POSIF Intf.	HRPWM Intf.
XMC4200-F64x256	10	2	2 x 4	1 x 4	1	1
XMC4200-Q48x256	9	2	2 x 4	1 x 4	1	1
XMC4100-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4100-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x64	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x64	9	2	2 x 4	1 x 4	1	1
XMC4104-F64x128	10	2	2 x 4	1 x 4	1	1
XMC4104-Q48x128	9	2	2 x 4	1 x 4	1	1
XMC4108-F64x64	10	2	2 x 4	1 x 4	1	-
XMC4108-Q48x64	9	2	2 x 4	1 x 4	1	-

Table 4 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

1.5 Definition of Feature Variants

The XMC4[12]00 types are offered with several memory sizes and number of available VADC channels. **Table 5** describes the location of the available Flash memory, **Table 6** describes the location of the available SRAMs, **Table 7** the available VADC channels.

Total Elach Siza	Cachod Bango	Uncached Pange
	Cached Kalige	Ulicached Kalige
256 Kbytes	0800 0000 _H -	0C00 0000 _H -
,	0803 FFFF _H	0C03 FFFF _H
128 Kbytes	0800 0000 _H -	0C00 0000 _H -
-	0801 FFFF _H	0C01 FFFF _H
64 Kbytes	0800 0000 _H -	0C00 0000 _H -
-	0800 FFFF _H	0C00 FFFF _H

Table 5 Flash Memory Ranges

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Figure 3 XMC4[12]00 Logic Symbol PG-VQFN-48

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Table 11	Раскаде Рі	n mapping (c	ont d)	
Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P0.11	59	-	A1+	
P1.0	52	40	A1+	
P1.1	51	39	A1+	
P1.2	50	38	A1+	
P1.3	49	37	A1+	
P1.4	48	36	A1+	
P1.5	47	35	A1+	
P1.7	55	-	A1+	
P1.8	54	-	A1+	
P1.9	53	-	A1+	
P1.15	46	-	A1+	
P2.0	34	26	A1+	
P2.1	33	25	A1+	After a system reset, via HWSEL this pin selects the DB.TDO function.
P2.2	32	24	A1+	
P2.3	31	23	A1+	
P2.4	30	22	A1+	
P2.5	29	21	A1+	
P2.6	36	-	A1+	
P2.7	35	-	A1+	
P2.8	28	-	A1+	
P2.9	27	-	A1+	
P2.14	26	-	A1+	
P2.15	25	-	A1+	
P3.0	5	-	A1+	
P14.0	20	16	AN/DIG_IN	
P14.3	19	15	AN/DIG_IN	
P14.4	18	14	AN/DIG_IN	
P14.5	17	13	AN/DIG_IN	
P14.6	16	12	AN/DIG_IN	
P14.7	15	11	AN/DIG_IN	
P14.8	24	20	AN/DAC/DIG_IN	

Table 11 Package Pin Mapping (cont'd)

General Device Information

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
VSSO	41	-	Power	
VSS	Exp. Pad	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Table 11 Package Pin Mapping (cont'd)

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 15 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA	
Absolute sum of all input circuit currents for one port	$I_{\rm OVG}$	SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$
group during overload condition ¹⁾			-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	_	-	80	mA	$\Sigma I_{\rm OVG}$

Table 15 Overload Parameters

1) The port groups are defined in **Table 18**.

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

3.1.5 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC4[12]00. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Parameter	Symbol		Values	;	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Ambient Temperature	T _A SR	-40	-	85	°C	Temp. Range F
		-40	-	125	°C	Temp. Range K
Digital supply voltage	$V_{\rm DDP}{\rm SR}$	3.13 ¹⁾	3.3	3.63 ²⁾	V	
Core Supply Voltage	V _{DDC} CC	_1)	1.3	-	V	Generated internally
Digital ground voltage	$V_{\rm SS}~{\rm SR}$	0	-	-	V	
ADC analog supply voltage	$V_{\rm DDA}{ m SR}$	3.0	3.3	3.6 ²⁾	V	
Analog ground voltage for V_{DDA}	$V_{\rm SSA}{ m SR}$	-0.1	0	0.1	V	
Battery Supply Voltage for Hibernate Domain ³⁾	$V_{\rm BAT}{ m SR}$	1.95 ⁴⁾	-	3.63	V	When V_{DDP} is supplied V_{BAT} has to be supplied as well.
System Frequency	$f_{\rm SYS}~{\rm SR}$	-	-	80	MHz	
Short circuit current of digital outputs	I _{SC} SR	-5	-	5	mA	
Absolute sum of short circuit currents per pin group ⁵⁾	$\Sigma I_{\rm SC_PG}$ SR	-	-	20	mA	
Absolute sum of short circuit currents of the device	$\Sigma \overline{I_{SC_D}}$ SR	_	-	100	mA	

Table 20	Operating	Conditions	Parameters
	operating	oonantionio	i ulullotoi o

1) See also the Supply Monitoring thresholds, **Section 3.3.2**.

2) Voltage overshoot to 4.0 V is permissible at Power-Up and $\overrightarrow{\text{PORST}}$ low, provided the pulse duration is less than 100 μ s and the cumulated sum of the pulses does not exceed 1 h over lifetime.

3) Different limits apply for LPAC operation, Section 3.2.6

4) To start the hibernate domain it is required that V_{BAT} ≥ 2.1 V, for a reliable start of the oscillation of RTC_XTAL in crystal mode it is required that V_{BAT} ≥ 3.0 V.

36

5) The port groups are defined in **Table 18**.

Conversion Time

Table 26 Conversion Time	(Operating Conditions apply)
--------------------------	------------------------------

Parameter	Symbol		Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}	μs	N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions (max. f_{ADC}):

 f_{ADC} = 80 MHz i.e. t_{ADC} = 12.5 ns, DIVA = 2, f_{ADCI} = 26.7 MHz i.e. t_{ADCI} = 37.5 ns According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 625 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{\text{CN12}} = (2 + 12) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 14 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 550 \text{ ns}$ 10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 475 \text{ ns}$ 8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 400 \text{ ns}$

System assumptions (max. f_{ADCI}): $f_{ADC} = 60 \text{ MHz}$ i.e. $t_{ADC} = 16.67 \text{ ns}$, DIVA = 1, $f_{ADCI} = 30 \text{ MHz}$ i.e. $t_{ADCI} = 33.33 \text{ ns}$ 12-bit post-calibrated conversion (PC = 2): $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 33.33 \text{ ns} + 2 \times 16.67 \text{ ns} = 566 \text{ ns}$

3.2.3 Digital to Analog Converters (DACx)

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
RMS supply current	I _{DD} C	C	-	2.5	4	mA	per active DAC channel, without load currents of DAC outputs
Resolution	RES 0	СС	-	12	-	Bit	
Update rate	f _{urate_a} (CC	-		2	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 1LSB accuracy
Update rate	furate_f	СС	-		5	Msam ple/s	data rate, where DAC can follow 64 LSB code jumps to ± 4 LSB accuracy
Settling time	t _{settle} (CC	_	1	2	μs	at full scale jump, output voltage reaches target value ± 20 LSB
Slew rate	SR C	C	2	5	-	V/µs	
Minimum output voltage	V _{OUT_MIN} CC		-	0.3	-	V	code value unsigned: 000 _H ; signed: 800 _H
Maximum output voltage	V _{OUT_MAX} CC	K	_	2.5	-	V	code value unsigned: FFF _H ; signed: 7FF _H
Integral non- linearity ¹⁾	INL	СС	-5.5	±2.5	5.5	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$
Differential non- linearity	DNL (CC	-2	±1	2	LSB	$\begin{array}{l} R_L \geq 5 \text{ kOhm,} \\ C_L \leq 50 \text{ pF} \end{array}$

 Table 27
 DAC Parameters (Operating Conditions apply)

Parameter	Symbo	Symbol		Values	5	Unit	Note /
			Min.	Тур.	Max.	-	Test Condition
Offset error	ED_{OFF}	CC		±20		mV	
Gain error	$ED_{G_{IN}}$	СС	-5	0	5	%	
Startup time	t _{STARTUF}	20 °	_	15	30	μS	time from output enabling till code valid ±16 LSB
3dB Bandwidth of Output Buffer	f_{C1}	СС	2.5	5	_	MHz	verified by design
Output sourcing current	I _{OUT_SOU} CC	URCE	-	-30	-	mA	
Output sinking current	I _{OUT_SIN} CC	к	-	0.6	-	mA	
Output resistance	R _{OUT}	CC	-	50	-	Ohm	
Load resistance	RL	SR	5	-	-	kOhm	
Load capacitance	C_{L}	SR	-	-	50	pF	
Signal-to-Noise Ratio	SNR	СС	-	70	-	dB	examination bandwidth < 25 kHz
Total Harmonic Distortion	THD	CC	-	70	-	dB	examination bandwidth < 25 kHz
Power Supply Rejection Ratio	PSRR	СС	-	56	-	dB	to V_{DDA} verified by design

Table 27 DAC Parameters (Operating Conditions apply) (cont'd)

1) According to best straight line method.

Conversion Calculation

 $\begin{array}{l} \text{Unsigned:} \\ \text{DACxDATA} = 4095 \times (V_{\text{OUT}} \text{ - } V_{\text{OUT_MIN}}) \ / \ (V_{\text{OUT_MAX}} \text{ - } V_{\text{OUT_MIN}}) \\ \text{Signed:} \\ \text{DACxDATA} = 4095 \times (V_{\text{OUT}} \text{ - } V_{\text{OUT_MIN}}) \ / \ (V_{\text{OUT_MAX}} \text{ - } V_{\text{OUT_MIN}}) \ - \ 2048 \\ \end{array}$

3.2.8 USB Device Interface DC Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Conditions	sappi	()					
Parameter	Symbol			Values			Note /
			Min.	Тур.	Max.		Test Condition
Input low voltage	V_{IL}	SR	-	-	0.8	V	
Input high voltage (driven)	V_{IH}	SR	2.0	-	-	V	
Input high voltage (floating) ¹⁾	V_{IHZ}	SR	2.7	-	3.6	V	
Differential input sensitivity	V_{DIS}	СС	0.2	-	-	V	
Differential common mode range	V_{CM}	СС	0.8	-	2.5	V	
Output low voltage	V_{OL}	СС	0.0	-	0.3	V	1.5 kOhm pull- up to 3.6 V
Output high voltage	V _{OH}	СС	2.8	-	3.6	V	15 kOhm pull- down to 0 V
DP pull-up resistor (idle bus)	R _{PUI}	СС	900	-	1 575	Ohm	
DP pull-up resistor (upstream port receiving)	R _{PUA}	CC	1 425	-	3 090	Ohm	
Input impedance DP, DM	$Z_{\rm INP}$	СС	300	-	-	kOhm	$0 \text{ V} \leq \text{V}_{\text{IN}} \leq \text{V}_{\text{DDP}}$
Driver output resistance DP, DM	$Z_{\rm DRV}$	СС	28	-	44	Ohm	

Table 35 USB Device Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)

 Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at Bconnector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

3.2.9 Oscillator Pins

- Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 21) or in direct input mode (see Figure 22).

Figure 21 Oscillator in Crystal Mode

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
Peripherals enabled			-	75	-		80 / 40 / 40
$f_{CPU}/f_{PEPIPH}/f_{CCU}$ in MHz			-	73	-		40 / 40 / 80
JOFU JEKIFI JOCU			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current	I _{DDPA}	CC	-	24	-	mA	80 / 80 / 80
Code execution from RAM Flash in Sleep mode Frequency:			_	19	_		80 / 40 / 40
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz							
Active supply current ²⁾	$I_{\rm DDPA}$	СС	_	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: f_{CPU}/f_{PERIPH} in MHz			-	62	-		80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

Table 38	Power	Supply	Parameters
----------	-------	--------	------------

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.4 Phase Locked Loop (PLL) Characteristics

Main and USB PLL

Table 43PLL Parameters

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Accumulated Jitter	D _P CC	-	-	±5	ns	accumulated over 300 cycles f_{SYS} = 80 MHz
Duty Cycle ¹⁾	D _{DC} CC	46	50	54	%	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	$f_{PLLBASE}$	30	-	140	MHz	
VCO input frequency	$f_{\sf REF}\sf CC$	4	-	16	MHz	
VCO frequency range	$f_{\rm VCO}{\rm CC}$	260	-	520	MHz	
PLL lock-in time	t _L CC	-	-	400	μS	

1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values.

3.3.5 Internal Clock Source Characteristics

Fast Internal Clock Source

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Nominal frequency	$f_{\rm OFINC}$	-	36.5	-	MHz	not calibrated
	CC	-	24	-	MHz	calibrated
Accuracy	⊿f _{OFI} CC	-0.5	-	0.5	%	automatic calibration ¹⁾²⁾
		-15	-	15	%	factory calibration, $V_{\rm DDP}$ = 3.3 V
		-25	-	25	%	no calibration, V_{DDP} = 3.3 V
		-7	-	7	%	Variation over voltage range ³⁾ $3.13 V \le V_{DDP} \le$ 3.63 V
Start-up time	t _{OFIS} CC	-	50	-	μS	

Table 44 Fast Internal Clock Parameters

1) Error in addition to the accuracy of the reference clock.

2) Automatic calibration compensates variations of the temperature and in the V_{DDP} supply voltage.

 Deviations from the nominal V_{DDP} voltage induce an additional error to the uncalibrated and/or factory calibrated oscillator frequency.

Figure 33	USIC IIS Master	Transmitter	Timing

Table 53	USIC IIS Slave Receiver Timing
----------	--------------------------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	66.6	-	-	ns	
Clock high time	t ₇ SR	0.35 x	-	_	ns	
		t _{6min}				
Clock low time	t ₈ SR	0.35 x	-	-	ns	
		t _{6min}				
Set-up time	t ₉ SR	0.2 x	-	-	ns	
		t _{6min}				
Hold time	t ₁₀ SR	0	-	-	ns	

Figure 34 USIC IIS Slave Receiver Timing

Package and Reliability

4 Package and Reliability

The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The availability of different packages for different markings is listed in **Table 2**.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad	Ex × Ey	-	$\textbf{5.8} \times \textbf{5.8}$	mm	PG-LQFP-64-19	
Dimensions	CC	-	5.7 imes 5.7	mm	PG-TQFP-64-19	
		-	5.2 imes 5.2	mm	PG-VQFN-48-53	
		-	5.2 imes 5.2	mm	PG-VQFN-48-71	
Thermal resistance	$R_{ m \Theta JA}$	-	30	K/W	PG-LQFP-64-19 ¹⁾	
Junction-Ambient	CC	-	23.4	K/W	PG-TQFP-64-19 ¹⁾	
		-	34.8	K/W	PG-VQFN-48-53 ¹⁾ PG-VQFN-48-71 ¹⁾	

 Table 55
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4[12]00 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The