

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-19
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4200f64k256baxqsa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XMC4100 / XMC4200

Microcontroller Series for Industrial Applications

XMC4000 Family

ARM[®] Cortex[®]-M4 32-bit processor core

Data Sheet V1.3 2015-10

Microcontrollers

Trademarks

C166[™], TriCore[™], XMC[™] and DAVE[™] are trademarks of Infineon Technologies AG.

 $\mathsf{ARM}^{\texttt{®}}, \, \mathsf{ARM} \, \mathsf{Powered}^{\texttt{®}}, \, \mathsf{Cortex}^{\texttt{®}}, \, \mathsf{Thumb}^{\texttt{B}} \, \mathsf{and} \, \, \mathsf{AMBA}^{\texttt{B}} \, \mathsf{are} \, \, \mathsf{registered} \, \, \mathsf{trademarks} \, \, \mathsf{of} \, \, \mathsf{ARM}, \, \mathsf{Limited}.$

CoreSight[™], ETM[™], Embedded Trace Macrocell[™] and Embedded Trace Buffer[™] are trademarks of ARM, Limited.

Synopsys[™] is a trademark of Synopsys, Inc.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Summary of Features

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC4<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
 - E: LFBGA
 - F: LQFP, TQFP
 - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
 - F: -40°C to 85°C
 - K: -40°C to 125°C
- <FFFF> the Flash memory size.

For ordering codes for the XMC4[12]00 please contact your sales representative or local distributor.

This document describes several derivatives of the XMC4100 and XMC4200 series, some descriptions may not apply to a specific product. Please see **Table 1**.

For simplicity the term XMC4[12]00 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Derivative ¹⁾	Package	Flash Kbytes	SRAM Kbytes
XMC4200-F64x256	PG-yQFP-64 ²⁾	256	40
XMC4200-Q48x256	PG-VQFN-48	256	40
XMC4100-F64x128	PG-yQFP-64 ²⁾	128	20
XMC4100-Q48x128	PG-VQFN-48	128	20
XMC4104-F64x64	PG-yQFP-64 ²⁾	64	20
XMC4104-Q48x64	PG-VQFN-48	64	20
XMC4104-F64x128	PG-yQFP-64 ²⁾	128	20
XMC4104-Q48x128	PG-VQFN-48	128	20
XMC4108-F64x64	PG-yQFP-64 ²⁾	64	20
XMC4108-Q48x64	PG-VQFN-48	64	20

 Table 1
 Synopsis of XMC4[12]00 Device Types

1) x is a placeholder for the supported temperature range.

2) y is a placeholder for the QFP package variant, LQFP or TQFP depending on the stepping, see Section 1.3.

Summary of Features

Table 6 S	SRAM Memory Ranges								
Total SRAM Si	ize	Program SRAM	System Data SRAM						
40 Kbytes		1FFF C000 _H – 1FFF FFFF _H	2000 0000 _H – 2000 5FFF _H						
20 Kbytes		1FFF E000 _H – 1FFF FFFF _H	2000 0000 _H – 2000 2FFF _H						

Table 7 ADC Channels¹⁾

Package	VADC G0	VADC G1
LQFP-64, TQFP-64	CH0, CH3CH7	CH0, CH1, CH3, CH6
PG-VQFN-48	CH0, CH3CH7	CH0, CH1, CH3

1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.

1.6 Identification Registers

The identification registers allow software to identify the marking.

Table 8 XMC4200 Identification Registers

Register Name	Value	Marking
SCU_IDCHIP	0004 2001 _H	EES-AA, ES-AA
SCU_IDCHIP	0004 2002 _H	ES-AB, AB
SCU_IDCHIP	0004 2003 _H	BA
JTAG IDCODE	101D D083 _H	EES-AA, ES-AA
JTAG IDCODE	201D D083 _H	ES-AB, AB
JTAG IDCODE	301D D083 _H	BA

General Device Information

2.2.1 Package Pin Summary

The following general scheme is used to describe each pin:

Table 10 Package Pin Mapping Description

Function	Package A	Package B	 Pad Type	Notes
Name	N	Ax	 A1+	

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the dedicated pins (i.e. PORST) and supply pins.

The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type (A1, A1+, special=special pad, In=input pad, AN/DIG_IN=analog and digital input, Power=power supply). Details about the pad properties are defined in the Electrical Parameters.

In the "Notes", special information to the respective pin/function is given, i.e. deviations from the default configuration after reset. Per default the regular Port pins are configured as direct input with no internal pull device active.

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes
P0.0	2	2	A1+	
P0.1	1	1	A1+	
P0.2	64	48	A1+	
P0.3	63	47	A1+	
P0.4	62	46	A1+	
P0.5	61	45	A1+	
P0.6	60	44	A1+	
P0.7	58	43	A1+	After a system reset, via HWSEL this pin selects the DB.TDI function.
P0.8	57	42	A1+	After a system reset, via <u>HWSEL</u> this pin selects the DB.TRST function, with a weak pull-down active.
P0.9	4	-	A1+	
P0.10	3	-	A1+	

Table 11 Package Pin Mapping

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Function	LQFP-64 TQFP-64	VQFN-48	Pad Type	Notes							
P14.9	23	19	AN/DAC/DIG_IN								
P14.14	14	-	AN/DIG_IN								
USB_DP	7	4	special								
USB_DM	6	3	special								
HIB_IO_0	10	7	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.							
ТСК	45	34	A1	Weak pull-down active.							
TMS	44	33	A1+	Weak pull-up active. As output the strong-soft driver mode is active.							
PORST	43	32	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.							
XTAL1	39	29	clock_IN								
XTAL2	40	30	clock_O								
RTC_XTAL1	11	8	clock_IN								
RTC_XTAL2	12	9	clock_O								
VBAT	13	10	Power	When VDDP is supplied VBAT has to be supplied as well.							
VDDA/VAREF	22	18	AN_Power/AN_ Ref	Shared analog supply and reference voltage pin.							
VSSA/VAGND	21	17	AN_Power/AN_ Ref	Shared analog supply and reference ground pin.							
VDDC	9	6	Power								
VDDC	42	31	Power								
VDDP	8	5	Power								
VDDP	38	28	Power								
VDDP	56	41	Power								
VSS	37	27	Power								

Table 11 Package Pin Mapping (cont'd)

Port I/O Functions (CONt'd) Table 13

			(
Function	Output					Input								
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P14.9					DAC. OUT_1			VADC. G1CH1						
P14.14								VADC. G1CH6					G1ORC6	
USB_DP														
USB_DM														
HIB_IO_0	HIBOUT	WWDT. SERVICE_OUT					WAKEUPA			USB. VBUSDETECT C				
тск						DB.TCK/ SWCLK								
TMS					DB.TMS/ SWDIO									
PORST														
XTAL1							U0C0. DX0F	U0C1. DX0F	U1C0. DX0F	U1C1. DX0F				
XTAL2														
RTC_XTAL1									ERU0. 1B1					
RTC_XTAL2														

XMC4100 / XMC4200 XMC4000 Family

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-	
Junction temperature	T_{J}	SR	-40	-	150	°C	-	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	$V_{\sf IN}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to V_{AGND}	$\begin{array}{c} V_{\rm AIN} \\ V_{\rm AREF} \end{array}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\sf IN}$	SR	-25	_	+25	mA		
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA		

Table 14 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 18**.

Conversion Time

Table 26 Conversion Time	(Operating Conditions apply)
--------------------------	------------------------------

Parameter Symbol			Values	Unit	Note		
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}	μs	N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$		

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions (max. f_{ADC}):

 f_{ADC} = 80 MHz i.e. t_{ADC} = 12.5 ns, DIVA = 2, f_{ADCI} = 26.7 MHz i.e. t_{ADCI} = 37.5 ns According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 625 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{\text{CN12}} = (2 + 12) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 14 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 550 \text{ ns}$ 10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 475 \text{ ns}$ 8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 400 \text{ ns}$

System assumptions (max. f_{ADCI}): $f_{ADC} = 60 \text{ MHz}$ i.e. $t_{ADC} = 16.67 \text{ ns}$, DIVA = 1, $f_{ADCI} = 30 \text{ MHz}$ i.e. $t_{ADCI} = 33.33 \text{ ns}$ 12-bit post-calibrated conversion (PC = 2): $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 33.33 \text{ ns} + 2 \times 16.67 \text{ ns} = 566 \text{ ns}$

3.2.4 Out-of-Range Comparator (ORC)

The Out-of-Range Comparator (ORC) triggers on analog input voltages (V_{AIN}) above the analog reference¹ (V_{AREF}) on selected input pins (GxORCy) and generates a service request trigger (GxORCOUTy).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The parameters in Table 28 apply for the maximum reference voltage $V_{\text{AREF}} = V_{\text{DDA}} + 50 \text{ mV}.$

Parameter	Symbol			Values	3	Unit	Note /
			Min.	Тур.	Max.		Test Condition
DC Switching Level	V _{ODC}	СС	100	125	200	mV	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}} + V_{\text{ODC}}$
Hysteresis	$V_{\rm OHYS}$	CC	50	-	V _{ODC}	mV	
Detection Delay of a persistent	t _{ODD}	СС	55	-	450	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
Overvoltage			45	-	105	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Always detected Overvoltage Pulse	t _{OPDD}	СС	440	-	-	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			90	-	-	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Never detected Overvoltage Pulse	t _{OPDN}	СС	-	-	49	ns	Ax-marking devices $V_{\text{AIN}} \ge V_{\text{AREF}}$ + 200 mV
			-	-	30	ns	$V_{\text{AIN}} \ge V_{\text{AREF}}$ + 400 mV
Release Delay	t _{ORD}	СС	65	-	105	ns	$V_{AIN} \leq V_{AREF}$
Enable Delay	t _{OED}	CC	-	100	200	ns	

Table 28 ORC Parameters (Operating Conditions apply)

¹⁾ Always the standard VADC reference, alternate references do not apply to the ORC.

3.2.5 High Resolution PWM (HRPWM)

The following chapters describe the operating conditions, characteristics and timing requirements, for all the components inside the HRPWM module. Each description is given for just one sub unit, e.g., one CSG or one HRC.

All the timing information is related to the module clock, f_{hrowm} .

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.2.5.1 HRC characteristics

Table 29 summarizes the characteristics of the HRC units.

Table 29	HRC characteristics	(Operating	Conditions apply)
----------	---------------------	------------	-------------------

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
High resolution step size ¹⁾²⁾	t _{HRS} CC	-	150	-	ps	
Startup time (after reset release)	t _{start} CC	-	-	2	μS	

1) The step size for clock frequencies equal to 180, 120 and 80 MHz is 150 ps.

 The step size for clock frequencies different from 180, 120 and 80 MHz but within the range from 180 to 64 MHz can be between 118 to 180 ps (fixed over process and operating conditions)

3.2.5.2 CMP and 10-bit DAC characteristics

The Table 30 summarizes the characteristics of the CSG unit.

The specified characteristics require that the setup of the HRPWM follows the initialization sequence as documented in the Reference Manual.

Table 30 CMP a	and 10-bit DAC characteristics	(Operating Conditions apply)
----------------	--------------------------------	------------------------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAC Resolution	RES CC		10		bits	
DAC differential nonlinearity	DNL CC	-1	-	1.5	LSB	Monotonic behavior, See Figure 18
DAC integral nonlinearity	INL CC	-3	-	3	LSB	See Figure 18

Figure 22 Oscillator in Direct Input Mode

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
Peripherals enabled			-	75	-		80 / 40 / 40
$f_{CPU}/f_{PEPIPH}/f_{CCU}$ in MHz			-	73	-		40 / 40 / 80
JOFU JEKIFI JOCU			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current	$I_{\rm DDPA}$	CC	-	24	-	mA	80 / 80 / 80
Code execution from RAM Flash in Sleep mode Frequency:			_	19	_		80 / 40 / 40
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz							
Active supply current ²⁾	$I_{\rm DDPA}$	СС	-	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: f_{CPU}/f_{PERIPH} in MHz			-	62	-		80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

Table 38	Power	Supply	Parameters
----------	-------	--------	------------

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 47	SWD Interface	Timing Parameters (Operating	g Conditions apply)
----------	---------------	---------------------	-----------	---------------------

Parameter	Syn	nbol		Values	;	Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	$C_L = 30 \text{ pF}$
			40	-	-	ns	$C_L = 50 \text{ pF}$
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	-	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns	
SWDIO output valid time	t_5	СС	-	-	17	ns	$C_L = 50 \text{ pF}$
after SWDCLK rising edge			-	-	13	ns	$C_L = 30 \text{ pF}$
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	-	ns	

Table 49 USIC SSC Slave Mode Timing

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
DX1 slave clock period	t _{CLK} SR	66.6	-	-	ns	
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	t ₁₀ SR	3	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁ SR	4	-	-	ns	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂ SR	6	-	-	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃ SR	4	-	-	ns	
Data output DOUT[3:0] valid time	<i>t</i> ₁₄ CC	0	-	24	ns	

 These input timing are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

Figure 33	USIC IIS Master	Transmitter	Timing

Table 53	USIC IIS Slave Receiver Timing
----------	--------------------------------

Parameter	Symbol	Values		Unit	Note /	
		Min.	Тур.	Max.		Test Condition
Clock period	t ₆ SR	66.6	-	-	ns	
Clock high time	t ₇ SR	0.35 x	-	_	ns	
		t _{6min}				
Clock low time	t ₈ SR	0.35 x	-	-	ns	
		t _{6min}				
Set-up time	t ₉ SR	0.2 x	-	-	ns	
		t _{6min}				
Hold time	t ₁₀ SR	0	-	-	ns	

Figure 34 USIC IIS Slave Receiver Timing

Package and Reliability

4 Package and Reliability

The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The availability of different packages for different markings is listed in **Table 2**.

Parameter	Symbol	Limit Values		Unit	Package Types
		Min.	Max.		
Exposed Die Pad Dimensions	Ex × Ey	-	$\textbf{5.8} \times \textbf{5.8}$	mm	PG-LQFP-64-19
	CC	-	5.7 imes 5.7	mm	PG-TQFP-64-19
		-	5.2 imes 5.2	mm	PG-VQFN-48-53
		-	5.2 imes 5.2	mm	PG-VQFN-48-71
Thermal resistance Junction-Ambient	$R_{ m \Theta JA}$	-	30	K/W	PG-LQFP-64-19 ¹⁾
	CC	-	23.4	K/W	PG-TQFP-64-19 ¹⁾
		-	34.8	K/W	PG-VQFN-48-53 ¹⁾ PG-VQFN-48-71 ¹⁾

 Table 55
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4[12]00 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The

Package and Reliability

4.2 Package Outlines

The availability of different packages for different devices types is listed in **Table 1**, specific packages for different device markings are listed in **Table 2**.

The exposed die pad dimensions are listed in Table 55.

Table 56 Differences PG-LQFP-64-19 to PG-TQFP-64-19

Change	PG-LQFP-64-19	PG-TQFP-64-19		
Thermal Resistance Junction Ambient ($R_{\Theta JA}$)	30 K/W	23.4 K/W		
Package thickness	1.4 ^{±0.05} mm	1.0 ^{±0.05} mm		
	1.6 mm MAX	1.2 mm MAX		
Exposed Die Pad size	5.8 mm × 5.8 mm	5.7 mm × 5.7 mm		

XMC4100 / XMC4200 XMC4000 Family

Package and Reliability

Figure 36 PG-LQFP-64-19 (Plastic Green Low Profile Quad Flat Package)

XMC4100 / XMC4200 XMC4000 Family

Package and Reliability

Figure 38 PG-VQFN-48-53 (Plastic Green Very Thin Profile Flat Non Leaded Package)

Figure 39 PG-VQFN-48-71 (Plastic Green Very Thin Profile Flat Non Leaded Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages