

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 9x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-53
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4108q48k64baxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

 $\mathsf{ARM}^{\texttt{®}}, \, \mathsf{ARM} \, \mathsf{Powered}^{\texttt{®}}, \, \mathsf{Cortex}^{\texttt{®}}, \, \mathsf{Thumb}^{\texttt{B}} \, \mathsf{and} \, \, \mathsf{AMBA}^{\texttt{B}} \, \mathsf{are} \, \, \mathsf{registered} \, \, \mathsf{trademarks} \, \, \mathsf{of} \, \, \mathsf{ARM}, \, \mathsf{Limited}.$

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

Synopsys[™] is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Table of Contents

5	Quality Declarations)3
4.2	Package Outlines	9
4.1.1	Thermal Considerations	37
4.1	Package Parameters 8	37
4	Package and Reliability	57
3.3.9	USB Interface Characteristics 8	6
3.3.8.3	Inter-IC Sound (IIS) Interface Timing 8	\$4
3.3.8.2	Inter-IC (IIC) Interface Timing 8	62
3.3.8.1	Synchronous Serial Interface (USIC SSC) Timing	9
3.3.8	Peripheral Timing	'9
3.3.7	Serial Wire Debug Port (SW-DP) Timing 7	8
3.3.6	JTAG Interface Timing 7	΄6
3.3.5	Internal Clock Source Characteristics 7	'4
3.3.4	Phase Locked Loop (PLL) Characteristics	3

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4[12]00 series devices.

The document describes the characteristics of a superset of the XMC4[12]00 series devices. For simplicity, the various device types are referred to by the collective term XMC4[12]00 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

Summary of Features

On-Chip Memories

- 16 KB on-chip boot ROM
- up to 16 KB on-chip high-speed program memory
- up to 24 KB on-chip high speed data memory
- up to 256 KB on-chip Flash Memory with 1 KB instruction cache

Communication Peripherals

- Universal Serial Bus, USB 2.0 device, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes, 64 message objects (MO), data rate up to 1 MBit/s
- Four Universal Serial Interface Channels (USIC), providing four serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- Two Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 4 (CCU4) for use as general purpose timers
- One Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four High Resoultion PWM (HRPWM) channels
- One Position Interface (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

On-Chip Debug Support

- Full support for debug features: 8 breakpoints, CoreSight, trace
- Various interfaces: ARM-JTAG, SWD, single wire trace

General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC4[12]00 PG-LQFP-64 and PG-TQFP-64 Pin Configuration (top view)

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 10 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	N	Ax	 A1+	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P0.0	2	2	A1+	
P0.1	1	1	A1+	
P0.2	64	48	A1+	
P0.3	63	47	A1+	
P0.4	62	46	A1+	
P0.5	61	45	A1+	
P0.6	60	44	A1+	
P0.7	58	43	A1+	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	57	42	A1+	After a system reset, via <u>HWSEL</u> this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	-	A1+	
P0.10	3	-	A1+	

Table 11 Package Pin Mapping

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 15 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol			Values	;	Unit	Note /	
			Min. Typ.		Max.		Test Condition	
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA		
Absolute sum of all input circuit currents for one port	$I_{\rm OVG}$	SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$	
group during overload condition ¹⁾			-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	_	-	80	mA	$\Sigma I_{\rm OVG}$	

Table 15 Overload Parameters

1) The port groups are defined in **Table 18**.

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Conversion Time

Table 26 Conversion Time	(Operating Conditions apply)
--------------------------	------------------------------

Parameter	Syr	nbol	Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}	μs	N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions (max. f_{ADC}):

 f_{ADC} = 80 MHz i.e. t_{ADC} = 12.5 ns, DIVA = 2, f_{ADCI} = 26.7 MHz i.e. t_{ADCI} = 37.5 ns According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 625 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{\text{CN12}} = (2 + 12) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 14 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 550 \text{ ns}$ 10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 475 \text{ ns}$ 8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 400 \text{ ns}$

System assumptions (max. f_{ADCI}): $f_{ADC} = 60 \text{ MHz}$ i.e. $t_{ADC} = 16.67 \text{ ns}$, DIVA = 1, $f_{ADCI} = 30 \text{ MHz}$ i.e. $t_{ADCI} = 33.33 \text{ ns}$ 12-bit post-calibrated conversion (PC = 2): $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 33.33 \text{ ns} + 2 \times 16.67 \text{ ns} = 566 \text{ ns}$

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

Figure 16 GxORCOUTy Trigger Generation

Figure 17 ORC Detection Ranges

3.2.5.3 Clocks

HRPWM DAC Conversion Clock

The DAC conversion clock can be generated internally or it can be controlled via a HRPWM module pin.

|--|

Parameter	Symbol		V	alues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition
Frequency	$f_{\rm etrg}$	SR	-	_	30 ²⁾	MHz	
ON time	tonetrg	SR	2T _{ccu} ¹⁾²⁾	_	_	ns	
OFF time	t _{offetrg}	SR	$2T_{\rm ccu}^{(1)2)}$	-	-	ns	

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

CSG External Clock

It is possible to select an external source, that can be used as a clock for the slope generation, HRPWMx.ECLKy. This clock is synchronized internally with the module clock and therefore the external clock needs to meet the criterion described on Table 32.

Parameter	Symbol		Value	Unit	Note /	
		Min.	1in. Typ. Max.			Test Con dition
Frequency	f _{eclk} SR	_	-	$f_{\rm hrpwm}/4$	MHz	
ON time	t _{oneclk} SR	2T _{ccu} ¹⁾²⁾	-	-	ns	
OFF time	t _{offecik} SR	2 <i>T</i> _{ccu} ¹⁾²⁾	-	-	ns	Only the rising edge is used

Table 32 External clock operating conditions

1) 50% duty cycle is not obligatory

2) Only valid if the signal was not previously synchronized/generated with the fccu clock (or a synchronous clock)

3.2.6 Low Power Analog Comparator (LPAC)

The Low Power Analog Comparator (LPAC) triggers a wake-up event from Hibernate state or an interrupt trigger during normal operation. It does so by comparing $V_{\rm BAT}$ or another external sensor voltage $V_{\rm LPS}$ with a pre-programmed threshold voltage.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
$V_{\rm BAT}$ supply voltage range for LPAC operation	$V_{\rm BAT}~{ m SR}$	2.1	-	3.6	V	
Sensor voltage range	V _{LPCS} CC	0	_	1.2	V	
Threshold step size	$V_{\rm th}$ CC	-	18.75	-	mV	
Threshold trigger accuracy	$\Delta V_{\rm th}$ CC	-	-	±10	%	for $V_{\rm th}$ > 0.4 V
Conversion time	$t_{\rm LPCC} {\rm CC}$	-	-	250	μS	
Average current consumption over time	I _{LPCAC} CC	_	_	15	μA	conversion interval 10 ms ¹⁾
Current consumption during conversion	$I_{\rm LPCC} {\rm CC}$	-	150	_	μA	1)

Table 33Low Power Analog Comparator Parameters

1) Single channel conversion, measuring V_{BAT} = 3.3 V, 8 cycles settling time

3.2.9 Oscillator Pins

- Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 21) or in direct input mode (see Figure 22).

Figure 21 Oscillator in Crystal Mode

Table 36

Electrical Parameters

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Direct Input Mode selected
		4	-	25	MHz	External Crystal Mode selected
Oscillator start-up time ¹⁾²⁾	t _{OSCS} CC	-	-	10	ms	
Input voltage at XTAL1	V _{IX} SR	-0.5	-	V _{DDP} + 0.5	V	
Input amplitude (peak- to-peak) at XTAL1 ²⁾³⁾	$V_{\rm PPX}{\rm SR}$	$0.4 \times V_{ m DDP}$	-	V _{DDP} + 1.0	V	
Input high voltage at XTAL1 ⁴⁾	$V_{\rm IHBX} {\rm SR}$	1.0	-	V _{DDP} + 0.5	V	
Input low voltage at XTAL1 ⁴⁾	$V_{\rm ILBX}{\rm SR}$	-0.5	-	0.4	V	
Input leakage current at XTAL1	I _{ILX1} CC	-100	_	100	nA	Oscillator power down $0 V \le V_{IX} \le V_{DDP}$

 t_{OSCS} is defined from the moment the oscillator is enabled wih SCU_OSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of 0.4 * V_{DDP}.

 The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

3) If the shaper unit is enabled and not bypassed.

4) If the shaper unit is bypassed, dedicated DC-thresholds have to be met.

OSC XTAL Parameters

3.2.11 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per 256 Kbyte Sector	$t_{\sf ERP}\sf CC$	-	5	5.5	S	
Erase Time per 64 Kbyte Sector	$t_{\sf ERP}\sf CC$	-	1.2	1.4	S	
Erase Time per 16 Kbyte Logical Sector	$t_{\sf ERP}\sf CC$	-	0.3	0.4	S	
Program time per page ¹⁾	t _{PRP} CC	-	5.5	11	ms	
Erase suspend delay	t _{FL_ErSusp}	-	-	15	ms	
Wait time after margin change	t _{FL_Margin} _{Del} CC	10	-	-	μS	
Wake-up time	t _{WU} CC	-	-	270	μS	
Read access time	t _a CC	20	-	-	ns	For operation with $1/f_{CPU} < t_a$ wait states must be configured ²
Data Retention Time, Physical Sector ³⁾⁴⁾	t _{RET} CC	20	-	-	years	Max. 1000 erase/program cycles
Data Retention Time, Logical Sector ³⁾⁴⁾	t _{RETL} CC	20	-	-	years	Max. 100 erase/program cycles

Table 40 Flash Memory Parameters

Figure 31 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

81

Figure 33	USIC IIS Master	Transmitter	Timing

Table 53	USIC IIS Slave Receiver Timing
----------	--------------------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	66.6	-	-	ns	
Clock high time	t ₇ SR	0.35 x	-	_	ns	
		t _{6min}				
Clock low time	t ₈ SR	0.35 x	-	-	ns	
		t _{6min}				
Set-up time	t ₉ SR	0.2 x	-	-	ns	
		t _{6min}				
Hold time	t ₁₀ SR	0	-	-	ns	

Figure 34 USIC IIS Slave Receiver Timing

3.3.9 USB Interface Characteristics

The Universal Serial Bus (USB) Interface is compliant to the USB Rev. 2.0 Specification. High-Speed Mode is not supported.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Rise time	t _R	CC	4	-	20	ns	C _L = 50 pF
Fall time	t _F	CC	4	-	20	ns	C _L = 50 pF
Rise/Fall time matching	$t_{\rm R}/t_{\rm F}$	CC	90	-	111.11	%	C _L = 50 pF
Crossover voltage	V _{CRS}	CC	1.3	-	2.0	V	C _L = 50 pF

 Table 54
 USB Timing Parameters (operating conditions apply)

Figure 35 USB Signal Timing

Package and Reliability

Figure 37 PG-TQFP-64-19 (Plastic Green Thin Profile Quad Flat Package)

Table 57 Differences PG-VQFN-48-53 to PG-VQFN-48-71

Change	PG-VQFN-48-53	PG-VQFN-48-71
Package corner	chamfered	right-angled
Lead width	0.23 ^{±0.05} mm	0.25 ^(+0.05, -0.07) mm
Lead height	0.4 ^{±0.07} mm	0.4 ^{±0.05} mm