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Overview

1 Overview
This section describes a high-level overview including features and general operation of the MPC8358E 
PowerQUICC II Pro processor. A major component of this device is the e300 core, which includes 
32 Kbytes of instruction and data cache and is fully compatible with the Power Architecture™ 603e 
instruction set. The new QUICC Engine module provides termination, interworking, and switching 
between a wide range of protocols including ATM, Ethernet, HDLC, and POS. The QUICC Engine 
module’s enhanced interworking eases the transition and reduces investment costs from ATM to IP based 
systems. The MPC8358E has a single DDR SDRAM memory controller. The MPC8358E also offers a 
32-bit PCI controller, a flexible local bus, and a dedicated security engine.

Figure 1 shows the MPC8358E block diagram.

Figure 1. MPC8358E Block Diagram

Major features of the MPC8358E are as follows:

• e300 PowerPC processor core (enhanced version of the MPC603e core)

— Operates at up to 400 MHz (for the MPC8358E)

— High-performance, superscalar processor core

— Floating-point, integer, load/store, system register, and branch processing units
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Clock Input Timing

4.1 DC Electrical Characteristics
Table 6 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the device.

4.2 AC Electrical Characteristics
The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on 
whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input 
(CLKIN/PCI_CLK) AC timing specifications for the device.

Table 6.  CLKIN DC Electrical Characteristics

Parameter Condition Symbol Min Max Unit

Input high voltage — VIH 2.7 OVDD + 0.3 V

Input low voltage — VIL –0.3 0.4 V

CLKIN input current 0 V ≤ VIN ≤ OVDD IIN — ±10 μA

PCI_SYNC_IN input current 0 V ≤ VIN ≤ 0.5V or
OVDD – 0.5V ≤ VIN ≤ OVDD

IIN — ±10 μA

PCI_SYNC_IN input current 0.5 V ≤ VIN ≤ OVDD – 0.5 V IIN — ±100 μA

Table 7. CLKIN AC Timing Specifications

Parameter/Condition Symbol Min Typical Max Unit Notes

CLKIN/PCI_CLK frequency fCLKIN — — 66.67 MHz 1

CLKIN/PCI_CLK cycle time tCLKIN 15 — — ns —

CLKIN/PCI_CLK rise and fall time tKH, tKL 0.6 1.0 2.3 ns 2

CLKIN/PCI_CLK duty cycle tKHK/tCLKIN 40 — 60 % 3

CLKIN/PCI_CLK jitter — — — ±150 ps 4, 5

Notes:
1. Caution: The system, core, USB, security, and 10/100/1000 Ethernet must not exceed their respective maximum or minimum 

operating frequencies. 
2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.
3. Timing is guaranteed by design and characterization.
4. This represents the total input jitter—short term and long term—and is guaranteed by design.
5. The CLKIN/PCI_CLK driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set low to 

allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.
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RESET Initialization

4.3 Gigabit Reference Clock Input Timing
Table 8 provides the Gigabit reference clocks (GTX_CLK125) AC timing specifications.

5 RESET Initialization
This section describes the DC and AC electrical specifications for the reset initialization timing and 
electrical requirements of the MPC8358E.

5.1 RESET DC Electrical Characteristics
Table 9 provides the DC electrical characteristics for the RESET pins of the device.

Table 8. GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LVDD = 2.5 ± 0.125 mV/ 3.3 V ± 165 mV

Parameter/Condition Symbol Min Typical Max Unit Notes

GTX_CLK125 frequency tG125 — 125 — MHz —

GTX_CLK125 cycle time tG125 — 8 — ns —

GTX_CLK rise and fall time 
LVDD = 2.5 V
LVDD = 3.3 V

tG125R/tG125F — —
0.75
1.0

ns 1

GTX_CLK125 duty cycle
GMII & TBI

1000Base-T for RGMII & RTBI

tG125H/tG125
45
47

—
55
53

% 2

GTX_CLK125 jitter — — — ±150 ps 2

Notes:
1. Rise and fall times for GTX_CLK125 are measured from 0.5 and 2.0 V for LVDD = 2.5 V and from 0.6 and 2.7 V for 

LVDD = 3.3 V.

2. GTX_CLK125 is used to generate the GTX clock for the UCC Ethernet transmitter with 2% degradation. The GTX_CLK125 
duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by GTX_CLK. 
See Section 8.2.2, “MII AC Timing Specifications,” Section 8.2.3, “RMII AC Timing Specifications,” and Section 8.2.5, “RGMII 
and RTBI AC Timing Specifications” for the duty cycle for 10Base-T and 100Base-T reference clock.

Table 9. RESET Pins DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Input high voltage VIH — 2.0 OVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN — — ±10 μA

Output high voltage VOH IOH = –8.0 mA 2.4 — V

Output low voltage VOL  IOL = 8.0 mA — 0.5 V
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UCC Ethernet Controller: Three-Speed Ethernet, MII Management

8.1 Three-Speed Ethernet Controller (10/100/1000 Mbps)—
GMII/MII/RMII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to all GMII (gigabit media independent interface), MII 
(media independent interface), RMII (reduced media independent interface), TBI (ten-bit interface), 
RGMII (reduced gigabit media independent interface), and RTBI (reduced ten-bit interface) signals except 
MDIO (management data input/output) and MDC (management data clock). The MII, RMII, GMII, and 
TBI interfaces are only defined for 3.3 V, while the RGMII and RTBI interfaces are only defined for 2.5 V. 
The RGMII and RTBI interfaces follow the Hewlett-Packard reduced pin-count interface for Gigabit 
Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical characteristics for 
the MDIO and MDC are specified in Section 8.3, “Ethernet Management Interface Electrical 
Characteristics.”

8.1.1 10/100/1000 Ethernet DC Electrical Characteristics
The electrical characteristics specified here apply to media independent interface (MII), reduced gigabit 
media independent interface (RGMII), reduced ten-bit interface (RTBI), reduced media independent 
interface (RMII) signals, management data input/output (MDIO) and management data clock (MDC). 

The MII and RMII interfaces are defined for 3.3 V, while the RGMII and RTBI interfaces can be operated 
at 2.5 V. The RGMII and RTBI interfaces follow the Reduced Gigabit Media-Independent Interface 
(RGMII) Specification Version 1.3. The RMII interface follows the RMII Consortium RMII Specification 
Version 1.2.

Table 24. RGMII/RTBI, GMII, TBI, MII, and RMII DC Electrical Characteristics (when operating at 3.3 V)

Parameter Symbol Conditions Min Max Unit Notes

Supply voltage 3.3 V LVDD — 2.97 3.63 V 1

Output high voltage VOH IOH = –4.0 mA LVDD = Min 2.40 LVDD + 0.3 V —

Output low voltage VOL IOL = 4.0 mA LVDD = Min GND 0.50 V —

Input high voltage VIH — — 2.0 LVDD + 0.3 V —

Input low voltage VIL — — –0.3 0.90 V —

Input current IIN 0 V ≤ VIN ≤ LVDD — ±10 μA —

Note:
1. GMII/MII pins that are not needed for RGMII, RMII, or RTBI operation are powered by the OVDD supply.
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UCC Ethernet Controller: Three-Speed Ethernet, MII Management

Figure 10 shows the GMII receive AC timing diagram.

Figure 10. GMII Receive AC Timing Diagram

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 28 provides the MII transmit AC timing specifications.

Table 28. MII Transmit AC Timing Specifications
At recommended operating conditions with LVDD/OVDD of 3.3 V ± 10%.

Parameter/Condition Symbol1 Min Typ Max Unit

TX_CLK clock period 10 Mbps tMTX — 400 — ns

TX_CLK clock period 100 Mbps tMTX — 40 — ns

TX_CLK duty cycle tMTXH/tMTX 35 — 65 %

TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay tMTKHDX
tMTKHDV

1
—

5 —
15

ns

TX_CLK data clock rise time, (20% to 80%) tMTXR 1.0 — 4.0 ns

TX_CLK data clock fall time, (80% to 20%) tMTXF 1.0 — 4.0 ns

Note:
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit 
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, 
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. 
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is 
used with the appropriate letter: R (rise) or F (fall).

RX_CLK

RXD[7:0]

tGRDXKH

tGRX

tGRXH

tGRXR

tGRXF

tGRDVKH

RX_DV
RX_ER
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UCC Ethernet Controller: Three-Speed Ethernet, MII Management

Figure 18 shows the TBI receive AC timing diagram.

Figure 18. TBI Receive AC Timing Diagram

8.2.5 RGMII and RTBI AC Timing Specifications

Table 34 presents the RGMII and RTBI AC timing specifications.

Table 34. RGMII and RTBI AC Timing Specifications
At recommended operating conditions with LVDD of 2.5 V ± 5%.

Parameter/Condition Symbol1 Min Typ Max Unit Notes

Data to clock output skew (at transmitter) tSKRGTKHDX
tSKRGTKHDV

–0.5
—

— —
0.5

ns

Data to clock input skew (at receiver) tSKRGDXKH
tSKRGDVKH

1.1
—

— —
2.6

ns 2

Clock cycle duration tRGT 7.2 8.0 8.8 ns 3

Duty cycle for 1000Base-T tRGTH/tRGT 45 50 55 % 4, 5

Duty cycle for 10BASE-T and 100BASE-TX tRGTH/tRGT 40 50 60 % 3, 5

Rise time (20–80%) tRGTR — — 0.75 ns —

Fall time (20–80%) tRGTF — — 0.75 ns —

GTX_CLK125 reference clock period tG125 — 8.0 — ns 6

PMA_RX_CLK1

RCG[9:0]

tTRX

tTRXH

tTRXR

tTRXF

tTRDVKH

PMA_RX_CLK0

tTRDXKH

tTRDVKH

tTRDXKH

tSKTRX

tTRXH

Even RCG Odd RCG
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Local Bus

9 Local Bus
This section describes the DC and AC electrical specifications for the local bus interface of the 
MPC8358E.

9.1 Local Bus DC Electrical Characteristics
Table 38 provides the DC electrical characteristics for the local bus interface.

9.2 Local Bus AC Electrical Specifications
Table 39 describes the general timing parameters of the local bus interface of the device.

Timer alarm to output valid tTMRAL — — — 2

Notes:
1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected. The 

minimum and maximum requirement for both rtc_clock and tmr_clock are the same.
2. These are asynchronous signals.
3. Inputs need to be stable at least one TMR clock.

Table 38. Local Bus DC Electrical Characteristics

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL –0.3 0.8 V

High-level output voltage, IOH = –100 μA VOH OVDD – 0.4 — V

Low-level output voltage, IOL = 100 μA VOL — 0.2 V

Input current IIN — ±10 μA

Table 39. Local Bus General Timing Parameters—DLL Enabled

Parameter Symbol1 Min Max Unit Notes

Local bus cycle time tLBK 7.5 — ns 2

Input setup to local bus clock (except LUPWAIT) tLBIVKH1 1.7 — ns 3, 4

LUPWAIT input setup to local bus clock tLBIVKH2 1.9 — ns 3, 4

Input hold from local bus clock (except LUPWAIT) tLBIXKH1 1.0 — ns 3, 4

LUPWAIT input hold from local bus clock tLBIXKH2 1.0 — ns 3, 4

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT1 1.5 — ns 5

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT2 3.0 — ns 6

LALE output fall to LAD output transition (LATCH hold time) tLBOTOT3 2.5 — ns 7

Table 37. IEEE 1588 Timer AC Specifications (continued)

Parameter Symbol Min Max Unit Notes
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JTAG

Figure 27. Local Bus Signals, GPCM/UPM Signals for LCRR[CLKDIV] = 4 (DLL Enabled)

10 JTAG
This section describes the DC and AC electrical specifications for the IEEE 1149.1 (JTAG) interface of 
the MPC8358E.

10.1 JTAG DC Electrical Characteristics
Table 41 provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface of the device.

Table 41. JTAG interface DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Output high voltage VOH IOH = –6.0 mA 2.4 — V

Output low voltage VOL  IOL = 6.0 mA — 0.5 V

Output low voltage VOL IOL = 3.2 mA — 0.4 V

Input high voltage VIH — 2.5 OVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V ≤ VIN ≤ OVDD — ±10 μA

LSYNC_IN

UPM Mode Input Signal:
LUPWAIT

tLBIXKH2
tLBIVKH2

tLBIVKH1

tLBIXKH1

tLBKHOZ1

T1

T3

Input Signals:
LAD[0:31]/LDP[0:3]

UPM Mode Output Signals:
LCS[0:3]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:3]/LWE

tLBKHOV1

tLBKHOV1

tLBKHOZ1

T2

T4
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JTAG

10.2 JTAG AC Electrical Characteristics
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface of the device.

Table 42 provides the JTAG AC timing specifications as defined in Figure 29 through Figure 32.

Table 42. JTAG AC Timing Specifications (Independent of CLKIN)1

At recommended operating conditions (see Table 2).

Parameter Symbol 2 Min Max Unit Notes

JTAG external clock frequency of operation fJTG 0 33.3 MHz —

JTAG external clock cycle time tJTG 30 — ns —

JTAG external clock duty cycle tJTKHKL/tJTG 45 55 % —

JTAG external clock rise and fall times tJTGR & tJTGF 0 2 ns —

TRST assert time tTRST 25 — ns 3

Input setup times:
Boundary-scan data

TMS, TDI
tJTDVKH
tJTIVKH

4
4

—
—

ns
4

Input hold times:
Boundary-scan data

TMS, TDI
tJTDXKH
tJTIXKH

10
10

—
—

ns
4

Valid times:
Boundary-scan data

TDO
tJTKLDV
tJTKLOV

2
2

11
11

ns
5

Output hold times:
Boundary-scan data

TDO
tJTKLDX
tJTKLOX

2
2

—
—

ns
5

JTAG external clock to output high impedance:
Boundary-scan data

TDO
tJTKLDZ
tJTKLOZ

2
2

19
9

ns
5, 6

6

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 21). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG 
device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock 
reference (K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time 
data input signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, 
the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise 
and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design and characterization.
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PCI

Figure 35 provides the AC test load for PCI.

Figure 35. PCI AC Test Load

Figure 36 shows the PCI input AC timing conditions.

Figure 36. PCI Input AC Timing Measurement Conditions

Table 47. PCI AC Timing Specifications at 33 MHz

Parameter Symbol1 Min Max Unit Notes

Clock to output valid tPCKHOV — 11 ns 2

Output hold from clock tPCKHOX 2 — ns 2

Clock to output high impedance tPCKHOZ — 14 ns 2, 3

Input setup to clock tPCIVKH 7.0 — ns 2, 4

Input hold from clock tPCIXKH 0.3 — ns 2, 4

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tPCIVKH symbolizes PCI timing 
(PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, tSYS, reference 
(K) going to the high (H) state or setup time. Also, tPCRHFV symbolizes PCI timing (PC) with respect to the time hard reset 
(R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
3. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered 

through the component pin is less than or equal to the leakage current specification.
4. Input timings are measured at the pin.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

tPCIVKH

CLK

Input

tPCIXKH
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IPIC

Figure 39 provides the AC test load for the GPIO.

Figure 39. GPIO AC Test Load

15 IPIC
This section describes the DC and AC electrical specifications for the external interrupt pins of the 
MPC8358E.

15.1 IPIC DC Electrical Characteristics
Table 52 provides the DC electrical characteristics for the external interrupt pins of the IPIC.

15.2 IPIC AC Timing Specifications
Table 53 provides the IPIC input and output AC timing specifications.

16 SPI
This section describes the DC and AC electrical specifications for the SPI of the MPC8358E.

Table 52. IPIC DC Electrical Characteristics

Characteristic Symbol Condition Min Max Unit

Input high voltage VIH — 2.0 OVDD + 0.3 V

Input low voltage VIL — –0.3 0.8 V

Input current IIN — — ±10 μA

Output low voltage VOL IOL = 6.0 mA — 0.5 V

Output low voltage VOL IOL = 3.2 mA — 0.4 V

Notes:
1. This table applies for pins IRQ[0:7], IRQ_OUT, MCP_OUT, and CE ports Interrupts.
2. IRQ_OUT and MCP_OUT are open drain pins, thus VOH is not relevant for those pins. 

Table 53. IPIC Input AC Timing Specifications1

Characteristic Symbol2 Min Unit

IPIC inputs—minimum pulse width tPIWID 20 ns

Notes:
1. Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are 

measured at the pin.
2. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by any 

external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns to ensure proper operation when working 
in edge triggered mode.

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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TDM/SI

17.2 TDM/SI AC Timing Specifications
Table 57 provides the TDM/SI input and output AC timing specifications.

Figure 43 provides the AC test load for the TDM/SI.

Figure 43. TDM/SI AC Test Load

Figure 44 represents the AC timing from Table 55. Note that although the specifications generally 
reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the 
active edge.

Input low voltage VIL — –0.3 0.8 V

Input current IIN 0 V ≤ VIN ≤ OVDD — ±10 μA

Table 57.  TDM/SI AC Timing Specifications1

Characteristic Symbol2 Min Max3 Unit

TDM/SI outputs—External clock delay tSEKHOV 2 10 ns

TDM/SI outputs—External clock high impedance tSEKHOX 2 10 ns

TDM/SI inputs—External clock input setup time tSEIVKH 5 — ns

TDM/SI inputs—External clock input hold time tSEIXKH 2 — ns

Notes:
1. Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings 

are measured at the pin.
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state) for 

inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSEKHOX symbolizes the TDM/SI 
outputs external timing (SE) for the time tTDM/SI memory clock reference (K) goes from the high state (H) until outputs (O) 
are invalid (X).

3. Timings are measured from the positive or negative edge of the clock, according to SIxMR [CE] and SITXCEI[TXCEIx]. See 
the MPC8360E Integrated Communications Processor Family Reference Manual for more details.

Table 56. TDM/SI DC Electrical Characteristics (continued)

Characteristic Symbol Condition Min Max Unit

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω
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HDLC, BISYNC, Transparent, and Synchronous UART

Figure 48 provides the AC test load.

Figure 48. AC Test Load

19.3 AC Test Load
Figure 49 and Figure 50 represent the AC timing from Table 61 and Table 62. Note that although the 
specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when 
the falling edge is the active edge.

Figure 49 shows the timing with external clock.

Figure 49. AC Timing (External Clock) Diagram

Figure 50 shows the timing with internal clock.

Figure 50. AC Timing (Internal Clock) Diagram

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

Serial CLK (Input)

tHEIXKH
tHEIVKH

tHEKHOV

Input Signals:
(See Note)

Output Signals:
(See Note)

tHEKHOXNote: The clock edge is selectable. 

Serial CLK (Output)

tHIIXKH

tHIKHOV

Input Signals:
(See Note)

tHIIVKH

tHIKHOX
Note: The clock edge is selectable. 

Output Signals:
(See Note)
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21 Package and Pin Listings
This section details package parameters, pin assignments, and dimensions. The MPC8358E is available in 
a plastic ball grid array (PBGA), see Section 21.1, “Package Parameters for the PBGA Package,” and 
Section 21.2, “Mechanical Dimensions of the PBGA Package,” for information on the package.

21.1 Package Parameters for the PBGA Package
The package parameters for rev 2.0 silicon are as provided in the following list. The package type is 29 
mm x 29 mm, 668 plastic ball grid array (PBGA).

Package outline 29 mm x 29 mm
Interconnects 668
Pitch 1.00 mm
Module height (typical) 1.46 mm

Solder Balls 62 Sn/36 Pb/2 Ag (ZQ package)

95.5 Sn/0.5 Cu/4Ag (VR package)

Ball diameter (typical) 0.64 mm
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input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The 
OCCR[PCIOENn] parameters enable the PCI_CLK_OUTn, respectively.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subystem to 
synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, 
with equal delay to all PCI agent devices in the system, to allow the device to function. When the device 
is configured as a PCI agent device, PCI_CLK is the primary input clock. When the device is configured 
as a PCI agent device the CLKIN and the CFG_CLKIN_DIV signals should be tied to GND.

When the device is configured as a PCI host device (RCWH[PCIHOST] = 1) and PCI clock output is 
disabled (RCWH[PCICKDRV] = 0), clock distribution and balancing done externally on the board. 
Therefore, PCI_SYNC_IN is the primary input clock.

As shown in Figure 53, the primary clock input (frequency) is multiplied by the QUICC Engine block 
phase-locked loop (PLL), the system PLL, and the clock unit to create the QUICC Engine clock (ce_clk), 
the coherent system bus clock (csb_clk), the internal DDRC1 controller clock (ddr1_clk), and the internal 
clock for the local bus interface unit and DDR2 memory controller (lb_clk). 

The csb_clk frequency is derived from a complex set of factors that can be simplified into the following 
equation:

csb_clk = {PCI_SYNC_IN × (1 + CFG_CLKIN_DIV)} × SPMF

In PCI host mode, PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is the CLKIN frequency; in PCI agent 
mode, CFG_CLKIN_DIV must be pulled down (low), so PCI_SYNC_IN × (1 + CFG_CLKIN_DIV) is 
the PCI_CLK frequency. 

The csb_clk serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies up 
the csb_clk frequency to create the internal clock for the e300 core (core_clk). The system and core PLL 
multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL) 
which is loaded at power-on reset or by one of the hard-coded reset options. See Chapter 4, “Reset, 
Clocking, and Initialization,” in the MPC8360E PowerQUICC II Pro Integrated Communications 
Processor Family Reference Manual for more information on the clock subsystem.

The ce_clk frequency is determined by the QUICC Engine PLL multiplication factor (RCWL[CEPMF) 
and the QUICC Engine PLL division factor (RCWL[CEPDF]) according to the following equation:

ce_clk = (primary clock input × CEPMF) ÷ (1 + CEPDF)

The internal ddr1_clk frequency is determined by the following equation:

ddr1_clk = csb_clk × (1 + RCWL[DDR1CM])

Note that the lb_clk clock frequency (for DDRC2) is determined by RCWL[LBCM]. The internal 
ddr1_clk frequency is not the external memory bus frequency; ddr1_clk passes through the DDRC1 clock 
divider (÷2) to create the differential DDRC1 memory bus clock outputs (MEMC1_MCK and 
MEMC1_MCK). However, the data rate is the same frequency as ddr1_clk.

The internal lb_clk frequency is determined by the following equation:

lb_clk = csb_clk × (1 + RCWL[LBCM])
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23.2.3 Experimental Determination of Junction Temperature
To determine the junction temperature of the device in the application after prototypes are available, the 
Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a 
measurement of the temperature at the top center of the package case using the following equation:

TJ = TT + (ΨJT × PD)

where:

TJ = junction temperature (°C)

TT = thermocouple temperature on top of package (°C)

ΨJT = junction-to-ambient thermal resistance (°C/W)

PD = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T 
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so 
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the 
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire 
is placed flat against the package case to avoid measurement errors caused by cooling effects of the 
thermocouple wire.

23.2.4 Heat Sinks and Junction-to-Ambient Thermal Resistance
In some application environments, a heat sink will be required to provide the necessary thermal 
management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a 
junction to case thermal resistance and a case to ambient thermal resistance:

RθJA = RθJC + RθCA

where:

RθJA = junction-to-ambient thermal resistance (°C/W)

RθJC = junction-to-case thermal resistance (°C/W)

RθCA = case-to-ambient thermal resistance (°C/W)

RθJC is device related and cannot be influenced by the user. The user controls the thermal environment to 
change the case-to-ambient thermal resistance, RθCA. For instance, the user can change the size of the heat 
sink, the airflow around the device, the interface material, the mounting arrangement on printed-circuit 
board, or change the thermal dissipation on the printed-circuit board surrounding the device.

To illustrate the thermal performance of the devices with heat sinks, the thermal performance has been 
simulated with a few commercially available heat sinks. The heat sink choice is determined by the 
application environment (temperature, airflow, adjacent component power dissipation) and the physical 
space available. Because there is not a standard application environment, a standard heat sink is not 
required.
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Table 76 shows heat sinks and junction-to-ambient thermal resistance for PBGA package.

Accurate thermal design requires thermal modeling of the application environment using computational 
fluid dynamics software which can model both the conduction cooling and the convection cooling of the 
air moving through the application. Simplified thermal models of the packages can be assembled using the 
junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More 
detailed thermal models can be made available on request.

Heat sink vendors include the following:

Aavid Thermalloy 603-224-9988
80 Commercial St.
Concord, NH 03301
Internet: www.aavidthermalloy.com

Alpha Novatech 408-749-7601
473 Sapena Ct. #15
Santa Clara, CA 95054
Internet: www.alphanovatech.com

International Electronic Research Corporation (IERC)  818-842-7277
413 North Moss St.
Burbank, CA 91502
Internet: www.ctscorp.com

Table 76. Heat Sinks and Junction-to-Ambient Thermal Resistance of PBGA Package

Heat Sink Assuming Thermal Grease Air Flow
29 × 29 mm PBGA

Thermal Resistance

AAVID 30 × 30 × 9.4 mm Pin Fin Natural Convection 12.6

AAVID 30 × 30 × 9.4 mm Pin Fin 1 m/s 8.2

AAVID 30 × 30 × 9.4 mm Pin Fin 2 m/s 7.0

AAVID 31 × 35 × 23 mm Pin Fin Natural Convection 10.5

AAVID 31 × 35 × 23 mm Pin Fin 1 m/s 6.6

AAVID 31 × 35 × 23 mm Pin Fin 2 m/s 6.1

Wakefield, 53 × 53 × 25 mm Pin Fin Natural Convection 9.0

Wakefield, 53 × 53 × 25 mm Pin Fin 1 m/s 5.6

Wakefield, 53 × 53 × 25 mm Pin Fin 2 m/s 5.1

MEI, 75 × 85 × 12 no adjacent board, extrusion Natural Convection 9.0

MEI, 75 × 85 × 12 no adjacent board, extrusion 1 m/s 5.7

MEI, 75 × 85 × 12 no adjacent board, extrusion 2 m/s 5.1
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This circuit is intended to filter noise in the PLLs resonant frequency range from a 500 kHz to 10 MHz 
range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). 
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook 
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a 
single large value capacitor.

Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize 
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AVDD 
pin, which is on the periphery of package, without the inductance of vias.

Figure 54 shows the PLL power supply filter circuit.

Figure 54. PLL Power Supply Filter Circuit

24.3 Decoupling Recommendations
Due to large address and data buses as well as high operating frequencies, the device can generate transient 
power surges and high frequency noise in its power supply, especially while driving large capacitive loads. 
This noise must be prevented from reaching other components in the device system, and the device itself 
requires a clean, tightly regulated source of power. Therefore, it is recommended that the system designer 
place at least one decoupling capacitor at each VDD, OVDD, GVDD, and LVDD pins of the device. These 
decoupling capacitors should receive their power from separate VDD, OVDD, GVDD, LVDD, and GND 
power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed directly 
under the device using a standard escape pattern. Others may surround the part.

These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology) 
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB, 
feeding the VDD, OVDD, GVDD, and LVDD planes, to enable quick recharging of the smaller chip 
capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the 
quick response time necessary. They should also be connected to the power and ground planes through two 
vias to minimize inductance. Suggested bulk capacitors—100–330 µF (AVX TPS tantalum or Sanyo 
OSCON).

24.4 Connection Recommendations
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal 
level. Unused active low inputs should be tied to OVDD, GVDD, or LVDD as required. Unused active high 
inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external VDD, GVDD, LVDD, OVDD, and GND pins of 
the device.

VDD AVDDn

 2.2 µF  2.2 µF

 GND
Low ESL Surface Mount Capacitors

10 Ω
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24.5 Output Buffer DC Impedance
The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a 
push-pull single-ended driver type (open drain for I2C).

To measure Z0 for the single-ended drivers, an external resistor is connected from the chip pad to OVDD 
or GND. Then, the value of each resistor is varied until the pad voltage is OVDD/2 (see Figure 55). The 
output impedance is the average of two components, the resistances of the pull-up and pull-down devices. 
When data is held high, SW1 is closed (SW2 is open) and RP is trimmed until the voltage at the pad equals 
OVDD/2. RP then becomes the resistance of the pull-up devices. RP and RN are designed to be close to each 
other in value. Then, Z0 = (RP + RN)/2.

Figure 55. Driver Impedance Measurement

The value of this resistance and the strength of the driver’s current source can be found by making two 
measurements. First, the output voltage is measured while driving logic 1 without an external differential 
termination resistor. The measured voltage is V1 = Rsource × Isource. Second, the output voltage is measured 
while driving logic 1 with an external precision differential termination resistor of value Rterm. The 
measured voltage is V2 = 1/(1/R1 + 1/R2)) × Isource. Solving for the output impedance gives Rsource = 
Rterm × (V1/V2 – 1). The drive current is then Isource = V1/Rsource.

Table 77 summarizes the signal impedance targets. The driver impedance are targeted at minimum VDD, 
nominal OVDD, 105°C.

Table 77. Impedance Characteristics

Impedance
Local Bus, Ethernet, DUART, 
Control, Configuration, Power 

Management
PCI DDR DRAM Symbol Unit

RN 42 Target 25 Target 20 Target Z0 W

RP 42 Target 25 Target 20 Target Z0 W

OVDD

OGND

RP

RN

Pad
Data

SW1

SW2
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includes an application modifier, which may specify special application conditions. Each part number also 
contains a revision code that refers to the die mask revision number.

Table 79 shows the SVR settings by device and package type.

Table 78. Part Numbering Nomenclature1

1 Not all processor, platform, and QUICC Engine block frequency combinations are supported. For available frequency 
combinations, contact your local Freescale sales office or authorized distributor.

MPC nnnn e t pp aa a a A

Product
Code

Part
Identifier

Encryption 
Acceleration

Temperature 
Range

Package2

2 See Section 21, “Package and Pin Listings,” for more information on available package types.

Processor
Frequency3

3 Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification 
support all core frequencies. Additionally, parts addressed by part number specifications may support other maximum core 
frequencies.

Platform
Frequency

QUICC 
Engine

Frequency

Die 
Revision

MPC 8358 Blank = Not 
included

E = included

Blank =
0 °C TA to 
105 °C TJ

C= –40°C TA 
to 105°C TJ

ZQ = PBGA
VR = PBGA 

(no lead)

e300 core speed
AD = 266 MHz
AG = 400 MHz

D = 266 MHz D = 266 MHz
G = 400 MHz

A = revision 
2.1 silicon

Table 79. SVR Settings

Device Package
SVR

(Rev. 2.1)

MPC8358E PBGA 0x804E_0021

MPC8358 PBGA 0x804F_0021


