

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-53
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4200q48f256abxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2015-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC4100 / XMC4200

Microcontroller Series for Industrial Applications

XMC4000 Family

ARM[®] Cortex[®]-M4 32-bit processor core

Data Sheet V1.3 2015-10

Microcontrollers

XMC4[12]00 Data Sheet

Revision	History: V1.3 2015-10
	Versions:
V1.2 201	
V1.1 201	
V1.0 201	
V0.6 201	2-11
Page	Subjects
12	Added a section listing the packages of the different markings.
14	Added BA marking variant.
14	Corrected SCU_IDCHIP value of XMC4100 EES-AA/ES-AA.
36	Added footnote explaining minimum V_{BAT} requirements to start the hibernate domain and/or oscillation of a crystal on RTC_XTAL.
37	Changed pull device definition to System Requirement (SR) to reflect that the specified currents are defined by the characteristics of the external load/driver.
37	Added information that PORST Pull-up is identical to the pull-up on standard I/O pins.
42	Updated C_{AINSW} , C_{AINTOT} and R_{AIN} parameters with improved values.
56	Added footnote on test configuration for LPAC measurement.
58	Corrected parameter name of of USB pull device (upstream port receiving) definition according to USB standard (referenced to DM instead of DP)
62	Relaxed RTC_XTAL $V_{\rm PPX}$ parameter value and changed it to a system requirement.
66	Added footnote on current consumption by enabling of f_{CCU} .
67	Added Flash endurance parameter for 64 Kbytes Physical Sector PS4 $N_{\rm EPS4}$ for devices with BA marking.
many	Added PG-TQFP-64-19 and PG-VQFN-48-71 package information.
89, 91	Added tables describing the differences between PG-LQFP-64-19 to PG- TQFP-64-19 as well as PG-VQFN-48-53 to PG-VQFN-48-71 packages.
93	Updated to JEDEC standard J-STD-020D for the moisture sensitivity level and added solder temperature parameter according to the same standard.

Summary of Features

1 Summary of Features

The XMC4[12]00 devices are members of the XMC4000 Family of microcontrollers based on the ARM Cortex-M4 processor core. The XMC4000 is a family of high performance and energy efficient microcontrollers optimized for Industrial Connectivity, Industrial Control, Power Conversion, Sense & Control.

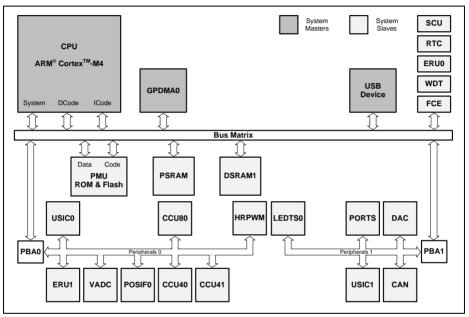


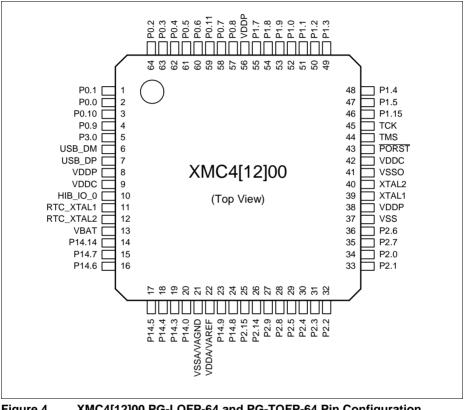
Figure 1 System Block Diagram

CPU Subsystem

- CPU Core
 - High Performance 32-bit ARM Cortex-M4 CPU
 - 16-bit and 32-bit Thumb2 instruction set
 - DSP/MAC instructions
 - System timer (SysTick) for Operating System support
- Floating Point Unit
- Memory Protection Unit
- Nested Vectored Interrupt Controller
- One General Purpose DMA with up-to 8 channels
- Event Request Unit (ERU) for programmable processing of external and internal service requests

9

• Flexible CRC Engine (FCE) for multiple bit error detection


Data Sheet

General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure 4 XMC4[12]00 PG-LQFP-64 and PG-TQFP-64 Pin Configuration (top view)

XMC4100 / XMC4200 XMC4000 Family

General Device Information

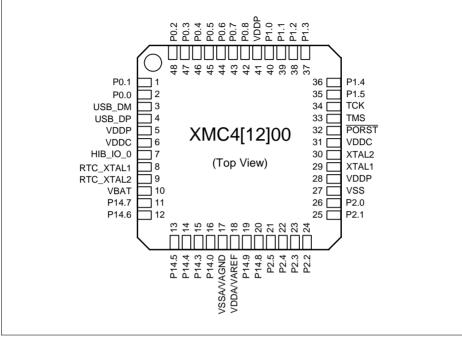


Figure 5 XMC4[12]00 PG-VQFN-48 Pin Configuration (top view)

XMC4100 / XMC4200 XMC4000 Family

General Device Information

Table 11	Package Pin Mapping (cont'd)									
Function	LQFP-64 VQFN-48 TQFP-64		Pad Type	Notes						
P14.9	23	19	AN/DAC/DIG_IN							
P14.14	14	-	AN/DIG_IN							
USB_DP	7	4	special							
USB_DM	6	3	special							
HIB_IO_0	10	7	A1 special	At the first power-up and with every reset of the hibernate domain this pin is configured as open-drain output and drives "0". As output the medium driver mode is active.						
тск	45	34	A1	Weak pull-down active.						
TMS	44	33	A1+	Weak pull-up active. As output the strong-soft driver mode is active.						
PORST	43	32	special	Strong pull-down controlled by EVR. Weak pull-up active while strong pull-down is not active.						
XTAL1	39	29	clock_IN							
XTAL2	40	30	clock_O							
RTC_XTAL1	11	8	clock_IN							
RTC_XTAL2	12	9	clock_O							
VBAT	13	10	Power	When VDDP is supplied VBAT has to be supplied as well.						
VDDA/VAREF	22	18	AN_Power/AN_ Ref	Shared analog supply and reference voltage pin.						
VSSA/VAGND	21	17	AN_Power/AN_ Ref	Shared analog supply and reference ground pin.						
VDDC	9	6	Power							
VDDC	42	31	Power							
VDDP	8	5	Power							
VDDP	38	28	Power							
VDDP	56	41	Power							
VSS	37	27	Power							

Table 11 Package Pin Mapping (cont'd)

3 Electrical Parameters

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section partly represent the characteristics of the XMC4[12]00 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column "Symbol":

• CC

Such parameters indicate Controller Characteristics, which are a distinctive feature of the XMC4[12]00 and must be regarded for system design.

• SR

Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMC4[12]00 is designed in.

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symb	ol		Va	lues	Unit	Note /
			Min.	Тур.	Max.		Test Con dition
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-
Junction temperature	TJ	SR	-40	_	150	°C	-
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	V _{IN}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Voltage on any analog input pin with respect to V_{AGND}	V_{AIN} V_{AREF}	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA	
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\rm IN}$	SR	-25	-	+25	mA	
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA	

Table 14 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 18**.

3.1.4 Pad Driver and Pad Classes Summary

This section gives an overview on the different pad driver classes and its basic characteristics. More details (mainly DC parameters) are defined in the Section 3.2.1.

Table 19 Pad Driver and Pad	Classes Overview
-----------------------------	------------------

Class	Power Supply	Туре	Sub-Class	Speed Grade	Load	Termination
Α	3.3 V	LVTTL I/O,	A1 (e.g. GPIO)	6 MHz	100 pF	No
_		LVTTL outputs	A1+ (e.g. serial I/Os)	25 MHz	50 pF	Series termination recommended

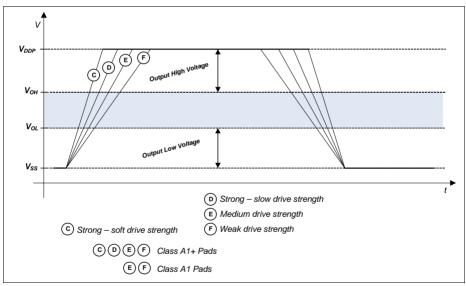


Figure 10 Output Slopes with different Pad Driver Modes

Figure 10 is a qualitative display of the resulting output slope performance with different output driver modes. The detailed input and output characteristics are listed in Section 3.2.1.

35

Table 23 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note /	
		Min.	Max.		Test Condition	
Output high voltage,	V _{OHA1+}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A	
$POD^{1)} = weak$	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA	
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA	
$POD^{1)} = medium$		2.4	-	V	<i>I</i> _{OH} ≥ -2 mA	
Output high voltage,		V _{DDP} - 0.4	-	V	<i>I</i> _{OH} ≥ -1.4 mA	
$POD^{1)} = strong$		2.4	-	V	$I_{\rm OH} \ge$ -2 mA	
Output low voltage	V _{OLA1+} CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium	
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong	
Fall time	t _{FA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium	
		_	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow	
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft;	
Rise time	t _{RA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak	
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium	
		-	28	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = strong; edge = slow	
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft	

1) POD = Pin Out Driver

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Total capacitance of the alternate reference inputs ⁵⁾	C _{AREFTOT} CC	-	20	40	pF	
Total Unadjusted Error	TUE CC	-6	-	6	LSB	12-bit resolution;
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-4.5	-	4.5	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$
Gain Error ⁸⁾	EA _{GAIN} CC	-6	-	6	LSB	
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-4.5	-	4.5	LSB	
Offset Error ⁸⁾	EA _{OFF} CC	-6	-	6	LSB	
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	-	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 ^{\circ}\text{C}$
Charge consumption on alternate reference per conversion ⁵⁾	$Q_{\rm CONV}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9}$
ON resistance of the analog input path	R _{AIN} CC	-	600	1 200	Ohm	
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm	

Table 25 ADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 14).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.

43

8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.

Parameter	Symbol	Symbol		Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Offset error	ED _{OFF}	СС		±20		mV	
Gain error	ED _{G_IN} C	CC	-5	0	5	%	
Startup time	t _{STARTUP}	СС	_	15	30	μs	time from output enabling till code valid ±16 LSB
3dB Bandwidth of Output Buffer	f _{C1}	СС	2.5	5	-	MHz	verified by design
Output sourcing current	I _{OUT_SOUL} CC	RCE	-	-30	-	mA	
Output sinking current	I _{OUT_SINK} CC		-	0.6	-	mA	
Output resistance	R _{OUT} 0	CC	-	50	-	Ohm	
Load resistance	R _L S	SR	5	-	-	kOhm	
Load capacitance	C_{L}	SR	-	-	50	pF	
Signal-to-Noise Ratio	SNR (CC	-	70	-	dB	examination bandwidth < 25 kHz
Total Harmonic Distortion	THD (CC	-	70	-	dB	examination bandwidth < 25 kHz
Power Supply Rejection Ratio	PSRR C	CC	-	56	-	dB	to $V_{\rm DDA}$ verified by design

Table 27 DAC Parameters (Operating Conditions apply) (cont'd)

1) According to best straight line method.

Conversion Calculation

 $\begin{array}{l} \text{Unsigned:} \\ \text{DACxDATA} = 4095 \times (V_{\text{OUT}} \text{ - } V_{\text{OUT_MIN}}) \ / \ (V_{\text{OUT_MAX}} \text{ - } V_{\text{OUT_MIN}}) \\ \text{Signed:} \\ \text{DACxDATA} = 4095 \times (V_{\text{OUT}} \text{ - } V_{\text{OUT_MIN}}) \ / \ (V_{\text{OUT_MAX}} \text{ - } V_{\text{OUT_MIN}}) \ - \ 2048 \\ \end{array}$

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

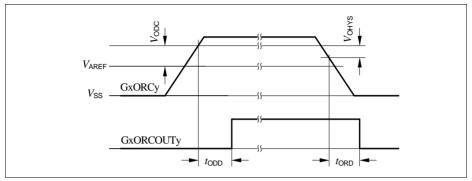


Figure 16 GxORCOUTy Trigger Generation

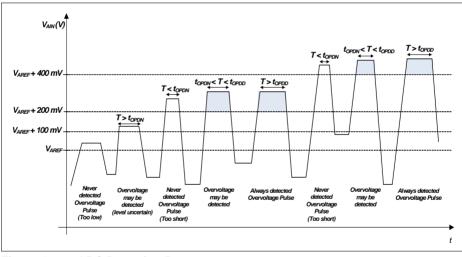


Figure 17 ORC Detection Ranges

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Active supply current ¹⁾	$I_{\rm DDPA}$	CC	-	80	-	mA	80 / 80 / 80
Peripherals enabled			-	75	-		80 / 40 / 40
Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	73	-		40 / 40 / 80
JCPU' JPERIPH' JCCU III WII IZ			-	59	-		24 / 24 / 24
			-	50	-		1/1/1
Active supply current	$I_{\rm DDPA}$	CC	-	24	-	mA	80 / 80 / 80
Code execution from RAM Flash in Sleep mode Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			_	19	-		80 / 40 / 40
Active supply current ²⁾	I _{DDPA}	CC	-	63	-	mA	80 / 80 / 80
Peripherals disabled Frequency: f_{CPU}/f_{PERIPH} in MHz			-	62	-	-	80 / 40 / 40
			-	60	-		40 / 40 / 80
			-	54	-		24 / 24 / 24
			-	50	-		1/1/1

Table 38	Power Supply	Parameters
----------	--------------	------------

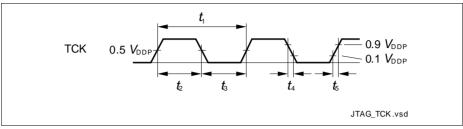
Note: These parameters are not subject to production test, but verified by design and/or characterization.

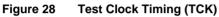
Parameter	Symbol			Values	5	Unit	Note / Test Condition	
			Min.	Тур.	Max.	-		
Power Dissipation	P_{DISS}	СС	-	-	1	W	V _{DDP} = 3.6 V, T _J = 150 °C	
Wake-up time from Sleep to Active mode	t _{SSA}	СС	-	6	-	cycles		
Wake-up time from Deep Sleep to Active mode			-	-	-	ms	Defined by the wake-up of the Flash module, see Section 3.2.11	
Wake-up time from Hibernate mode			-	-	-	ms	Wake-up via power-on reset event, see Section 3.3.2	

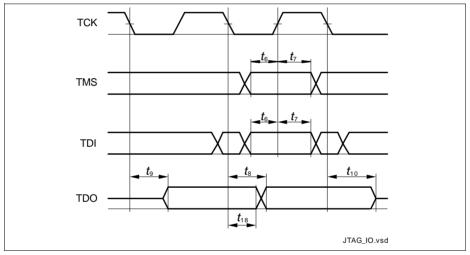
Table 38 Power Supply Parameters

1) CPU executing code from Flash, all peripherals idle.

2) CPU executing code from Flash. USB and CCU clock off.


3) CPU in sleep, all peripherals idle, Flash in Active mode.


- 4) CPU in sleep, Flash in Active mode.
- 5) CPU in sleep, peripherals disabled, after wake-up code execution from RAM.
- 6) To wake-up the Flash from its Sleep mode, $f_{CPU} \ge 1$ MHz is required.
- 7) OSC_ULP operating with external crystal on RTC_XTAL
- 8) OSC_ULP off, Hibernate domain operating with OSC_SI clock
- 9) Test Power Loop: f_{SYS} = 80 MHz, CPU executing benchmark code from Flash, all CCUs in 100kHz timer mode, all ADC groups in continuous conversion mode, USICs as SPI in internal loop-back mode, CAN in 500kHz internal loop-back mode, interrupt triggered DMA block transfers to parity protected RAMs and FCE, DTS measurements and FPU calculations.


The power consumption of each customer application will most probably be lower than this value, but must be evaluated separately.

- 10) I_{DDP} decreases typically by 3.5 mA when f_{SYS} decreases by 10 MHz, at constant T_{J}
- 11) Sum of currents of all active converters (ADC and DAC)

3.3.8.2 Inter-IC (IIC) Interface Timing

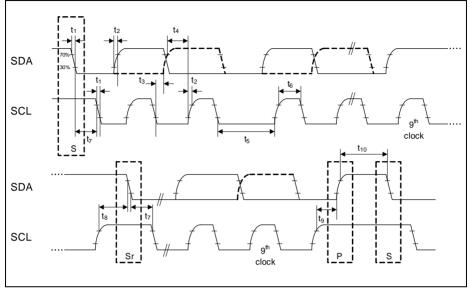
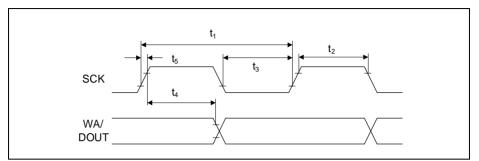

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 50	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Figure 32 USIC IIC Stand and Fast Mode Timing


3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 52	USIC IIS Master	Transmitter Timing
----------	-----------------	---------------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	-	-	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	_	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	-	-	0.15 x	ns	
				t _{1min}		

Figure 33	USIC IIS Master	Transmitter Timing	
-----------	-----------------	--------------------	--

Table 53 USIC IIS S	lave Receiver Timing
---------------------	----------------------

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Clock period	t ₆ SR	66.6	_	-	ns	
Clock high time	t ₇ SR	0.35 x t _{6min}	-	-	ns	
Clock low time	t ₈ SR	0.35 x t _{6min}	-	-	ns	
Set-up time	t ₉ SR	0.2 x t _{6min}	_	-	ns	
Hold time	<i>t</i> ₁₀ SR	0	-	-	ns	

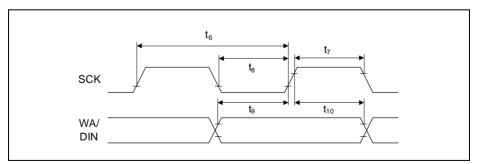


Figure 34 USIC IIS Slave Receiver Timing