NXP USA Inc. - KMPC8358ZQAGDDA Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Communications; QUICC Engine
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (1)
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	668-BBGA Exposed Pad
Supplier Device Package	668-PBGA-PGE (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8358zqagdda

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Advanced encryption standard unit (AESU)
- Implements the Rinjdael symmetric key cipher
- Key lengths of 128, 192, and 256 bits, two key
 - ECB, CBC, CCM, and counter modes
- ARC four execution unit (AFEU)
 - Implements a stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- Message digest execution unit (MDEU)
 - SHA with 160-, 224-, or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either SHA or MD5 algorithm
- Random number generator (RNG)
- Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units via an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Storage/NAS XOR parity generation accelerator for RAID applications
- DDR SDRAM memory controller on the MPC8358E
 - Programmable timing supporting both DDR1 and DDR2 SDRAM
 - On the MPC8358E, the DDR bus can be configured as a 32- or 64-bit bus
 - 32- or 64-bit data interface, up to 266 MHz (for the MPC8358E) data rate
 - Four banks of memory, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbits to 1 Gigabit with $\times 8/\times 16$ data ports
 - Full ECC support
 - Page mode support (up to 16 simultaneous open pages for DDR1, up to 32 simultaneous open pages for DDR2)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep mode support for self refresh SDRAM
 - Supports auto refreshing
 - Supports source clock mode
 - On-the-fly power management using CKE
 - Registered DIMM support
 - 2.5-V SSTL2 compatible I/O for DDR1, 1.8-V SSTL2 compatible I/O for DDR2
 - External driver impedance calibration
 - On-die termination (ODT)
- PCI interface
 - PCI Specification Revision 2.3 compatible

- Multiple master support
- Master or slave I^2C mode support
- On-chip digital filtering rejects spikes on the bus
- System initialization data is optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible by local core and remote PCI masters
 - Misaligned transfer capability
 - Data chaining and direct mode
 - Interrupt on completed segment and chain
 - DMA external handshake signals: DMA_DREQ[0:3]/DMA_DACK[0:3]/DMA_DONE[0:3]. There is one set for each DMA channel. The pins are multiplexed to the parallel IO pins with other QE functions.
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- IEEE Std. 1149.1TM-compliant, JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8358E. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the device.

Figure 2. Overshoot/Undershoot Voltage for $GV_{DD}/OV_{DD}/LV_{DD}$

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the device for the 3.3-V signals, respectively.

Figure 3. Maximum AC Waveforms on PCI interface for 3.3-V Signaling

Table 19. DDR and DDR2 SDRAM Input AC Timing Specifications Mode

At recommended operating conditions with GV_{DD} of (1.8 or 2.5 V) ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
MDQS—MDQ/MECC input skew per byte 266 MHz 200 MHz	^t DISKEW	-1125 -1250	1125 1250	ps	1, 2

Notes:

1. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.

2. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + $\{0...7\}$] if $0 \le n \le 7$) or ECC (MECC[$\{0...7\}$] if n = 8).

Figure 5 shows the input timing diagram for the DDR controller.

Figure 5. DDR Input Timing Diagram

6.2.2 DDR and DDR2 SDRAM Output AC Timing Specifications

Table 20 and Table 21 provide the output AC timing specifications and measurement conditions for the DDR and DDR2 SDRAM interface.

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode

At recommended operating conditions with GV_{DD} of (1.8 V or 2.5 V) \pm 5%.

Parameter ⁸	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	6	10	ns	2
Skew between any MCK to ADDR/CMD 266 MHz 200 MHz	t _{AOSKEW}	-1.1 -1.2	0.3 0.4	ns	3

Table 20. DDR and DDR2 SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)

At recommended operating conditions with GV_{DD} of (1.8 V or 2.5 V) \pm 5%.

Parameter ⁸	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKHME}	-0.6	0.9	ns	7

Notes:

- The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. In the source synchronous mode, MCK/MCK can be shifted in ¼ applied cycle increments through the clock control register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- 4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by 1/2 applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the MPC8360E PowerQUICC II Pro Integrated Communications Processor Family Reference Manual for a description and understanding of the timing modifications enabled by use of these bits.
- 6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the device.
- 7. All outputs are referenced to the rising edge of MCK(n) at the pins of the device. Note that t_{DDKHMP} follows the symbol conventions described in note 1.
- 8. AC timing values are based on the DDR data rate, which is twice the DDR memory bus frequency.

Figure 6 shows the DDR SDRAM output timing for address skew with respect to any MCK.

Figure 6. Timing Diagram for t_{AOSKEW} Measurement

UCC Ethernet Controller: Three-Speed Ethernet, MII Management

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)— GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII (media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for the MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics

The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC).

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated at 2.5 V. The RGMII and RTBI interfaces follow the *Reduced Gigabit Media-Independent Interface* (*RGMII*) Specification Version 1.3. The RMII interface follows the *RMII Consortium RMII Specification Version 1.2*.

Parameter	Symbol	Conditions		Min	Мах	Unit	Notes
Supply voltage 3.3 V	LV _{DD}	—		2.97	3.63	V	1
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V	_
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	$LV_{DD} = Min$	GND	0.50	V	_
Input high voltage	V _{IH}	—	—	2.0	LV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	—	—	-0.3	0.90	V	_
Input current	I _{IN}	$0 V \le V_{IN} \le LV_{DD}$		—	±10	μA	_

Table 24. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Note:

1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OV_{DD} supply.

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	_	LV _{DD} = Min	-0.3	0.70	V
Input current	I _{IN}	$0 V \le V_{IN} \le LV_{DD}$		—	±10	μA

Table 25. RGMII/RTBI DC Electrical Characteristics (when operating at 2.5 V)

8.2 GMII, MII, RMII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This sections describe the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 26 provides the GMII transmit AC timing specifications.

Table 26. GMII Transmit AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
GTX_CLK clock period	t _{GTX}	—	8.0	—	ns	—
GTX_CLK duty cycle	t _{GTXH/tGTX}	40	—	60	%	_
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX ^t GTKHDV	0.5	—	 5.0	ns	—
GTX_CLK clock rise time, (20% to 80%)	t _{GTXR}	—	—	1.0	ns	—
GTX_CLK clock fall time, (80% to 20%)	t _{GTXF}	—	—	1.0	ns	—
GTX_CLK125 clock period	t _{G125}	—	8.0	—	ns	2
GTX_CLK125 reference clock duty cycle measured at LV _{DD/2}	t _{G125H} /t _{G125}	45	—	55	%	2

Notes:

1. The symbols used for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol is used to represent the external GTX_CLK125 signal and does not follow the original symbol naming convention.

UCC Ethernet Controller: Three-Speed Ethernet, MII Management

Figure 9 shows the GMII transmit AC timing diagram.

Figure 9. GMII Transmit AC Timing Diagram

8.2.1.2 GMII Receive AC Timing Specifications

Table 27 provides the GMII receive AC timing specifications.

Table 27. GMII Receive AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit	Notes
RX_CLK clock period	t _{GRX}	_	8.0	—	ns	—
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	%	—
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	—	ns	—
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.3	—	—	ns	—
RX_CLK clock rise time, (20% to 80%)	t _{GRXR}	_	—	1.0	ns	—
RX_CLK clock fall time, (80% to 20%)	t _{GRXF}	_	—	1.0	ns	—

Notes:

1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

UCC Ethernet Controller: Three-Speed Ethernet, MII Management

Figure 14 shows the RMII transmit AC timing diagram.

Figure 14. RMII Transmit AC Timing Diagram

8.2.3.2 RMII Receive AC Timing Specifications

Table 31 provides the RMII receive AC timing specifications.

Table 31. RMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
REF_CLK clock period	t _{RMX}	—	20	—	ns
REF_CLK duty cycle	t _{RMXH} /t _{RMX}	35	_	65	%
RXD[1:0], CRS_DV, RX_ER setup time to REF_CLK	t _{RMRDVKH}	4.0	_	—	ns
RXD[1:0], CRS_DV, RX_ER hold time to REF_CLK	t _{RMRDXKH}	2.0	_	—	ns
REF_CLK clock rise time	t _{RMXR}	1.0	_	4.0	ns
REF_CLK clock fall time	t _{RMXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications follow the pattern of t_{(first three letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{RMRDVKH} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{RMX} clock reference (K) going to the high (H) state or setup time. Also, t_{RMRDXKL} symbolizes RMII receive timing (RMR) with respect to the time data input signals (D) went invalid (X) relative to the t_{RMX} clock reference (K) going to the low (L) state or hold time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For example, the subscript of t_{RMX} represents the RMII (RM) reference (X) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 15 provides the AC test load.

Figure 15. AC Test Load

Figure 18 shows the TBI receive AC timing diagram.

Figure 18. TBI Receive AC Timing Diagram

8.2.5 RGMII and RTBI AC Timing Specifications

Table 34 presents the RGMII and RTBI AC timing specifications.

Table 34. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
Data to clock output skew (at transmitter)	t _{SKRGTKHDX} t _{SKRGTKHDV}	-0.5 	—	 0.5	ns	
Data to clock input skew (at receiver)	t _{SKRGDXKH} t _{SKRGDVKH}	1.1 —	—	 2.6	ns	2
Clock cycle duration	t _{RGT}	7.2	8.0	8.8	ns	3
Duty cycle for 1000Base-T	t _{RGTH} /t _{RGT}	45	50	55	%	4, 5
Duty cycle for 10BASE-T and 100BASE-TX	t _{RGTH} /t _{RGT}	40	50	60	%	3, 5
Rise time (20-80%)	t _{RGTR}	—	—	0.75	ns	_
Fall time (20–80%)	t _{RGTF}	—	—	0.75	ns	
GTX_CLK125 reference clock period	t _{G125}	_	8.0	_	ns	6

UCC Ethernet Controller: Three-Speed Ethernet, MII Management

Table 36. MII Management AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD} is 3.3 V \pm 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC fall time	t _{MDHF}	—	_	10	ns	_

Notes:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDRDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

- This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the ce_clk speed (that is, for a ce_clk of 200 MHz, the delay is 90 ns and for a ce_clk of 300 MHz, the delay is 63 ns).

Figure 20 shows the MII management AC timing diagram.

Figure 20. MII Management Interface Timing Diagram

8.3.3 IEEE 1588 Timer AC Specifications

Table 37 provides the IEEE 1588 timer AC specifications.

Table 37. IEE	E 1588 Tim	er AC Specific	ations
---------------	------------	----------------	--------

Parameter	Symbol	Min	Max	Unit	Notes
Timer clock frequency	t _{TMRCK}	0	70	MHz	1
Input setup to timer clock	t _{TMRCKS}	—	_	—	2, 3
Input hold from timer clock	t _{TMRCKH}	—	_	—	2, 3
Output clock to output valid	^t GCLKNV	0	6	ns	—

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	t _{PCKHOV}		11	ns	2
Output hold from clock	t _{PCKHOX}	2	_	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	7.0	—	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.3		ns	2, 4

Table 47. PCI AC Timing Specifications at 33 MHz

Notes:

The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.

3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.

4. Input timings are measured at the pin.

Figure 35 provides the AC test load for PCI.

Figure 35. PCI AC Test Load

Figure 36 shows the PCI input AC timing conditions.

Figure 36. PCI Input AC Timing Measurement Conditions

Figure 39 provides the AC test load for the GPIO.

15 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins of the MPC8358E.

15.1 IPIC DC Electrical Characteristics

Table 52 provides the DC electrical characteristics for the external interrupt pins of the IPIC.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	-0.3	0.8	V
Input current	I _{IN}	—	—	±10	μA
Output low voltage	V _{OL}	I _{OL} = 6.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 52. IPIC DC Electrical Characteristics

Notes:

1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.

2. IRQ_OUT and MCP_OUT are open drain pins, thus V_{OH} is not relevant for those pins.

15.2 IPIC AC Timing Specifications

Table 53 provides the IPIC input and output AC timing specifications.

Table 53. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin.

IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any
external synchronous logic. IPIC inputs are required to be valid for at least t_{PIWID} ns to ensure proper operation when working
in edge triggered mode.

16 SPI

This section describes the DC and AC electrical specifications for the SPI of the MPC8358E.

Figure 41 and Figure 42 represent the AC timing from Table 55. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 41 shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 41. SPI AC Timing in Slave Mode (External Clock) Diagram

Figure 42 shows the SPI timing in Master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 42. SPI AC Timing in Master Mode (Internal Clock) Diagram

17 TDM/SI

This section describes the DC and AC electrical specifications for the time-division-multiplexed and serial interface of the MPC8358E.

17.1 TDM/SI DC Electrical Characteristics

Table 56 provides the DC electrical characteristics for the device TDM/SI.

Characteristic	Symbol	Condition	Min	Мах	Unit
Output high voltage	V _{OH}	I _{OH} = -2.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.5	V
Input high voltage	V _{IH}	—	2.0	OV _{DD} + 0.3	V

Table 56. TDM/SI DC Electrical Characteristics

21 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8358E is available in a plastic ball grid array (PBGA), see Section 21.1, "Package Parameters for the PBGA Package," and Section 21.2, "Mechanical Dimensions of the PBGA Package," for information on the package.

21.1 Package Parameters for the PBGA Package

The package parameters for rev 2.0 silicon are as provided in the following list. The package type is **2**9 mm x 29 mm, 668 plastic ball grid array (PBGA).

Package outline	29 mm x 29 mm
Interconnects	668
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder Balls	62 Sn/36 Pb/2 Ag (ZQ package)
	95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.64 mm

22 Clocking

Figure 53 shows the internal distribution of clocks within the MPC8358E.

Figure 53. MPC8358E Clock Subsystem

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Note that in PCI host mode, the primary clock input also depends on whether PCI clock outputs are selected with RCWH[PCICKDRV]. When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is selected (RCWH[PCICKDRV] = 1), CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration

Clocking

			In	put Clock Fr	equency (MHz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
				<i>csb_clk</i> Free	quency (MHz)	
High	0110	6:1			200	
High	0111	7:1			233	
High	1000	8:1				
High	1001	9:1				
High	1010	10:1				
High	1011	11:1				
High	1100	12:1				
High	1101	13:1				
High	1110	14:1				
High	1111	15:1				
High	0000	16:1				

Table 70. CSB Frequency Options (continued)

¹ CFG_CLKIN_DIV is only used for host mode; CLKIN must be tied low and CFG_CLKIN_DIV must be pulled down (low) in agent mode.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

22.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 71 shows the encodings for RCWL[COREPLL]. COREPLL values not listed in Table 71 should be considered reserved.

RC	WL[COREPLL]		core_clk:csb_clk	
0–1	2–5	6	Ratio	
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)
00	0001	0	1:1	÷2
01	0001	0	1:1	÷4
10	0001	0	1:1	÷8
11	0001	0	1:1	÷8
00	0001	1	1.5:1	÷2
01	0001	1	1.5:1	÷4
10	0001	1	1.5:1	÷8

Table 71. e300 Core PLL Configuration

Tuble 70 billows near billing and function to antoient inclinia resistance for r DOM package	Table 76	shows heat	t sinks and	unction-to-ambient therma	al resistance	for PBGA	package.
--	----------	------------	-------------	---------------------------	---------------	----------	----------

Heat Sink Accuming Thermal Crosse	Air Elow	29 $ imes$ 29 mm PBGA	
neal Sink Assuming merinal Grease		Thermal Resistance	
AAVID 30 $ imes$ 30 $ imes$ 9.4 mm Pin Fin	Natural Convection	12.6	
AAVID 30 $ imes$ 30 $ imes$ 9.4 mm Pin Fin	1 m/s	8.2	
AAVID 30 $ imes$ 30 $ imes$ 9.4 mm Pin Fin	2 m/s	7.0	
AAVID 31 $ imes$ 35 $ imes$ 23 mm Pin Fin	Natural Convection	10.5	
AAVID 31 $ imes$ 35 $ imes$ 23 mm Pin Fin	1 m/s	6.6	
AAVID 31 $ imes$ 35 $ imes$ 23 mm Pin Fin	2 m/s	6.1	
Wakefield, $53 \times 53 \times 25$ mm Pin Fin	Natural Convection	9.0	
Wakefield, $53 \times 53 \times 25$ mm Pin Fin	1 m/s	5.6	
Wakefield, $53 \times 53 \times 25$ mm Pin Fin	2 m/s	5.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural Convection	9.0	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	1 m/s	5.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	5.1	

Table 76. Heat Sinks and Junction-to-Ambient Thermal Resistance of PBGA Package

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following:

Aavid Thermalloy	603-224-9988
80 Commercial St.	
Concord, NH 03301	
Internet: www.aavidthermalloy.com	
Alpha Novatech	408-749-7601
473 Sapena Ct. #15	
Santa Clara, CA 95054	
Internet: www.alphanovatech.com	
International Electronic Research Corporation (IERC)	818-842-7277
413 North Moss St.	
Burbank, CA 91502	
Internet: www.ctscorp.com	


```
Ordering Information
```

includes an application modifier, which may specify special application conditions. Each part number also contains a revision code that refers to the die mask revision number.

MPC	nnnn	е	t	рр	aa	а	а	Α
Product Code	Part Identifier	Encryption Acceleration	Temperature Range	Package ²	Processor Frequency ³	Platform Frequency	QUICC Engine Frequency	Die Revision
MPC	8358	Blank = Not included E = included	Blank = 0 °C T _A to 105 °C T _J C= -40°C T _A to 105°C T _J	ZQ = PBGA VR = PBGA (no lead)	e300 core speed AD = 266 MHz AG = 400 MHz	D = 266 MHz	D = 266 MHz G = 400 MHz	A = revision 2.1 silicon

¹ Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency combinations, contact your local Freescale sales office or authorized distributor.

² See Section 21, "Package and Pin Listings," for more information on available package types.

³ Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core frequencies.

Table 79 shows the SVR settings by device and package type.

Device	Package	SVR (Rev. 2.1)		
MPC8358E	PBGA	0x804E_0021		
MPC8358	PBGA	0x804F_0021		

Table 79. SVR Settings

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. © 2011 Freescale Semiconductor, Inc.

Document Number: MPC8358EEC Rev. 3 01/2011

