

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 9x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-53
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4104q48k64baxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2015-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

 $\mathsf{ARM}^{\texttt{®}}, \, \mathsf{ARM} \, \mathsf{Powered}^{\texttt{®}}, \, \mathsf{Cortex}^{\texttt{®}}, \, \mathsf{Thumb}^{\texttt{B}} \, \mathsf{and} \, \, \mathsf{AMBA}^{\texttt{B}} \, \mathsf{are} \, \, \mathsf{registered} \, \, \mathsf{trademarks} \, \, \mathsf{of} \, \, \mathsf{ARM}, \, \mathsf{Limited}.$

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

Synopsys[™] is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

1 Summary of Features

The XMC4[12]00 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- One General Purpose DMA with up-to 8 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests

9

• Flexible CRC Engine (FCE) for multiple bit error detection

Data Sheet

Summary of Features

1.3 Package Variants

Different markings of the XMC4[12]00 use different package variants. Details of those packages are given in the **Package Parameters** section of the Data Sheet.

Table 2 XMC4[12]00 Package Variants

Package Variant	Marking	Package
XMC4[12]00-F64	EES-AA, ES-AA, ES-AB, AB	PG-LQFP-64-19
XMC4[12]00-Q48		PG-VQFN-48-53
XMC4[12]00-F64	BA	PG-TQFP-64-19
XMC4[12]00-Q48		PG-VQFN-48-71

1.4 Device Type Features

The following table lists the available features per device type.

Derivative ¹⁾	LEDTS Intf.	USB Intf.	USIC Chan.	MultiCAN Nodes, MO
XMC4200-F64x256	1	1	2 x 2	N0, N1 MO[063]
XMC4200-Q48x256	1	1	2 x 2	N0, N1 MO[063]
XMC4100-F64x128	1	1	2 x 2	N0, N1 MO[063]
XMC4100-Q48x128	1	1	2 x 2	N0, N1 MO[063]
XMC4104-F64x64	1	-	2 x 2	-
XMC4104-Q48x64	1	-	2 x 2	-
XMC4104-F64x128	1	-	2 x 2	-
XMC4104-Q48x128	1	-	2 x 2	-
XMC4108-F64x64	_	-	2 x 2	N0, MO[031]
XMC4108-Q48x64	-	_	2 x 2	N0, MO[031]

Table 3 Features of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Figure 3 XMC4[12]00 Logic Symbol PG-VQFN-48

General Device Information

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
VSSO	41	-	Power	
VSS	Exp. Pad	Exp. Pad	Power	Exposed Die Pad The exposed die pad is connected internally to VSS. For proper operation, it is mandatory to connect the exposed pad directly to the common ground on the board. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note.

Table 11 Package Pin Mapping (cont'd)

General Device Information

2.2.2 Port I/O Functions

The following general scheme is used to describe each PORT pin:

Table 12 Port I/O Function Description

Function		Outputs			Inputs	
	ALT1	ALTn	HWO0	HWI0	Input	Input
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA	
Pn.y	MODA.OUT				MODA.INA	MODC.INB

Figure 6 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

2.2.2.1 Port I/O Function Table

Data Sheet

Table 13 Port I/O Functions

Function	Output					Input								
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P0.0		CAN. N0_TXD	CCU80. OUT21	LEDTS0. COL2			U1C1. DX0D		ERU0. 0B0	USB. VBUSDETECT A		HRPWM0. C1INB		
P0.1		U1C1. DOUT0	CCU80. OUT11	LEDTS0. COL3					ERU0. 0A0			HRPWM0. C2INB		
P0.2		U1C1. SELO1	CCU80. OUT01	HRPWM0. HROUT01	U1C0. DOUT3	U1C0. HWIN3			ERU0. 3B3					
P0.3			CCU80. OUT20	HRPWM0. HROUT20	U1C0. DOUT2	U1C0. HWIN2				ERU1. 3B0				
P0.4			CCU80. OUT10	HRPWM0. HROUT21	U1C0. DOUT1	U1C0. HWIN1		U1C0. DX0A	ERU0. 2B3					
P0.5		U1C0. DOUT0	CCU80. OUT00	HRPWM0. HROUT00	U1C0. DOUT0	U1C0. HWIN0		U1C0. DX0B		ERU1. 3A0				
P0.6		U1C0. SELO0	CCU80. OUT30	HRPWM0. HROUT30				U1C0. DX2A	ERU0. 3B2		CCU80. IN2B			
P0.7	WWDT. SERVICE_OUT	U0C0. SELO0		HRPWM0. HROUT11		DB. TDI	U0C0. DX2B		ERU0. 2B1		CCU80. IN0A	CCU80. IN1A	CCU80. IN2A	CCU80. IN3A
P0.8	SCU. EXTCLK	U0C0. SCLKOUT		HRPWM0. HROUT10		DB. TRST	U0C0. DX1B		ERU0. 2A1		CCU80. IN1B			
P0.9	HRPWM0. HROUT31	U1C1. SELO0	CCU80. OUT12	LEDTS0. COL0			U1C1. DX2A		ERU0. 1B0					
P0.10		U1C1. SCLKOUT	CCU80. OUT02	LEDTS0. COL1			U1C1. DX1A		ERU0. 1A0					
P0.11		U1C0. SCLKOUT	CCU80. OUT31					U1C0. DX1A	ERU0. 3A2					
P1.0		U0C0. SELO0	CCU40. OUT3	ERU1. PDOUT3			U0C0. DX2A		ERU0. 3B0		CCU40. IN3A	HRPWM0. COINA		
P1.1		U0C0. SCLKOUT	CCU40. OUT2	ERU1. PDOUT2			U0C0. DX1A	POSIF0. IN2A	ERU0. 3A0		CCU40. IN2A	HRPWM0. C1INA		
P1.2			CCU40. OUT1	ERU1. PDOUT1	U0C0. DOUT3	U0C0. HWIN3		POSIF0. IN1A		ERU1. 2B0	CCU40. IN1A	HRPWM0. C2INA		
P1.3		U0C0. MCLKOUT	CCU40. OUT0	ERU1. PDOUT0	U0C0. DOUT2	U0C0. HWIN2		POSIF0. IN0A		ERU1. 2A0	CCU40. IN0A	HRPWM0. COINB		
P1.4	WWDT. SERVICE_OUT	CAN. N0_TXD	CCU80. OUT33		U0C0. DOUT1	U0C0. HWIN1	U0C0. DX0B	CAN. N1_RXDD	ERU0. 2B0		CCU41. IN0C	HRPWM0. BL0A		
P1.5	CAN. N1_TXD	U0C0. DOUT0	CCU80. OUT23		U0C0. DOUT0	U0C0. HWIN0	U0C0. DX0A	CAN. N0_RXDA	ERU0. 2A0	ERU1. 0A0	CCU41. IN1C			
P1.7		U0C0. DOUT0		U1C1. SELO2						USB. VBUSDETECT B				

XMC4100 / XMC4200 XMC4000 Family

Figure 9 Input Overload Current via ESD structures

 Table 16 and Table 17 list input voltages that can be reached under overload conditions.

 Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

	Table 16	PN-Junction	Characterisitics f	or positive	Overload
--	----------	--------------------	---------------------------	-------------	----------

Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 150 °C
A1 / A1+	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN}$ = $V_{\rm DDP}$ + 0.75 V
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ + 1.0 V	$V_{\rm IN}$ = $V_{\rm DDP}$ + 0.75 V

Table 17	PN-Junction	Characterisitics	for negative	Overload
----------	--------------------	-------------------------	--------------	----------

Pad Type	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = -40 °C	$I_{\rm OV}$ = 5 mA, $T_{\rm J}$ = 150 °C
A1 / A1+	$V_{\rm IN} = V_{\rm SS}$ - 1.0 V	$V_{\rm IN}$ = $V_{\rm SS}$ - 0.75 V
AN/DIG_IN	$V_{\rm IN} = V_{\rm DDP}$ - 1.0 V	$V_{\rm IN} = V_{\rm DDP}$ - 0.75 V

Table 18	Port Groups for Overload and Short-Circuit Current Sum
	Parameters

Group	Pins	
1	P0.[12:0], P3.0	
2	P14.[8:0]	
3	P2.[15:0]	
4	P1.[15:0]	

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 3.2.1.

Table 19	Pad Driver	and Pad	Classes	Overview
		anaiaa	0.0000	0.0.000

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
A	3.3 V	3.3 V LVTTL A1 I/O, (e.g. Gl		6 MHz	100 pF	No
		LVTTL outputs	A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended

Figure 10 Output Slopes with different Pad Driver Modes

Figure 10 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

35

Figure 15 DAC Conversion Examples

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symbol			Values	3	Unit	Note /
			Min.	Тур.	Max.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	-	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{AIN} \leq V_{AREF}$
Enable Delay	t _{OED}	CC	-	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

Parameter	Symbol		Value	Unit	Note /	
		Min.	Тур.	Max.		Test Con dition
Frequency	f _{eclk} SR	_	-	$f_{\rm hrpwm}/4$	MHz	
ON time	t _{oneclk} SR	2T _{ccu} ¹⁾²⁾	-	-	ns	
OFF time	t _{offecik} SR	2 <i>T</i> _{ccu} ¹⁾²⁾	-	-	ns	Only the rising edge is used

Table 32 External clock operating conditions

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

3.2.6 Low Power Analog Comparator (LPAC)

The Low Power Analog Comparator (LPAC) triggers a wake-up event from Hibernate state or an interrupt trigger during normal operation. It does so by comparing $V_{\rm BAT}$ or another external sensor voltage $V_{\rm LPS}$ with a pre-programmed threshold voltage.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
$V_{\rm BAT}$ supply voltage range for LPAC operation	$V_{\rm BAT}~{ m SR}$	2.1	-	3.6	V	
Sensor voltage range	V _{LPCS} CC	0	_	1.2	V	
Threshold step size	$V_{\rm th}$ CC	-	18.75	-	mV	
Threshold trigger accuracy	$\Delta V_{\rm th}$ CC	-	-	±10	%	for $V_{\rm th}$ > 0.4 V
Conversion time	$t_{\rm LPCC} {\rm CC}$	-	-	250	μS	
Average current consumption over time	I _{LPCAC} CC	_	-	15	μA	conversion interval 10 ms ¹⁾
Current consumption during conversion	$I_{\rm LPCC} {\rm CC}$	-	150	_	μA	1)

Table 33Low Power Analog Comparator Parameters

1) Single channel conversion, measuring V_{BAT} = 3.3 V, 8 cycles settling time

Table 38 Power Supply Parameters

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Sleep supply current ³⁾	I _{DDPS} CC	-	76	-	mA	80 / 80 / 80
Peripherals enabled		-	73	-		80 / 40 / 40
form / formul / foot in MHz		-	70	-	_	40 / 40 / 80
JCPU, JPERIPH, JCCU		-	56	-		24 / 24 / 24
		-	47	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100
Sleep supply current ⁴⁾	I _{DDPS} CC	-	59	-	mA	80 / 80 / 80
Peripherals disabled Frequency: $f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in MHz		-	58	-		80 / 40 / 40
		-	57	-	_	40 / 40 / 80
		-	51	-		24 / 24 / 24
		-	46	-		1/1/1
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz		-	46	-		100 / 100 / 100
Deep Sleep supply	I _{DDPD} CC	-	6.9	-	mA	24 / 24 / 24
current ⁵⁾		-	4.3	-	_	4 / 4 / 4
Flash in Sleep mode		-	3.8	-		1/1/1
$f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz						
$f_{\rm CPU}/f_{\rm PERIPH}/f_{\rm CCU}$ in kHz	Ť	_	4.5	-		100 / 100 / 100 ₆₎
Hibernate supply current	I _{DDPH} CC	-	10.8	-	μA	$V_{\rm BAT}$ = 3.3 V
RTC on ⁷⁾		-	8.0	-		$V_{\rm BAT}$ = 2.4 V
		-	6.8	-		$V_{\rm BAT}$ = 2.0 V
Hibernate supply current	I _{DDPH} CC	-	10.3	-	μA	$V_{\rm BAT}$ = 3.3 V
RTC off ⁸⁾		-	7.5	-		$V_{\rm BAT}$ = 2.4 V
		-	6.3	-		$V_{\rm BAT}$ = 2.0 V
Worst case active supply current ⁹⁾	I _{DDPA} CC	_	-	140 ¹⁰⁾	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 \text{ °C}$
$V_{\rm DDA}$ power supply current	I _{DDA} CC	-	-	_11)	mA	
I_{DDP} current at PORST Low	I _{DDP_PORST} CC	-	-	24	mA	$V_{\rm DDP} = 3.6 \text{ V},$ $T_{\rm J} = 150 \text{ °C}$

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 24 Testing Waveform, Output Delay

Figure 25 Testing Waveform, Output High Impedance

Slow Internal Clock Source

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Nominal frequency	$f_{\rm OSI}{\rm CC}$	-	32.768	-	kHz	
Accuracy	⊿f _{osi} CC	-4	-	4	%	V_{BAT} = const. 0 °C $\leq T_{A} \leq$ 85 °C
		-5	-	5	%	V_{BAT} = const. $T_A < 0 \text{ °C or}$ $T_A > 85 \text{ °C}$
		-5	-	5	%	$2.4 \text{ V} \leq V_{\text{BAT}},$ $T_{\text{A}} = 25 \text{ °C}$
		-10	-	10	%	$1.95 V \le V_{BAT} < 2.4 V,$ $T_A = 25 \text{ °C}$
Start-up time	t _{OSIS} CC	-	50	-	μS	

Table 45 Slow Internal Clock Parameters

3.3.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Parameter	Symbol			Values		Unit	Note /
			Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁	SR	30	-	-	ns	For C _L = 20 pF on TDO
TCK clock period	t ₁	SR	40	-	-	ns	For $C_L = 50 \text{ pF}$ on TDO
TCK high time	<i>t</i> ₂	SR	10	-	-	ns	
TCK low time	t_3	SR	10	-	-	ns	
TCK clock rise time	<i>t</i> ₄	SR	-	-	4	ns	
TCK clock fall time	t_5	SR	_	-	4	ns	
TDI/TMS setup to TCK rising edge	<i>t</i> ₆	SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇	SR	6	-	-	ns	
TDO valid after TCK falling	t ₈	CC	-	—	17	ns	C _L = 50 pF
edge ¹⁾ (propagation delay)			3	-	-	ns	C _L = 20 pF
TDO hold after TCK falling edge ¹⁾	t ₁₈	CC	2	-	-	ns	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉	CC	-	-	14	ns	C _L = 50 pF
TDO valid to high imped. from TCK falling edge ¹⁾	t ₁₀	СС	-	-	13.5	ns	C _L = 50 pF

Table 46 JTAG Interface Timing Parameters

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 47	SWD Interface	Timing Parameters (Operating	g Conditions apply)
----------	---------------	---------------------	-----------	---------------------

Parameter	Symbol			Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	$C_L = 30 \text{ pF}$
			40	-	-	ns	$C_L = 50 \text{ pF}$
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	-	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns	
SWDIO output valid time	t_5	СС	-	-	17	ns	$C_L = 50 \text{ pF}$
after SWDCLK rising edge			-	-	13	ns	$C_L = 30 \text{ pF}$
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	-	ns	

Package and Reliability

4 Package and Reliability

The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The availability of different packages for different markings is listed in **Table 2**.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad Dimensions	$Ex \times Ey$	-	5.8 imes 5.8	mm	PG-LQFP-64-19	
	CC	-	5.7 imes 5.7	mm	PG-TQFP-64-19	
		-	5.2 imes 5.2	mm	PG-VQFN-48-53	
		-	5.2 imes 5.2	mm	PG-VQFN-48-71	
Thermal resistance	$R_{ m \Theta JA}$	-	30	K/W	PG-LQFP-64-19 ¹⁾	
Junction-Ambient	CC	-	23.4	K/W	PG-TQFP-64-19 ¹⁾	
		-	34.8	K/W	PG-VQFN-48-53 ¹⁾ PG-VQFN-48-71 ¹⁾	

 Table 55
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4[12]00 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[12]00 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Values	6	Unit	Note /
		Min.	Тур.	Max.	İ	Test Condition
Operation lifetime	t _{OP} CC	20	-	_	а	$T_{\rm J} \le 109^{\circ}{\rm C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	_	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	$V_{\rm CDM}$ SR	_	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	_	-	3	-	JEDEC J-STD-020D
Soldering temperature	T_{SDR} SR	-	-	260	°C	Profile according to JEDEC J-STD-020D

Table 58Quality Parameters