

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

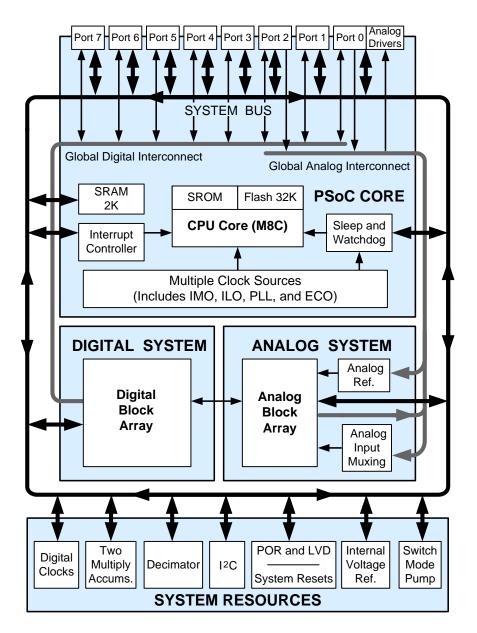
represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

XF


Details	
Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (32KB)
Controller Series	CY8CLED
RAM Size	2K x 8
Interface	I²C, SPI, UART/USART
Number of I/O	44
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled16-48lfxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Contents

EZ-Color™ Functional Overview	4
Target Applications	4
The PSoC Core	
The Digital System	4
The Analog System	5
Additional System Resources	6
EZ-Color Device Characteristics	6
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	7
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	
Pin Information	9
Pinouts	
Register Reference	11
Register Conventions	11
Register Mapping Tables	11
Electrical Specifications	14
Absolute Maximum Ratings	15

Operating Temperature	15
DC Electrical Characteristics	
AC Electrical Characteristics	
Packaging Information	
Packaging Dimensions	
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	
Evaluation Tools	43
Device Programmers	
Accessories (Emulation and Programming)	
Ordering Information	
Key Device Features	44
Ordering Code Definitions	
Acronyms	45
Acronyms Used	45
Reference Documents	45
Document Conventions	
Units of Measure	
Numeric Conventions	46
Glossary	46
Document History Page	
Sales, Solutions, and Legal Information	52
Worldwide Sales and Design Support	52
Products	
PSoC® Solutions	52

EZ-Color™ Functional Overview

Cypress's EZ-Color family of devices offers the ideal control solution for High Brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of Programmable System-on-Chip (PSoC); with Cypress's precise illumination signal modulation (PrISM) modulation technology providing lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports a range of independent LED channels from 4 channels at 32 bits of resolution each, up to 16 channels at 8 bits of resolution each. This enables lighting designers the flexibility to choose the LED array size and color quality. PSoC Designer software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature, optical, and LED binning compensation. EZ-Color's virtually limitless analog and digital customization allow for simple integration of features in addition to intelligent lighting, such as Battery Charging, Image Stabilization, and Motor Control during the development process. These features, along with Cypress' best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

Target Applications

- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone flash
- flashlights

The PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a central processing unit (CPU), memory, clocks, and configurable general purpose I/O (GPIO).

The M8C CPU core is a powerful processor with speeds up to 48 MHz, providing a four million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor. The CPU utilizes an interrupt controller with 25 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and watchdog timers (WDT).

Memory encompasses 32 KB of flash for program storage, 2 KB of SRAM for data storage, and up to 2 KB of EEPROM emulated using the flash. Program flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The EZ-Color family incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low speed oscillator (ILO) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the 32.768 kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the EZ-Color device.

EZ-Color GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The digital system is composed of 16 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user modules. Digital peripheral configurations include those listed below.

- PrISM (8-to 32-bit)
- PWMs (8-to 32-bit)
- PWMs with Dead band (8-to 32-bit)
- Counters (8-to 32-bit)
- Timers (8-to 32-bit)
- UART 8 bit with selectable parity (up to 4)
- SPI master and slave (up to 4 each)
- I²C slave and multi-master (1 available as a System Resource)
- Cyclical Redundancy Checker/Generator (8- to 32-bit)
- IrDA (up to 4)
- Generators (8-to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by EZ-Color device family. This allows you the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 6.

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Resources include a multiplier, decimator, switch mode pump, low-voltage detection, and power-onreset (POR). Statements describing the merits of each system resource are presented below.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters.

- The decimator provides a custom hardware filter for digital signal, processing applications including the creation of Delta Sigma ADCs.
- The I²C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low-voltage-detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump (SMP) generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.

EZ-Color Device Characteristics

Depending on your EZ-Color device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific EZ-Color device groups. The device covered by this data sheet is shown in the highlighted row of the table.

Table 1. EZ-Color Device Characteristics

Part Number	LED Channels	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	CapSense
CY8CLED02	2	16	1	4	8	0	2	4	256 Bytes	4K	No
CY8CLED04	4	56	1	4	48	2	2	6	1K	16K	Yes
CY8CLED08	8	44	2	8	12	4	4	12	256 Bytes	16K	No
CY8CLED16	16	44	4	16	12	4	4	12	2K	32K	No

Getting Started

The quickest way to understand the device is to read this data sheet and then use the PSoC Designer Integrated development environment (IDE). This data sheet is an overview of the EZ-Color integrated circuit and presents specific pin, register, and electrical specifications. For in depth information, along with detailed programming information, see the Technical Reference Manual for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest device data sheets on the web at http://www.cypress.com.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse with modulator (PWM) user module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip-Level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Table 3. 48-Pin Part Pinout (QFN)^[2]

	Pin Type Pin								
Pin No.			Pin Name	Description					
	Digital	Analog		Direct quitched conseiter block input					
1	1/O 1/O		P2[3]	Direct switched capacitor block input.					
		I	P2[1]	Direct switched capacitor block input.					
3	I/O		P4[7]						
4	I/O		P4[5]						
5	I/O		P4[3]						
6	I/O		P4[1]						
7	Po	wer	SMP	Switch mode pump (SMP) connection to external components required.					
8	I/O		P3[7]						
9	I/O		P3[5]						
10	I/O		P3[3]						
11	I/O		P3[1]						
12	I/O		P5[3]						
13	I/O		P5[1]						
14	I/O		P1[7]	I ² C serial clock (SCL).					
15	I/O		P1[5]	I ² C serial data (SDA).					
16	I/O		P1[3]						
17	I/O		P1[1]	Crystal (XTALin), I ² C serial clock (SCL), ISSP-SCLK ^[1] .					
18	Po	wer	Vss	Ground connection.					
19	I/O		P1[0]	Crystal (XTALout), I ² C serial data (SDA), ISSP-SDATA ^[1] .					
20	I/O		P1[2]						
21	I/O		P1[4]	optional external clock input (EXTCLK).					
22	I/O		P1[6]						
23	I/O		P5[0]						
24	I/O		P5[2]						
25	I/O		P3[0]						
26	I/O		P3[2]						
27	I/O		P3[4]						
28	I/O		P3[6]						
29	Inp	out	XRES	Active high external reset with internal pull-down.					
30	I/O		P4[0]						
31	I/O		P4[2]						
32	I/O		P4[4]						
33	I/O		P4[6]						
34	I/O	I	P2[0]	Direct switched capacitor block input.					
35	I/O	I	P2[2]	Direct switched capacitor block input.					
36	I/O		P2[4]	external analog ground (AGND).					
37	I/O		P2[6]	external voltage reference (VREF).					
38	I/O	I	P0[0]	Analog column mux input.					
39	I/O	I/O	P0[2]	Analog column mux input and column output.					
40	I/O	I/O	P0[4]	Analog column mux input and column output.					
41	I/O	I	P0[6]	Analog column mux input.					
42	Po	wer	V _{DD}	Supply voltage.					
43	I/O	1	P0[7]	Analog column mux input.					
44	I/O	I/O	P0[5]	Analog column mux input and column output.					
45	I/O	I/O	P0[3]	Analog column mux input and column output.					
46	I/O	1/0	P0[1]	Analog column mux input and column output.					
47	I/O		P2[7]						
48	I/O		P2[5]						
-10	1/0		' ^{2[} 2]	l					

Figure 4. 48-Pin Device

P2[5] P2[7] P2[7] P0[1], A, I P0[3], A, IO P0[5], A, IO P0[4], A, I P0[4], A, I P0[4], A, IO P0[2], A, IO P0[0], A, I P2[6], External VREF A, I, P2[3] P4[7] P2[4], External AGND P2[2], A, I 34 P2[0], A, I P4[5] 33 🗖 P4[6] **=** 4 32 **P**4[4] P4[3] 5 P4[1] MLF 31 **=** 30 **=** P4[2] **-**6 SMP (Top View) P4[0] 7 29 **XRES** 28 **P**3[6] 27 **P**3[4] 8 P3[7] XRES **9**9 **1**10 **1**11 P3[5] P3[3] 26 P3[2] P3[1] P5[3] **■**12<u></u> 20 15 91 5 $^{\infty}$ 4 61 22 21 23 ñ ī ì 'n P5[1] P5[1] P2C SCL, P1[7] P1[3] P2C SCL, XTALIn, P1[1] P2C SDA, XTALout, P1[0] P2C SDA, XTALout, P1[0] P1[6] P5[0] P5[2]

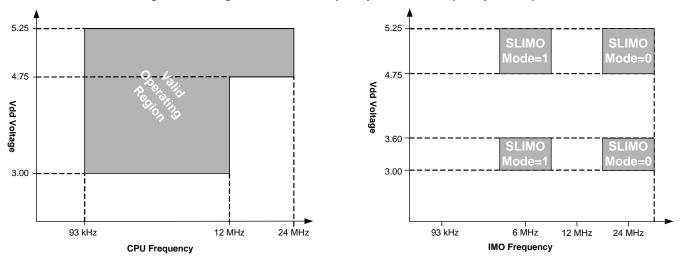
LEGEND: A = Analog, I = Input, and O = Output. Note

 The center pad on the QFN package should be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal.

Table 5. Register Map Bank 1 Table: Configuration Space

	<u> </u>		able: Config	<u> </u>							
Name	Addr(1,Hex)	Access	Name	Addr(1,Hex)	Access	Name	Addr(1,Hex)	Access	Name	Addr(1,Hex)	Access
PRT0DM0	00	RW	DBB20FN	40	RW	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0DM1	01	RW	DBB20IN	41	RW	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0IC0	02	RW	DBB20OU	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0IC1	03	RW		43		ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DM0	04	RW	DBB21FN	44	RW	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1DM1	05	RW	DBB21IN	45	RW	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1IC0	06	RW	DBB21OU	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	-
PRT2DM0	08	RW	DCB22FN	48	RW	ASC12CR0	88	RW	RDI3RI	C8	RW
PRT2DM1	09	RW	DCB22IN	49	RW	ASC12CR1	89	RW	RDI3SYN	C9	RW
PRT2IC0	0A	RW	DCB22OU	40 4A	RW	ASC12CR2	8A	RW	RDI3IS	CA	RW
	0A 0B		DCB2200	4A 4B			8B	RW		СА	RW
PRT2IC1		RW	DODOOTU		514	ASC12CR3			RDI3LT0		
PRT3DM0	0C	RW	DCB23FN	4C	RW	ASD13CR0	8C	RW	RDI3LT1	CC	RW
PRT3DM1	0D	RW	DCB23IN	4D	RW	ASD13CR1	8D	RW	RDI3RO0	CD	RW
PRT3IC0	0E	RW	DCB23OU	4E	RW	ASD13CR2	8E	RW	RDI3RO1	CE	RW
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DM0	10	RW	DBB30FN	50	RW	ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW	DBB30IN	51	RW	ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW	DBB30OU	52	RW	ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53	<u> </u>	ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW	DBB31FN	54	RW	ASC21CR0	94	RW	001_2_00	D3	+
PRT5DM0 PRT5DM1			DBB31FN DBB31IN		RW	ASC21CR0 ASC21CR1		RW		D4 D5	+
	15	RW		55			95				
PRT5IC0	16	RW	DBB31OU	56	RW	ASC21CR2	96	RW		D6	
PRT5IC1	17	RW		57		ASC21CR3	97	RW		D7	
PRT6DM0	18	RW	DCB32FN	58	RW	ASD22CR0	98	RW		D8	
PRT6DM1	19	RW	DCB32IN	59	RW	ASD22CR1	99	RW		D9	
PRT6IC0	1A	RW	DCB32OU	5A	RW	ASD22CR2	9A	RW		DA	
PRT6IC1	1B	RW		5B		ASD22CR3	9B	RW		DB	-
PRT7DM0	1C	RW	DCB33FN	5C	RW	ASC23CR0	9C	RW		DC	-
PRT7DM1	1D	RW	DCB33IN	5D	RW	ASC23CR1	9D	RW	OSC_GO_EN	DD	RW
PRT7IC0	1E	RW	DCB33OU	5E	RW	ASC23CR2	9E	RW	OSC_CR4	DE	RW
PRT7IC1	1F	RW	DCD3300	5F			9F	RW		DF	RW
			0116.000		514	ASC23CR3		RW	OSC_CR3		
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW		64			A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	-
	27		ALT_CR0	67	RW		A7		DEC_CR2	E7	RW
DCB02FN	28	RW	ALT_CR1	68	RW		A8		IMO_TR	E8	W
				69	RW						W
DCB02IN	29	RW	CLK_CR2		RW		A9		ILO_TR	E9	
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD	1		ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	Τ
	2F	1	TMP_DR3	6F	RW		AF	1		EF	1
DBB10FN	30	RW	ACB00CR3	70	RW	RDIORI	B0	RW	t	F0	1
DBB10IN	31	RW	ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	+
DBB10IN DBB10OU	32	RW	ACB00CR1	72	RW	RDIOIS	B1 B2	RW		F2	+
		12.00									───
000445	33	514	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	───
DBB11FN	34	RW	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11IN	35	RW	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
DBB11OU	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12FN	38	RW	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	1
DCB12IN	39	RW	ACB02CR0	79	RW	RDI1SYN	B9	RW	t –	F9	1
DCB120U	3A	RW	ACB02CR1	78 7A	RW	RDI1IS	BA	RW	FLS_PR1	FA	RW
2001200	3A 3B		ACB02CR1	7B	RW	RDI1LT0	BB	RW	0	FB	+
DODIOEN		DW/									
DCB13FN	3C	RW	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	4
DCB13IN	3D	RW	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	<u> </u>
DCB13OU	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
	3F	1	ACB03CR2	7F	RW		BF		CPU_SCR0	FF	#

Blank fields are reserved and should not be accessed.


Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED16 EZ-Color device. For the most up-to-date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Refer to Table 20 for the electrical specifications for the internal main oscillator (IMO) using SLIMO mode.

Figure 5. Voltage versus CPU Frequency, and IMO Frequency Trim Options

Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
T _{BAKETIME}	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	Ι	+85	°C	
V _{DD}	Supply voltage on V _{DD} relative to Vss	-0.5	Ι	+6.0	V	
V _{IO}	DC input voltage	Vss - 0.5	-	V _{DD} + 0.5	V	
V _{IOZ}	DC Voltage applied to Tri-state	Vss - 0.5	_	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
I _{MAIO}	Maximum current into any port pin configured as analog driver	-50	_	+50	mA	
ESD	Electro static discharge voltage	2000	Ι	-	V	Human body model ESD.
LU	Latch up current	_	_	200	mA	

Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-0	-	+85	°C	
TJ	Junction temperature	-0	_	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances per Package on page 42. The user must limit the power consumption to comply with this requirement.

Table 9. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - -	1.4 1.4 1.4 1.4 1.4 1.4	10 10 10 10 10 -	mV mV mV mV mV	Power = High, Opamp bias = High setting is not allowed for 3.3 V V _{DD} operation.
TCV _{OSOA}	Average input offset voltage drift	-	7	40	µV/°C	-
EBOA	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
СМОА	Common mode voltage range	0	_	V _{DD}	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common mode rejection ratio	60	-	-	dB	-
G _{OLOA}	Open loop gain	80	-	-	dB	-
V _{OHIGHOA}	High output voltage swing (internal signals)	V _{DD} – 0.01	-	-	V	-
V _{OLOWOA}	Low output voltage swing (internal signals)	-	-	0.01	V	-
I _{SOA}	Supply current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200 -	μΑ μΑ μΑ μΑ μΑ	Power = High, Opamp bias = High setting is not allowed for 3.3 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	54	80	_	dB	$V_{SS} \leq V_{IN} \leq (V_{DD} - 2.25) \text{ or} \\ (V_{DD} - 1.25 \text{ V}) \leq V_{IN} \leq V_{DD}$

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 10. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} - 1	V	_
I _{SLPC}	LPC supply current	-	10	40	μΑ	-
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	-

DC Analog Output Buffer Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 11. 5-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOB}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - -	3.2 3.2 3.2 3.2 3.2	18 18 18 18	mV mV mV mV	_
TCV _{OSOB}	Average input offset voltage drift	-	5.5	26	µV/°C	-
V _{CMOB}	Common-mode input voltage range	0.5	-	V _{DD} – 1.0	V	-
R _{OUTOB}	Output resistance Power = Low Power = High		-	1 1	Ω Ω	_
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = Low Power = High	0.5 × V _{DD} + 1.3 0.5 × V _{DD} + 1.3			V V	-
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2) Power = Low Power = High			0.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V V	-
I _{SOB}	Supply current including bias cell (no load) Power = Low Power = High		1.1 2.6	2 5	mA mA	-
PSRR _{OB}	Supply voltage rejection ratio	40	64		dB	-
CL	Load capacitance	-	-	200	pF	This specification applies to the external circuit driven by the analog output buffer.

Table 12. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Unit	Notes
V _{OSOB}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - -	3.2 3.2 6 6	20 20 25 25	mV mV mV mV	High power setting is not recommended.
TCV _{OSOB}	Average input offset voltage drift Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - -	8 8 12 12	32 32 41 41	μV/°C μV/°C μV/°C μV/°C	High power setting is not recommended.
V _{CMOB}	Common-mode input voltage range	0.5	-	V _{DD} – 1.0	V	-
R _{OUTOB}	Output resistance Power = Low Power = High			10 10	W W	_
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD} /2) Power = Low Power = High	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0		-	V V	-
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD} /2) Power = Low Power = High			0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V V	-

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Unit
		V _{REFHI}	Ref High	2 × BandGap	2.507	2.598	2.698	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	BandGap	1.203	1.307	1.424	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.012	Vss + 0.067	V
		V _{REFHI}	Ref High	2 × BandGap	2.516	2.598	2.683	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	BandGap	1.241	1.303	1.376	V
0b110		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.007	Vss + 0.040	V
00110		V _{REFHI}	Ref High	2 × BandGap	2.510	2.599	2.693	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	BandGap	1.240	1.305	1.374	V
	5	V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.008	Vss + 0.048	V
		V _{REFHI}	Ref High	2 × BandGap	2.515	2.598	2.683	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	BandGap	1.258	1.302	1.355	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.005	Vss + 0.03	V
0b111	All power settings. Not allowed for 3.3 V.	-	-	_	-	_	_	_

Table 15. 3.3-V DC Analog Reference Specifications (continued)

DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 16. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	-	12.2	-	kΩ	
C _{SC}	Capacitor Unit Value (Switched Capacitor)	-	80	-	fF	

DC POR, SMP, and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 17. DC POR, SMP, and LVD	Specifications
--------------------------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0R} V _{PPOR1R} V _{PPOR2R}	PORLEV[1:0] = 01b	_	2.91 4.39 4.55	-	>>>	
Vppor0 Vppor1 Vppor2	V _{DD} Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.82 4.39 4.55	_	V V V	
V _{PH0} V _{PH1} V _{PH2}	PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_ _ _	92 0 0		mV mV mV	

Notes

Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
 Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

5. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and --40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 18. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools.
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools.
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools.
V _{DDIWRITE}	Supply voltage for flash write operation	3.15	-	5.25	V	This specification applies to this device when it is executing internal flash writes.
I _{DDP}	Supply current during programming or verify	-	10	30	mA	
V _{ILP}	Input Low-voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input High-voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying V _{ILP} to P1[0] or P1[1] During Programming or Verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying V _{IHP} to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low-voltage during programming or verify	-	-	Vss + 0.75	V	
V _{OHV}	Output High-voltage during programming or verify	V _{DD} - 1.0	-	V _{DD}	V	
Flash _{ENPB}	flash endurance (per block)	50,000 ^[6]	-	-	-	Erase/write cycles per block.
Flash _{ENT}	flash endurance (total) ^[7]	1,800,000	_	-	-	Erase/write cycles.
Flash _{DR}	flash data retention	10	-	-	Years	

DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 19. DC I²C Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
V _{ILI2C} ^[8]	Input low level	-	-	0.3 × V _{DD}	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	0.25 × V _{DD}	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C} ^[8]	Input high level	$0.7 \times V_{DD}$	-	-	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Notes

- 6. The 50,000 cycle flash endurance per block is only guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.
- 4.75 V to 5.25 V.
 7. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (flashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.
 8. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO specifications sections. The I²C GPIO pins also meet the mentioned specs.

Table 20. AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^[9, 11]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	-
SR _{POWER_} UP	Power Supply Slew Rate	_	_	250	V/ms	V_{DD} slew rate during power up.
T _{POWERUP}	Time from End of POR to CPU Executing Code	_	16	100	ms	Power up from 0V. See the System Resets section of the <i>PSoC</i> <i>Technical Reference Manual.</i>
tjit_IMO ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	700	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900		N = 32
	24 MHz IMO period jitter (RMS)	-	100	400		-
tjit_PLL ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	800	ps	-
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	1200		N = 32
	24 MHz IMO period jitter (RMS)	_	100	700		_

Figure 7. PLL Lock Timing Diagram

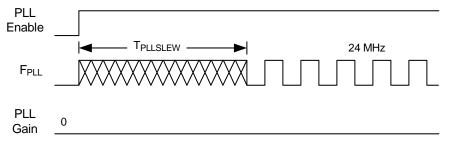
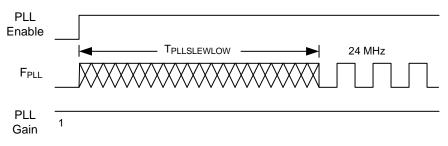
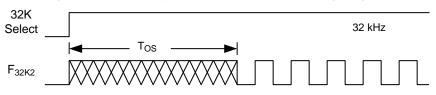
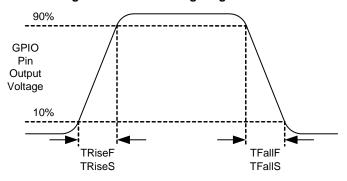




Figure 8. PLL Lock for Low Gain Setting Timing Diagram



AC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12.3	MHz	Normal Strong Mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V_{DD} = 4.75 to 5.25 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V_{DD} = 4.75 to 5.25 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 30. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	_
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	_
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	_
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	_
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	_
T _{ERASEB}	flash Erase Time (Block)	-	10	-	ms	_
T _{WRITE}	flash Block Write Time	-	40	-	ms	_
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	-	45	ns	V _{DD} > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
T _{ERASEALL}	flash Erase Time (Bulk)	_	80	_	ms	Erase all blocks and protection fields at once.
T _{PROGRAM_HOT}	flash Block Erase + flash Block Write Time	_	-	100 ^[15]	ms	$0^{\circ}C \le T_J \le 100 \ ^{\circ}C$
T _{PROGRAM_COLD}	flash Block Erase + flash Block Write Time	_	_	200 ^[15]	ms	$-40^{\circ}C \leq T_J \leq 0 \ ^{\circ}C$

Note

^{15.} For the full industrial range, the user must employ a Temperature Sensor User Module (flashTemp) and feed the result to the temperature argument before writing. Refer to the flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

PSoC Programmer is flexible and used on the bench in development. It is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. It is available free of charge at http://www.cypress.com.

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval Socket Programming and Evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample
- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Device Programmers

All device programmers are sold at the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240V power supply, euro-plug adapter
- USB 2.0 cable

Glossary (continued)

bias	1. A systematic deviation of a value from a reference value.
	 The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a
	reference level to operate the device.
block	1. A functional unit that performs a single function, such as an oscillator.
	 A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	 A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.

Glossary (continued)

master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .
microcontroller	An integrated circuit chip that is designed primarily for control systems and products. In addition to a CPU, a microcontroller typically includes memory, timing circuits, and IO circuitry. The reason for this is to permit the realization of a controller with a minimal quantity of chips, thus achieving maximal possible miniaturization. This in turn, reduces the volume and the cost of the controller. The microcontroller is normally not used for general-purpose computation as is a microprocessor.
mixed-signal	The reference to a circuit containing both analog and digital techniques and components.
modulator	A device that imposes a signal on a carrier.
noise	 A disturbance that affects a signal and that may distort the information carried by the signal. The random variations of one or more characteristics of any entity such as voltage, current, or data.
oscillator	A circuit that may be crystal controlled and is used to generate a clock frequency.
parity	A technique for testing transmitting data. Typically, a binary digit is added to the data to make the sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).
Phase-locked loop (PLL)	An electronic circuit that controls an oscillator so that it maintains a constant phase angle relative to a reference signal.
pinouts	The pin number assignment: the relation between the logical inputs and outputs of the PSoC device and their physical counterparts in the printed circuit board (PCB) package. Pinouts involve pin numbers as a link between schematic and PCB design (both being computer generated files) and may also involve pin names.
port	A group of pins, usually eight.
Power on reset (POR)	A circuit that forces the PSoC device to reset when the voltage is lower than a pre-set level. This is a type of hardware reset.
PSoC [®]	Cypress Semiconductor's PSoC [®] is a registered trademark and Programmable System-on- Chip™ is a trademark of Cypress.
PSoC Designer™	The software for Cypress' Programmable System-on-Chip technology.
pulse width modulator (PWM)	An output in the form of duty cycle which varies as a function of the applied measurand
RAM	An acronym for random access memory. A data-storage device from which data can be read out and new data can be written in.
register	A storage device with a specific capacity, such as a bit or byte.
reset	A means of bringing a system back to a know state. See hardware reset and software reset.
ROM	An acronym for read only memory. A data-storage device from which data can be read out, but new data cannot be written in.

Glossary (continued)

serial	1. Pertaining to a process in which all events occur one after the other.
	2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform flash operations. The functions of the SROM may be accessed in normal user code, operating from flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.