

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	PG-VQFN-48-53
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4200q48k256baxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Summary of Features

On-Chip Memories

- 16 KB on-chip boot ROM
- up to 16 KB on-chip high-speed program memory
- up to 24 KB on-chip high speed data memory
- up to 256 KB on-chip Flash Memory with 1 KB instruction cache

Communication Peripherals

- Universal Serial Bus, USB 2.0 device, with integrated PHY
- Controller Area Network interface (MultiCAN), Full-CAN/Basic-CAN with two nodes, 64 message objects (MO), data rate up to 1 MBit/s
- Four Universal Serial Interface Channels (USIC), providing four serial channels, usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces
- LED and Touch-Sense Controller (LEDTS) for Human-Machine interface

Analog Frontend Peripherals

- Two Analog-Digital Converters (VADC) of 12-bit resolution, 8 channels each, with input out-of-range comparators
- Digital-Analog Converter (DAC) with two channels of 12-bit resolution

Industrial Control Peripherals

- Two Capture/Compare Units 4 (CCU4) for use as general purpose timers
- One Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Four High Resoultion PWM (HRPWM) channels
- One Position Interface (POSIF) for servo motor positioning
- Window Watchdog Timer (WDT) for safety sensitive applications
- Die Temperature Sensor (DTS)
- Real Time Clock module with alarm support
- System Control Unit (SCU) for system configuration and control

Input/Output Lines

- Programmable port driver control module (PORTS)
- Individual bit addressability
- Tri-stated in input mode
- Push/pull or open drain output mode
- Boundary scan test support over JTAG interface

On-Chip Debug Support

- Full support for debug features: 8 breakpoints, CoreSight, trace
- Various interfaces: ARM-JTAG, SWD, single wire trace

General Device Information

2.2.2 Port I/O Functions

The following general scheme is used to describe each PORT pin:

Table 12 Port I/O Function Description

Function		Outputs		Inputs				
	ALT1	ALTn	HWO0	HWI0	Input	Input		
P0.0		MODA.OUT	MODB.OUT	MODB.INA	MODC.INA			
Pn.y	MODA.OUT				MODA.INA	MODC.INB		

Figure 6 Simplified Port Structure

Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.

Up to four alternate output functions (ALT1/2/3/4) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).

The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.

The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.

By Pn_HWSEL it is possible to select between different hardware "masters" (HWO0/HWI0). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers.

Port I/O Functions (CONt'd) Table 13

			(
Function		Output					Input							
	ALT1	ALT2	ALT3	ALT4	HWO0	HWIO	Input	Input	Input	Input	Input	Input	Input	Input
P14.9					DAC. OUT_1			VADC. G1CH1						
P14.14								VADC. G1CH6					G1ORC6	
USB_DP														
USB_DM														
HIB_IO_0	HIBOUT	WWDT. SERVICE_OUT					WAKEUPA			USB. VBUSDETECT C				
тск						DB.TCK/ SWCLK								
TMS					DB.TMS/ SWDIO									
PORST														
XTAL1							U0C0. DX0F	U0C1. DX0F	U1C0. DX0F	U1C1. DX0F				
XTAL2														
RTC_XTAL1									ERU0. 1B1					
RTC_XTAL2														

XMC4100 / XMC4200 XMC4000 Family

The XMC4[12]00 has a common ground concept, all $V_{\rm SS}$, $V_{\rm SSA}$ and $V_{\rm SSO}$ pins share the same ground potential. In packages with an exposed die pad it must be connected to the common ground as well.

There are no dedicated connections for the analog reference V_{AREF} and V_{AGND} . Instead, they share the same pins as the analog supply pins V_{DDA} and V_{SSA} . Some analog channels can optionally serve as "Alternate Reference"; further details on this operating mode are described in the Reference Manual.

When V_{DDP} is supplied, V_{BAT} must be supplied as well. If no other supply source (e.g. battery) is connected to V_{BAT} , the V_{BAT} pin can also be connected directly to V_{DDP} .

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Parameter	Symbol			Va	lues	Unit	Note /	
			Min.	Тур.	Max.		Test Con dition	
Storage temperature	$T_{\rm ST}$	SR	-65	-	150	°C	-	
Junction temperature	T_{J}	SR	-40	-	150	°C	-	
Voltage at 3.3 V power supply pins with respect to $V_{\rm SS}$	V_{DDP}	SR	-	-	4.3	V	-	
Voltage on any Class A and dedicated input pin with respect to $V_{\rm SS}$	$V_{\sf IN}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Voltage on any analog input pin with respect to V_{AGND}	$\begin{array}{c} V_{\rm AIN} \\ V_{\rm AREF} \end{array}$	SR	-1.0	-	V _{DDP} + 1.0 or max. 4.3	V	whichever is lower	
Input current on any pin during overload condition	I _{IN}	SR	-10	-	+10	mA		
Absolute maximum sum of all input circuit currents for one port group during overload condition ¹⁾	$\Sigma I_{\sf IN}$	SR	-25	_	+25	mA		
Absolute maximum sum of all input circuit currents during overload condition	$\Sigma I_{\rm IN}$	SR	-100	-	+100	mA		

Table 14 Absolute Maximum Rating Parameters

1) The port groups are defined in **Table 18**.

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 15 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Parameter	Symbol			Values	;	Unit	Note / Test Condition	
				Тур.	Max.			
Input current on any port pin during overload condition	I _{OV}	SR	-5	-	5	mA		
Absolute sum of all input circuit currents for one port	$I_{\rm OVG}$	SR	-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} < 0 \text{ mA}$	
group during overload condition ¹⁾			-	-	20	mA	$\Sigma I_{OVx} $, for all $I_{OVx} > 0 \text{ mA}$	
Absolute sum of all input circuit currents during overload condition	I _{OVS}	SR	_	-	80	mA	$\Sigma I_{\rm OVG}$	

Table 15 Overload Parameters

1) The port groups are defined in **Table 18**.

Figure 9 shows the path of the input currents during overload via the ESD protection structures. The diodes against V_{DDP} and ground are a simplified representation of these ESD protection structures.

Parameter	Symbol		Values	S	Unit	Note /	
		Min.	Тур.	Max.	_	Test Condition	
Total capacitance of the alternate reference inputs ⁵⁾	C _{AREFTOT} CC	_	20	40	pF		
Total Unadjusted Error	TUE CC	-6	-	6	LSB	12-bit resolution;	
Differential Non-Linearity Error ⁸⁾	EA _{DNL} CC	-4.5	-	4.5	LSB	$V_{\text{DDA}} = 3.3 \text{ V};$ $V_{\text{AREF}} = V_{\text{DDA}}^{7)}$	
Gain Error ⁸⁾	EA _{GAIN} CC	-6	-	6	LSB		
Integral Non-Linearity ⁸⁾	EA _{INL} CC	-4.5	-	4.5	LSB		
Offset Error ⁸⁾	EA _{OFF} CC	-6	-	6	LSB		
Worst case ADC V_{DDA} power supply current per active converter	I _{DDAA} CC	-	1.5	2	mA	during conversion $V_{\text{DDP}} = 3.6 \text{ V},$ $T_{\text{J}} = 150 \text{ °C}$	
Charge consumption on alternate reference per conversion ⁵⁾	$Q_{\rm CONV}$	-	30	-	рС	$0 V \le V_{AREF} \le V_{DDA}^{9}$	
ON resistance of the analog input path	R _{AIN} CC	_	600	1 200	Ohm		
ON resistance for the ADC test (pull down for AIN7)	R _{AIN7T} CC	180	550	900	Ohm		

Table 25 ADC Parameters (Operating Conditions apply)

1) A running conversion may become imprecise in case the normal conditions are violated (voltage overshoot).

 If the analog reference voltage is below V_{DDA}, then the ADC converter errors increase. If the reference voltage is reduced by the factor k (k<1), TUE, DNL, INL, Gain, and Offset errors increase also by the factor 1/k.

- 3) The leakage current definition is a continuous function, as shown in figure ADCx Analog Inputs Leakage. The numerical values defined determine the characteristic points of the given continuous linear approximation they do not define step function (see Figure 14).
- 4) The sampling capacity of the conversion C-network is pre-charged to V_{AREF}/2 before the sampling moment. Because of the parasitic elements, the voltage measured at AINx can deviate from V_{AREF}/2.
- 5) Applies to AINx, when used as alternate reference input.
- 6) This represents an equivalent switched capacitance. This capacitance is not switched to the reference voltage at once. Instead, smaller capacitances are successively switched to the reference voltage.
- For 10-bit conversions, the errors are reduced to 1/4; for 8-bit conversions, the errors are reduced to 1/16. Never less than ±1 LSB.

43

8) The sum of DNL/INL/GAIN/OFF errors does not exceed the related total unadjusted error TUE.

Conversion Time

Table 26 Conversion Time	(Operating Conditions apply)
--------------------------	------------------------------

Parameter Symbol			Values	Unit	Note
Conversion time	t _C	CC	$2 \times T_{ADC}$ + (2 + N + STC + PC +DM) × T_{ADCI}	μs	N = 8, 10, 12 for N-bit conversion $T_{ADC} = 1 / f_{PERIPH}$ $T_{ADCI} = 1 / f_{ADCI}$

- STC defines additional clock cycles to extend the sample time
- · PC adds two cycles if post-calibration is enabled
- DM adds one cycle for an extended conversion time of the MSB

Conversion Time Examples

System assumptions (max. f_{ADC}):

 f_{ADC} = 80 MHz i.e. t_{ADC} = 12.5 ns, DIVA = 2, f_{ADCI} = 26.7 MHz i.e. t_{ADCI} = 37.5 ns According to the given formulas the following minimum conversion times can be achieved (STC = 0, DM = 0):

12-bit post-calibrated conversion (PC = 2):

 $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 625 \text{ ns}$

12-bit uncalibrated conversion:

 $t_{\text{CN12}} = (2 + 12) \times t_{\text{ADCI}} + 2 \times t_{\text{ADC}} = 14 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 550 \text{ ns}$ 10-bit uncalibrated conversion:

 $t_{CN10} = (2 + 10) \times t_{ADCI} + 2 \times t_{ADC} = 12 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 475 \text{ ns}$ 8-bit uncalibrated:

 $t_{CN8} = (2 + 8) \times t_{ADCI} + 2 \times t_{ADC} = 10 \times 37.5 \text{ ns} + 2 \times 12.5 \text{ ns} = 400 \text{ ns}$

System assumptions (max. f_{ADCI}): $f_{ADC} = 60 \text{ MHz}$ i.e. $t_{ADC} = 16.67 \text{ ns}$, DIVA = 1, $f_{ADCI} = 30 \text{ MHz}$ i.e. $t_{ADCI} = 33.33 \text{ ns}$ 12-bit post-calibrated conversion (PC = 2): $t_{CN12C} = (2 + 12 + 2) \times t_{ADCI} + 2 \times t_{ADC} = 16 \times 33.33 \text{ ns} + 2 \times 16.67 \text{ ns} = 566 \text{ ns}$

XMC4100 / XMC4200 XMC4000 Family

Electrical Parameters

Figure 16 GxORCOUTy Trigger Generation

Figure 17 ORC Detection Ranges

CMP and 10-bit DAC characteristics (Operating Conditions apply)										
Parameter	Symbol		Values	5	Unit	Note /				
		Min.	Тур.	Max.		Test Condition				
CSG Output Jitter	D _{CSG} CC	-	-	1	clk					
Bias startup time	t _{start} CC	-	-	98	us					
Bias supply current	I _{DDbias} CC	-	-	400	μA					
CSGy startup time	t _{CSGS} CC	-	-	2	μS					
Input operation current ¹⁾	I _{DDCIN} CC	-10	-	33	μA	See Figure 19				
High Speed Mode	1			-1						
DAC output voltage range	V _{DOUT} CC	$V_{\rm SS}$	-	V_{DDP}	V					
DAC propagation delay - Full scale	t _{FShs} CC	-	-	80	ns	See Figure 20				
Input Selector propagation delay - Full scale	t _{Dhs} CC	-	-	100	ns	See Figure 20				
Comparator bandwidth	t _{Dhs} CC	20	-	-	ns					
DAC CLK frequency	$f_{\rm clk}~{\rm SR}$	-	-	30	MHz					
Supply current	I _{DDhs} CC	-	-	940	μA					
Low Speed Mode										
DAC output voltage range	V _{DOUT} CC	$0.1 imes V_{ m DDP}^{2)}$	-	V_{DDP}	V					
DAC propagation delay - Full Scale	t _{FSIs} CC	-	-	160	ns	See Figure 20				
Input Selector propagation delay - Full Scale	t _{DIs} CC	-	-	200	ns	See Figure 20				
Comparator bandwidth	t _{Dls} CC	20	-	-	ns					
DAC CLK frequency	$f_{\rm clk}$ SR	-	-	30	MHz					
Supply current	I _{DDIs} CC	-	-	300	μA					

1) Typical input resistance $R_{CIN} = 100$ kOhm.

2) The INL error increases for DAC output voltages below this limit.

3.2.9 Oscillator Pins

- Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.
- Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal (see Figure 21) or in direct input mode (see Figure 22).

Figure 21 Oscillator in Crystal Mode

3.2.10 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

If not stated otherwise, the operating conditions for the parameters in the following table are:

 V_{DDP} = 3.3 V, T_{A} = 25 °C

Parameter	Symbol			Values	;	Unit	Note /	
			Min.	Тур.	Max.		Test Condition	
Active supply current ¹⁾	$I_{\rm DDPA}$	СС	-	80	-	mA	80 / 80 / 80	
Peripherals enabled Frequency: $f_{CPU}/f_{PERIPH}/f_{CCU}$ in MHz			-	75	-		80 / 40 / 40	
			-	73	-		40 / 40 / 80	
			-	59	-		24 / 24 / 24	
			-	50	-		1/1/1	
Active supply current	$I_{\rm DDPA}$	CC	-	24	-	mA	80 / 80 / 80	
Code execution from RAM Flash in Sleep mode Frequency:			_	19	_		80 / 40 / 40	
$f_{\text{CPU}}/f_{\text{PERIPH}}/f_{\text{CCU}}$ in MHz								
Active supply current ²⁾	$I_{\rm DDPA}$	СС	-	63	-	mA	80 / 80 / 80	
Peripherals disabled			-	62	-		80 / 40 / 40	
f_{CPU}/f_{PEPIPH} in MHz			-	60	-		40 / 40 / 80	
JCFU JFERIFH			-	54	-		24 / 24 / 24	
			-	50	-		1/1/1	

Table 38	Power	Supply	Parameters
----------	-------	--------	------------

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 42 Power Sequencing Parameters

Parameter	Symbol		Values	S	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Positive Load Step Current	$\Delta I_{PLS}SR$	-	-	50	mA	Load increase on V_{DDP} $\Delta t \le 10 \text{ ns}$	
Negative Load Step Current	$\Delta I_{\sf NLS}\sf SR$	-	-	150	mA	Load decrease on V_{DDP} $\Delta t \le 10 \text{ ns}$	
V _{DDC} Voltage Over- / Undershoot from Load Step	$\Delta V_{\rm LS}$ CC	-	_	±100	mV	For maximum positive or negative load step	
Positive Load Step Settling Time	t _{PLSS} SR	50	-	-	μs		
Negative Load Step Settling Time	t _{NLSS} SR	100	-	-	μs		
External Buffer Capacitor on $V_{\rm DDC}$	C _{EXT} SR	3	4.7	6	μF	In addition C = 100 nF capacitor on each V_{DDC} pin	

Positive Load Step Examples

System assumptions:

 $f_{CPU} = f_{SYS}$, target frequency $f_{CPU} = 80$ MHz, main PLL $f_{VCO} = 480$ MHz, stepping done by K2 divider, t_{PLSS} between individual steps:

24 MHz - 48 MHz - 80 MHz (K2 steps 20 - 10 - 6) 24 MHz - 60 MHz - 80 MHz (K2 steps 20 - 8 - 6)

3.3.4 Phase Locked Loop (PLL) Characteristics

Main and USB PLL

Table 43PLL Parameters

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Accumulated Jitter	D _P CC	-	-	±5	ns	accumulated over 300 cycles f_{SYS} = 80 MHz
Duty Cycle ¹⁾	D _{DC} CC	46	50	54	%	Low pulse to total period, assuming an ideal input clock source
PLL base frequency	$f_{PLLBASE}$	30	-	140	MHz	
VCO input frequency	$f_{\sf REF}\sf CC$	4	-	16	MHz	
VCO frequency range	$f_{\rm VCO}{\rm CC}$	260	-	520	MHz	
PLL lock-in time	t _L CC	-	-	400	μS	

1) 50% for even K2 divider values, 50±(10/K2) for odd K2 divider values.

3.3.6 JTAG Interface Timing

The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Parameter		nbol	Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
TCK clock period	t ₁	SR	30	-	-	ns	For C _L = 20 pF on TDO
TCK clock period	t ₁	SR	40	-	-	ns	For $C_L = 50 \text{ pF}$ on TDO
TCK high time	<i>t</i> ₂	SR	10	-	-	ns	
TCK low time	t_3	SR	10	-	-	ns	
TCK clock rise time	<i>t</i> ₄	SR	-	-	4	ns	
TCK clock fall time	t_5	SR	_	-	4	ns	
TDI/TMS setup to TCK rising edge	<i>t</i> ₆	SR	6	-	-	ns	
TDI/TMS hold after TCK rising edge	t ₇	SR	6	-	-	ns	
TDO valid after TCK falling	<i>t</i> ₈	CC	-	—	17	ns	C _L = 50 pF
edge ¹⁾ (propagation delay)			3	-	-	ns	C _L = 20 pF
TDO hold after TCK falling edge ¹⁾	t ₁₈	CC	2	-	-	ns	
TDO high imped. to valid from TCK falling edge ¹⁾²⁾	t ₉	CC	-	-	14	ns	C _L = 50 pF
TDO valid to high imped. from TCK falling edge ¹⁾	t ₁₀	CC	-	-	13.5	ns	C _L = 50 pF

Table 46 JTAG Interface Timing Parameters

1) The falling edge on TCK is used to generate the TDO timing.

2) The setup time for TDO is given implicitly by the TCK cycle time.

3.3.7 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Operating conditions apply.

Table 47	SWD Interface	Timing Parameters (Operating	g Conditions apply)
----------	---------------	---------------------	-----------	---------------------

Parameter	Symbol		Values			Unit	Note /
			Min.	Тур.	Max.		Test Condition
SWDCLK clock period	t _{SC}	SR	25	-	-	ns	$C_L = 30 \text{ pF}$
			40	-	-	ns	$C_L = 50 \text{ pF}$
SWDCLK high time	<i>t</i> ₁	SR	10	-	500000	ns	
SWDCLK low time	<i>t</i> ₂	SR	10	-	500000	ns	
SWDIO input setup to SWDCLK rising edge	<i>t</i> ₃	SR	6	-	-	ns	
SWDIO input hold after SWDCLK rising edge	<i>t</i> ₄	SR	6	-	-	ns	
SWDIO output valid time	t_5	СС	-	-	17	ns	$C_L = 50 \text{ pF}$
after SWDCLK rising edge			-	-	13	ns	$C_L = 30 \text{ pF}$
SWDIO output hold time from SWDCLK rising edge	<i>t</i> ₆	СС	3	-	-	ns	

3.3.8.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode. *Note: Operating Conditions apply.*

Table 50	USIC IIC	Standard	Mode	Timing ¹⁾
----------	----------	----------	------	----------------------

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Fall time of both SDA and SCL	t ₁ CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t ₂ CC/SR	-	-	1000	ns	
Data hold time	t ₃ CC/SR	0	-	-	μs	
Data set-up time	t ₄ CC/SR	250	-	-	ns	
LOW period of SCL clock	t ₅ CC/SR	4.7	-	-	μs	
HIGH period of SCL clock	t ₆ CC/SR	4.0	-	-	μs	
Hold time for (repeated) START condition	t ₇ CC/SR	4.0	-	-	μs	
Set-up time for repeated START condition	t ₈ CC/SR	4.7	-	-	μs	
Set-up time for STOP condition	t ₉ CC/SR	4.0	-	-	μs	
Bus free time between a STOP and START condition	t ₁₀ CC/SR	4.7	-	-	μs	
Capacitive load for each bus line	$C_{\rm b}{\rm SR}$	-	-	400	pF	

 Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

Figure 32 USIC IIC Stand and Fast Mode Timing

3.3.8.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode. *Note: Operating Conditions apply.*

Table 52	USIC IIS Master	Transmitter	Timing
----------	-----------------	-------------	--------

Parameter	Symbol		Values	5	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Clock period	t ₁ CC	33.3	-	-	ns	
Clock high time	t ₂ CC	0.35 x	_	_	ns	
		t _{1min}				
Clock low time	t ₃ CC	0.35 x	-	-	ns	
		t _{1min}				
Hold time	t ₄ CC	0	-	-	ns	
Clock rise time	t ₅ CC	_	_	0.15 x	ns	
				t _{1min}		

Package and Reliability

4 Package and Reliability

The XMC4[12]00 is a member of the XMC4000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Die Pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 55 provides the thermal characteristics of the packages used in XMC4[12]00. The availability of different packages for different markings is listed in **Table 2**.

Parameter	Symbol	Lim	it Values	Unit	Package Types	
		Min.	Max.			
Exposed Die Pad Dimensions	Ex × Ey	-	$\textbf{5.8} \times \textbf{5.8}$	mm	PG-LQFP-64-19	
	CC	-	5.7 imes 5.7	mm	PG-TQFP-64-19	
		-	5.2 imes 5.2	mm	PG-VQFN-48-53	
		-	5.2 imes 5.2	mm	PG-VQFN-48-71	
Thermal resistance	$R_{ m \Theta JA}$	-	30	K/W	PG-LQFP-64-19 ¹⁾	
Junction-Ambient	CC	-	23.4	K/W	PG-TQFP-64-19 ¹⁾	
		-	34.8	K/W	PG-VQFN-48-53 ¹⁾ PG-VQFN-48-71 ¹⁾	

 Table 55
 Thermal Characteristics of the Packages

1) Device mounted on a 4-layer JEDEC board (JESD 51-7) with thermal vias; exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground V_{SS} , independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC4[12]00 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\Theta JA}$ " quantifies these parameters. The

Quality Declarations

5 Quality Declarations

The qualification of the XMC4[12]00 is executed according to the JEDEC standard JESD47H.

Note: For automotive applications refer to the Infineon automotive microcontrollers.

Parameter	Symbol		Values	6	Unit	Note /
		Min.	Тур.	Max.	İ	Test Condition
Operation lifetime	t _{OP} CC	20	-	_	а	$T_{\rm J} \le 109^{\circ}{\rm C},$ device permanent on
ESD susceptibility according to Human Body Model (HBM)	$V_{\rm HBM}$ SR	_	-	2 000	V	EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM)	V _{CDM} SR	_	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	_	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{\rm SDR}$ SR	_	-	260	°C	Profile according to JEDEC J-STD-020D

Table 58Quality Parameters