E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (32KB)
Controller Series	CY8CLED
RAM Size	2K x 8
Interface	I ² C, SPI, UART/USART
Number of I/O	24
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled16-28pvxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

EZ-Color™ Functional Overview	4
Target Applications	4
The PSoC Core	4
The Digital System	4
The Analog System	5
Additional System Resources	6
EZ-Color Device Characteristics	6
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	7
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	8
Pin Information	9
Pinouts	9
Register Reference	11
Register Conventions	11
Register Mapping Tables	11
Electrical Specifications	14
Absolute Maximum Ratings	15

Operating Temperature	15
DC Electrical Characteristics	16
AC Electrical Characteristics	
Packaging Information	
Packaging Dimensions	
Thermal Impedances	42
Capacitance on Crystal Pins	42
Solder Reflow Peak Temperature	42
Development Tool Selection	43
Software	
Evaluation Tools	43
Device Programmers	44
Accessories (Emulation and Programming)	44
Ordering Information	44
Key Device Features	44
Ordering Code Definitions	44
Acronyms	45
Acronyms Used	45
Reference Documents	45
Document Conventions	
Units of Measure	
Numeric Conventions	46
Glossary	46
Document History Page	51
Sales, Solutions, and Legal Information	52
Worldwide Sales and Design Support	52
Products	52
PSoC® Solutions	52

Register Reference

Register Conventions

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

This chapter lists the registers of the CY8CLED16 EZ-Color device.

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and should not be accessed.

Table 4. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Acces	Name	Addr (0,Hex)	Acces
PRT0DR	00	RW	DBB20DR0	40	#	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0IE	01	RW	DBB20DR1	41	W	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBB20DR2	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBB20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBB21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBB21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBB21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBB21CR0	47	#	ASD11CR3	87	RW		C7	
PRT2DR	08	RW	DCB22DR0	48	#	ASC12CR0	88	RW	RDI3RI	C8	RW
PRT2IE	09	RW	DCB22DR1	49	W	ASC12CR1	89	RW	RDI3SYN	C9	RW
PRT2GS	0A	RW	DCB22DR2	4A	RW	ASC12CR2	8A	RW	RDI3IS	CA	RW
PRT2DM2	0B	RW	DCB22CR0	4B	#	ASC12CR3	8B	RW	RDI3LT0	СВ	RW
PRT3DR	0C	RW	DCB23DR0	4C	#	ASD13CR0	8C	RW	RDI3LT1	CC	RW
PRT3IE	0D	RW	DCB23DR1	4D	W	ASD13CR1	8D	RW	RDI3RO0	CD	RW
PRT3GS	0E	RW	DCB23DR2	4E	RW	ASD13CR2	8E	RW	RDI3RO1	CE	RW
PRT3DM2	0F	RW	DCB23CR0	4F	#	ASD13CR3	8F	RW		CF	
PRT4DR	10	RW	DBB30DR0	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	DBB30DR1	51	W	ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW	DBB30DR2	52	RW	ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	DBB30CR0	53	#	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	DBB31DR0	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	DBB31DR1	55	W	ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW	DBB31DR2	56	RW	ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	DBB31CR0	57	#	ASC21CR3	97	RW	I2C_SCR	D7	#
PRI6DR	18	RW	DCB32DR0	58	#	ASD22CR0	98	RW	I2C_DR	D8	RW
PR16IE	19	RW	DCB32DR1	59	W	ASD22CR1	99	RW	I2C_MSCR	D9	#
PRI6GS	1A 1D	RW	DCB32DR2	5A	RW	ASD22CR2	9A	RW	INT_CLR0	DA	RW
PRT6DM2	18	RW	DCB32CR0	5B	#	ASD22CR3	9B	RW	INT_CLR1	DB	RW
	10	RW	DCB33DR0	50	#	ASC23CR0	90	RW	INT_CLR2	DC	RW
PRI/IE	10	RW	DCB33DR1	5D	VV DW/	ASC23CR1	9D	RW	INT_CLR3	DD	RW
PRI/GS	16	RW DW/	DCB33DR2	DE EE	# KVV	ASC23CR2	9E	RW	INT_MSK3	DE	RW
	16	#	AMY IN	5F	# DW/	ASUZSUKS	9F	RVV	INT_WOKZ	DF	
DBB00DR0	20	# \\\/	AIVIA_IIN	61	RW		A0		INT_WSKU	E0 E1	RW DW/
DBB00DR2	27	RW	-	62			Δ2		INT_WORT	E1	RC
DBB00CR0	22	#	ARE CR	63	RW		A3		RES WDT	E2 E3	W
DBB01DR0	23	# #	CMP_CR0	64	#		A3 A4		DEC DH	E3	RC
DBB01DR1	25	w	ASY CR	65	#		A5		DEC DI	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	" RW	-	A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	F7	RW
DCB02DR0	28	#		68		MUL1 X	A8	W	MULO X	E8	W
DCB02DR1	29	W		69		MUL1 Y	A9	W	MULO Y	E9	W
DCB02DR2	2A	RW		6A		MUL1 DH	AA	R	MULO DH	EA	R
DCB02CR0	2B	#		6B		MUL1 DL	AB	R	MULO DL	EB	R
DCB03DR0	2C	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCB03DR1	2D	W	TMP_DR1	6D	RW	ACC1 DR0	AD	RW	ACC0 DR0	ED	RW
DCB03DR2	2E	RW	TMP DR2	6E	RW	ACC1 DR3	AE	RW	ACC0 DR3	EE	RW
DCB03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR2	EF	RW
DBB10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
DBB10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
DBB10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	1
DBB11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	1
DBB11CR0	37	#	ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	1
DCB12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCB12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
DCB13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	
DCB13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	
DCB13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCB13CR0	3F	#	ACB03CR2	7F	RW		BF		CPU_SCR0	FF	#

Blank fields are reserved and should not be accessed.

Access is bit specific.

DC Electrical Characteristics

DC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and -40 °C $\le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 6. DC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	3.00	_	5.25	V	See DC POR and LVD specifications, Table 3-15 on page 27.
I _{DD}	Supply current	-	8	14	mA	Conditions are 5.0 V, $T_A = 25$ °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DD3}	Supply current	-	5	9	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DDP}	Supply current when IMO = 6 MHz using SLIMO mode.	_	2	3	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz.
I _{SB}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	_	3	10	μA	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, -40°C $\leq T_A \leq 55$ °C.
I _{SBH}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	Ι	4	25	μA	Conditions are with internal slow speed oscillator, $V_{DD} = 3.3 \text{ V}, 55 \text{ °C} < T_A \le 85 \text{ °C}.$
I _{SBXTL}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, internal slow oscillator, and 32 kHz crystal oscillator active.	Ι	4	12	μA	$ \begin{array}{l} \mbox{Conditions are with properly loaded,} \\ \mbox{1 } \mu W \mbox{ max, } 32.768 \mbox{ kHz crystal.} \\ \mbox{V}_{\mbox{DD}} = 3.3 \mbox{ V}, -40 ^{\circ}\mbox{C} \leq T_A \leq 55 ^{\circ}\mbox{C}. \end{array} $
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and 32 kHz crystal oscil- lator active.	-	5	27	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C.
V _{REF}	Reference voltage (Bandgap)	1.28	1.3	1.32	V	Trimmed for appropriate V _{DD} .

DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the Analog Continuous Time PSoC blocks and the analog switched capacitor PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOA}	Input offset voltage (absolute value)					_
	Power = Low, Opamp bias = Low	-	1.6	10	mV	
	Power = Low, Opamp bias = High	-	1.6	10	mV	
	Power = Medium, Opamp bias = Low	-	1.6	10	mV	
	Power = Medium, Opamp bias = High	-	1.6	10	mV	
	Power = High, Opamp bias = Low	-	1.6	10	mV	
	Power = High, Opamp bias = High	_	1.6	10	mV	
TCV _{OSOA}	Average input offset voltage drift	-	4	23	µV/°C	
EBOA	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V CMOA	Common mode voltage range (All cases, except Power = High, Opamp bias = High)	0	-	V _{DD}	V	The common-mode input voltage range is measured through an analog output buffer.
	Common mode voltage range (Power = High, Opamp bias = High)	0.5	_	V _{DD} – 0.5	V	The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRROA	Common mode rejection ratio	60	-	-	dB	_
GOLOA	Open loop gain	80	-	-	dB	_
V _{OHIGHOA}	High output voltage swing (internal signals)	V _{DD} – 0.01	-	_	V	_
V _{OLOWOA}	Low output voltage swing (internal signals)	-	-	0.1	V	_
I _{SOA}	Supply current (including associated AGND buffer)					-
	Power = Low, Opamp bias = Low	_	150	200	μA	
	Power = Low, Opamp bias = High	-	300	400	μA	
	Power = Medium, Opamp bias = Low	_	600	800	μA	
	Power = Medium, Opamp bias = High	-	1200	1600	μA	
	Power = High, Opamp bias = Low	-	2400	3200	μA	
	Power = High, Opamp bias = High	-	4600	6400	μA	
PSRR _{OA}	Supply voltage rejection ratio	67	80	-	dB	$ \begin{array}{l} V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \text{ or} \\ (V_{DD}-1.25 \text{ V}) \leq V_{IN} \leq V_{DD}. \end{array} $

Table 8. 5-V DC Operational Amplifier Specifications

Table 9. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low	-	1.4	10	mV	Power = High, Opamp bias = High setting is not allowed for $3.3 \text{ V} \text{ V}_{\text{DD}}$
	Power = Low, Opamp bias = High	-	1.4	10	mV mV	operation.
	Power = Medium, Opamp bias = Low	_	1.4	10	mV	
	Power = High. Opamp bias = Low	_	1.4	10	mV	
	Power = High, Opamp bias = High	-	-	_	mV	
TCV _{OSOA}	Average input offset voltage drift	-	7	40	µV/°C	_
EBOA	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
СМОА	Common mode voltage range	0	_	V _{DD}	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common mode rejection ratio	60	-	-	dB	-
G _{OLOA}	Open loop gain	80	-	-	dB	-
V _{OHIGHOA}	High output voltage swing (internal signals)	V _{DD} – 0.01	-	-	V	-
V _{OLOWOA}	Low output voltage swing (internal signals)	-	-	0.01	V	-
ISOA	Supply current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200 -	μΑ μΑ μΑ μΑ μΑ μΑ	Power = High, Opamp bias = High setting is not allowed for 3.3 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	54	80	_	dB	$V_{SS} \leq V_{IN} \leq (V_{DD}-2.25)$ or $(V_{DD}-1.25~V) \leq V_{IN} \leq V_{DD}$

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 10. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} - 1	V	_
I _{SLPC}	LPC supply current	-	10	40	μA	-
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	-

Table 12. 3.3-V DC Analog Output Buffer Specifications (continued)

Symbol	Description	Min	Тур	Max	Unit	Notes
I _{SOB}	Supply current including bias cell (no load) Power = Low Power = High		0.8 2.0	1 5	mA mA	_
PSRR _{OB}	Supply voltage rejection ratio	60	64	-	dB	
CL	Load capacitance	_	-	200	pF	This specification applies to the external circuit driven by the analog output buffer.

DC Switch Mode Pump Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 13. DC Switch Mode Pump (SMP) Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PUMP} 5V	5 V output voltage at V _{DD} from Pump	4.75	5.0	5.25	V	Configured as in Note 3. Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP} 3V	3 V output voltage at V _{DD} from Pump	3.00	3.25	3.60	V	Configured as in Note 3. Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
I _{PUMP}	Available output current V _{BAT} = 1.5 V, V _{PUMP} = 3.25 V V _{BAT} = 1.8 V, V _{PUMP} = 5.0 V	8 5		-	mA mA	Configured as in Note 3. SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 5.0 V.
V _{BAT} 5V	Input voltage range from battery	1.8	-	5.0	V	Configured as in Note 3. SMP trip voltage is set to 5.0 V.
V _{BAT} 3V	Input voltage range from battery	1.0	3–	3.3	V	Configured as in Note 3 [.] SMP trip voltage is set to 3.25 V.
VBATSTART	Minimum input voltage from battery to start Pump	1.2	-	-	V	Configured as in Note 3. 0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C.
ΔV_{PUMP_Line}	Line regulation (over V _{BAT} range)	_	5	_	%V _O	Configured as in Note 3. V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in Table 17, "DC POR, SMP, and LVD Specifications," on page 28.
ΔV_{PUMP_Load}	Load regulation	_	5	_	%V _O	Configured as in Note 3. V _O is the "V _{DD} Value for PUMP Trip" specified by the VM[2:0] setting in Table 17, "DC POR, SMP, and LVD Specifications," on page 28.
ΔV_{PUMP}_{Rippl} e	Output Voltage Ripple (depends on capacitor/load)	-	100	-	mVpp	Configured as in Note 3. Load is 5 mA.
E ₃	Efficiency	35	50	-	%	Configured as in Note 3. Load is 5 mA. SMP trip voltage is set to 3.25 V.
F _{PUMP}	Switching Frequency	-	1.4	-	MHz	_
DCPUMP	Switching Duty Cycle	-	50	-	%	-

Note 3. $L_1 = 2 \text{ mH}$ inductor, $C_1 = 10 \text{ mF}$ capacitor, $D_1 = \text{Schottky}$ diode. See Figure 6.

Figure 6. Basic Switch Mode Pump Circuit

DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

The guaranteed specifications are measured through the analog continuous time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the analog reference control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
	RefPower = High	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.228	V _{DD} /2 + 1.290	$V_{DD}/2 + 1.352$	V
	Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.078$	$V_{DD}/2 - 0.007$	$V_{DD}/2 + 0.063$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.336	V _{DD} /2 – 1.295	V _{DD} /2 – 1.250	V
	RefPower = High	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.224	V _{DD} /2 + 1.293	$V_{DD}/2 + 1.356$	V
	Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.056	V _{DD} /2 – 0.005	$V_{DD}/2 + 0.043$	V
05000		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.338	V _{DD} /2 – 1.298	V _{DD} /2 – 1.255	V
00000	RefPower = Med	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.226	V _{DD} /2 + 1.293	$V_{DD}/2 + 1.356$	V
	Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.057$	V _{DD} /2 - 0.006	$V_{DD}/2 + 0.044$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 – 1.337	V _{DD} /2 – 1.298	V _{DD} /2 – 1.256	V
	RefPower = Med	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.226	V _{DD} /2 + 1.294	V _{DD} /2 + 1.359	V
	Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.047$	$V_{DD}/2 - 0.004$	$V_{DD}/2 + 0.035$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2 - 1.338	V _{DD} /2 - 1.299	V _{DD} /2 - 1.258	V

Table 14. 5-V DC Analog Reference Specifications

Table 13. 3.3-4 DO Analog Melerence Opecifications (continued	Table 15.	3.3-V DC	Analog	Reference	Specifications	(continued)
---	-----------	----------	--------	-----------	----------------	-------------

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.06	V _{DD} – 0.010	V _{DD}	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.05$	$V_{DD}/2 - 0.05$ $V_{DD}/2 - 0.002$		V
		V_{REFLO}	Ref Low	Vss	Vss Vss + 0.009		Vss + 0.056	V
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.060	V _{DD} – 0.006	V _{DD}	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.028	V _{DD} /2 - 0.001	V _{DD} /2 + 0.025	V
0b010		V_{REFLO}	Ref Low	Vss	Vss	Vss + 0.005	Vss + 0.034	V
00010		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.058	V _{DD} – 0.008	V _{DD}	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.037$	V _{DD} /2 - 0.002	$V_{DD}/2 + 0.033$	V
		V_{REFLO}	Ref Low	Vss	Vss	Vss + 0.007	Vss + 0.046	V
		V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.057	V _{DD} – 0.006	V _{DD}	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.025	V _{DD} /2 - 0.001	V _{DD} /2 + 0.022	V
		V_{REFLO}	Ref Low	Vss	Vss	Vss + 0.004	Vss + 0.030	V
0b011	All power settings. Not allowed for 3.3 V	_	_	_	_	_	_	-
0b100	All power settings. Not allowed for 3.3 V	-	_	_	-	_	-	-
	RefPower = High Opamp bias = High	V _{REFHI}	Ref High	P2[4] + BandGap (P2[4] = V _{DD} /2)	P2[4] + 1.213	P2[4] + 1.291	P2[4] + 1.367	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – BandGap (P2[4] = V _{DD} /2)	P2[4] – 1.333	P2[4] – 1.294	P2[4] – 1.208	V
		V _{REFHI}	Ref High	P2[4] + BandGap (P2[4] = V _{DD} /2)	P2[4] + 1.217	P2[4] + 1.294	P2[4] + 1.368	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
05101		V _{REFLO}	Ref Low	P2[4] – BandGap (P2[4] = V _{DD} /2)	P2[4] – 1.320	P2[4] – 1.296	P2[4] – 1.261	V
		V _{REFHI}	Ref High	P2[4] + BandGap (P2[4] = V _{DD} /2)	P2[4] + 1.217	P2[4] + 1.294	P2[4] + 1.369	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
		V _{REFLO}	Ref Low	P2[4] – BandGap (P2[4] = V _{DD} /2)	P2[4] – 1.322	P2[4] – 1.297	P2[4] – 1.262	V
		V _{REFHI}	Ref High	P2[4] + BandGap (P2[4] = V _{DD} /2)	P2[4] + 1.219	P2[4] + 1.295	P2[4] + 1.37	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	V
	Opamp bias = Low		Ref Low	P2[4] – BandGap (P2[4] = V _{DD} /2)	P2[4] – 1.324	P2[4] – 1.297	P2[4] – 1.262	V

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and --40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 18. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools.
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools.
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools.
V _{DDIWRITE}	Supply voltage for flash write operation	3.15	-	5.25	V	This specification applies to this device when it is executing internal flash writes.
I _{DDP}	Supply current during programming or verify	-	10	30	mA	
V _{ILP}	Input Low-voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input High-voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying V _{ILP} to P1[0] or P1[1] During Programming or Verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying V _{IHP} to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low-voltage during programming or verify	-	-	Vss + 0.75	V	
V _{OHV}	Output High-voltage during programming or verify	V _{DD} - 1.0	-	V _{DD}	V	
Flash _{ENPB}	flash endurance (per block)	50,000 ^[6]	-	-	-	Erase/write cycles per block.
Flash _{ENT}	flash endurance (total) ^[7]	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	flash data retention	10	-	-	Years	

DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 19. DC I²C Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
V _{ILI2C} ^[8]	Input low level	-	-	0.3 × V _{DD}	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C} ^[8]	Input high level	$0.7 \times V_{DD}$	-	-	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Notes

- 6. The 50,000 cycle flash endurance per block is only guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.
- 4.75 V to 5.25 V.
 7. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (flashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.
 8. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO specifications sections. The I²C GPIO pins also meet the mentioned specs.

Table 20. AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^[9, 11]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	_
SR _{POWER_} UP	Power Supply Slew Rate	-	-	250	V/ms	V _{DD} slew rate during power up.
T _{POWERUP}	Time from End of POR to CPU Executing Code	-	16	100	ms	Power up from 0V. See the System Resets section of the <i>PSoC</i> <i>Technical Reference Manual.</i>
tjit_IMO ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	700	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900		N = 32
	24 MHz IMO period jitter (RMS)	-	100	400		-
tjit_PLL ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	800	ps	-
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	1200		N = 32
	24 MHz IMO period jitter (RMS)	_	100	700		-

Figure 7. PLL Lock Timing Diagram

Figure 8. PLL Lock for Low Gain Setting Timing Diagram

AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Power = High and Opamp Bias = High is not supported at 3.3V.

Table 22. 5-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time to 0.1% for a 1 V Step (10 pF load, Unity Gain)					-
	Power = Low, Opamp Bias = Low	-	-	3.9	μS	
	Power = Medium, Opamp Bias = High	_	—	0.72	μs	
	Power = High, Opamp Bias = High	_	—	0.62	μS	
T _{SOA}	Falling Settling Time to 0.1% for a 1 V Step (10 pF load, Unity Gain)					_
00/1	Power = Low, Opamp Bias = Low	_	_	5.9	μs	
	Power = Medium, Opamp Bias = High	_	_	0.92	μs	
	Power = High, Opamp Bias = High	-	-	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%) of a 1 V Step (10 pF load, Unity Gain)					-
	Power = Low, Opamp Bias = Low	0.15	—	-	V/µs	
	Power = Medium, Opamp Bias = High	1.7	_	-	V/µs	
	Power = High, Opamp Bias = High	6.5	-	-	V/µs	
SR _{FOA}	Falling Slew Rate (20% to 80%) of a 1 V Step (10 pF load, Unity Gain)					-
	Power = Low, Opamp Bias = Low	0.01	—	-	V/µs	
	Power = Medium, Opamp Bias = High	0.5	—	-	V/µs	
	Power = High, Opamp Bias = High	4.0	-	-	V/µs	
BW _{OA}	Gain Bandwidth Product					-
<i>on</i>	Power = Low, Opamp Bias = Low	0.75	_	-	MHz	
	Power = Medium, Opamp Bias = High	3.1	_	-	MHz	
	Power = High, Opamp Bias = High	5.4	—	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100	_	nV/rt-Hz	_

Table 23. 3.3-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising settling time to 0.1% of a 1 V Step (10 pF load, Unity Gain)					_
_	Power = Low, Opamp Bias = Low	-	-	3.92	μS	
	Power = Medium, Opamp Bias = High	-	-	0.72	μS	
T _{SOA}	Falling settling time to 0.1% of a 1 V Step (10 pF load, Unity Gain)					-
	Power = Low, Opamp Bias = Low	-	-	5.41	μS	
	Power = Medium, Opamp Bias = High	-	-	0.72	μS	
SR _{ROA}	Rising Slew Rate (20% to 80%) of a 1 V Step (10 pF load, Unity Gain)					_
	Power = Low, Opamp Bias = Low	0.31	_	—	V/µs	
	Power = Medium, Opamp Bias = High	2.7	-	-	V/µs	
SR _{FOA}	Falling slew rate (20% to 80%) of a 1 V Step (10 pF load, Unity Gain)					_
_	Power = Low, Opamp Bias = Low	0.24	—	—	V/µs	
	Power = Medium, Opamp Bias = High	1.8	-	_	V/µs	
BW _{OA}	Gain bandwidth product					_
_	Power = Low, Opamp Bias = Low	0.67	—	—	MHz	
	Power = Medium, Opamp Bias = High	2.8	-	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	_	100	_	nV/rt-Hz	_

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Standard-Mode		Standard-Mode Fast-Mode		Unite	Notos
Symbol	Description	Min	Max	Min	Max	Units	NOLES
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	-
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	I	0.6	-	μS	_
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	Ι	μS	_
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS	_
T _{SUSTAI2C}	Set-up Time for a Repeated START Condition	4.7		0.6	-	μS	_
T _{HDDATI2C}	Data Hold Time	0	-	0	Ι	μS	_
T _{SUDATI2C}	Data Set-up Time	250	-	100 ^[16]	-	ns	_
T _{SUSTOI2C}	Set-up Time for STOP Condition	4.0	-	0.6	Ι	μS	-
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	-	μS	_
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	0	50	ns	_

Note

16. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Packaging Information

This section illustrates the packaging specifications for the CY8CLED16 EZ-Color device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Packaging Dimensions

DIMENSIONS IN MILLIMETERS MIN. MAX.

Figure 15. 48-Pin (7 × 7 × 1.0 mm) QFN (Sawn)

Important Note

For information on the preferred dimensions for mounting QFN packages, see the following Application Note "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.

Pinned vias for thermal conduction are not required for the low-power device.

Thermal Impedances

Table 32. Thermal Impedances per Package

Package	Typical θ _{JA} ^[17]
28 SSOP	94 °C/W
48 QFN ^[18]	28 °C/W

Capacitance on Crystal Pins

Table 33. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
28 SSOP	2.8 pF
48 QFN	1.8 pF

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 34. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Peak Temperature
28 SSOP	260 °C	30 s
48 QFN	260 °C	30 s

Notes

17. $T_J = T_A + POWER \times \theta_{JA}$

18. To achieve the thermal impedance specified for the QFN package, refer to "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.

Acronyms

Acronyms Used

Table 37 lists the acronyms that are used in this document.

Table 37. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MAC	multiply-accumulate
ADC	analog-to-digital converter	MIPS	million instructions per second
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PLL	phase-locked loop
CRC	cyclic redundancy check	POR	power-on reset
СТ	continuous time	PPOR	precision power on reset
DAC	digital-to-analog converter	PRS	pseudo-random sequence
DC	direct current	PSoC [®]	Programmable System-on-Chip
DTMF	dual-tone multi-frequency	PWM	pulse-width modulator
ECO	external crystal oscillator	QFN	quad flat no leads
EEPROM	electrically erasable programmable read-only memory	RTC	real time clock
GPIO	general purpose I/O	SAR	successive approximation
ICE	in-circuit emulator	SC	switched capacitor
IDE	integrated development environment	SMP	switch mode pump
ILO	internal low speed oscillator	SPI	serial peripheral interface
IMO	internal main oscillator	SRAM	static random access memory
I/O	input/output	SROM	supervisory read only memory
IrDA	infrared data association	SSOP	shrink small-outline package
ISSP	in-system serial programming	UART	universal asynchronous reciever / transmitter
LCD	liquid crystal display	USB	universal serial bus
LED	light-emitting diode	WDT	watchdog timer
LPC	low power comparator	XRES	external reset
LVD	low-voltage detect		

Reference Documents

Design Aids – Reading and Writing $PSoC^{\textcircled{B}}$ Flash – AN2015 (001-40459)

Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503)

Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.

Glossary (continued)

bias	1. A systematic deviation of a value from a reference value.		
	 The amount by which the average of a set of values departs from a reference value. The electrical machanical magnetic or other force (field) applied to a device to establish a 		
	reference level to operate the device.		
block	1. A functional unit that performs a single function, such as an oscillator.		
	 A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block. 		
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written. 		
	A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.		
	3. An amplifier used to lower the output impedance of a system.		
bus	 A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns. 		
	A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].		
	3. One or more conductors that serve as a common connection for a group of related devices.		
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.		
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.		
compiler	A program that translates a high level language, such as C, into machine language.		
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.		
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.		
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.		
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.		
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.		
dead band	A period of time when neither of two or more signals are in their active state or in transition.		
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.		

Glossary (continued)

digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog- to-digital (ADC) converter performs the reverse operation.	
duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.	
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.	
External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.	
flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.	
flash block	The smallest amount of flash ROM space that may be programmed at one time and the smallest amount of flash space that may be protected. A flash block holds 64 bytes.	
frequency	The number of cycles or events per unit of time, for a periodic function.	
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.	
l ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I^2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.	
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).	
input/output (I/O)	A device that introduces data into or extracts data from a system.	
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.	
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.	
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.	
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.	
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.	
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside	

a PSoC by interfacing to the flash, SRAM, and register space.

Glossary (continued)

serial	1. Pertaining to a process in which all events occur one after the other.
	2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform flash operations. The functions of the SROM may be accessed in normal user code, operating from flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
Optical & Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2008-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-13105 Rev. *I

Revised October 12, 2011

Page 52 of 52

PSoC Designer[™] and EZ-Color[™] are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corporation. Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors. All products and company names mentioned in this document may be the trademarks of their respective holders.