

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

XF

Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (32KB)
Controller Series	CY8CLED
RAM Size	2K x 8
Interface	I ² C, SPI, UART/USART
Number of I/O	44
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled16-48ltxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 1. Select user modules.
- 2. Configure user modules.
- 3. Organize and connect.
- 4. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a pulse with modulator (PWM) user module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

Build signal chains at the chip-Level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

Register Reference

Register Conventions

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

This chapter lists the registers of the CY8CLED16 EZ-Color device.

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and should not be accessed.

Table 4. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Acces	Name	Addr (0,Hex)	Acces
PRT0DR	00	RW	DBB20DR0	40	#	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0IE	01	RW	DBB20DR1	41	W	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0GS	02	RW	DBB20DR2	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0DM2	03	RW	DBB20CR0	43	#	ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DR	04	RW	DBB21DR0	44	#	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1IE	05	RW	DBB21DR1	45	W	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1GS	06	RW	DBB21DR2	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1DM2	07	RW	DBB21CR0	47	#	ASD11CR3	87	RW		C7	
PRT2DR	08	RW	DCB22DR0	48	#	ASC12CR0	88	RW	RDI3RI	C8	RW
PRT2IE	09	RW	DCB22DR1	49	W	ASC12CR1	89	RW	RDI3SYN	C9	RW
PRT2GS	0A	RW	DCB22DR2	4A	RW	ASC12CR2	8A	RW	RDI3IS	CA	RW
PRT2DM2	0B	RW	DCB22CR0	4B	#	ASC12CR3	8B	RW	RDI3LT0	СВ	RW
PRT3DR	0C	RW	DCB23DR0	4C	#	ASD13CR0	8C	RW	RDI3LT1	CC	RW
PRT3IE	0D	RW	DCB23DR1	4D	W	ASD13CR1	8D	RW	RDI3RO0	CD	RW
PRT3GS	0E	RW	DCB23DR2	4E	RW	ASD13CR2	8E	RW	RDI3RO1	CE	RW
PRT3DM2	0F	RW	DCB23CR0	4F	#	ASD13CR3	8F	RW		CF	
PRT4DR	10	RW	DBB30DR0	50	#	ASD20CR0	90	RW	CUR_PP	D0	RW
PRT4IE	11	RW	DBB30DR1	51	W	ASD20CR1	91	RW	STK_PP	D1	RW
PRT4GS	12	RW	DBB30DR2	52	RW	ASD20CR2	92	RW		D2	
PRT4DM2	13	RW	DBB30CR0	53	#	ASD20CR3	93	RW	IDX_PP	D3	RW
PRT5DR	14	RW	DBB31DR0	54	#	ASC21CR0	94	RW	MVR_PP	D4	RW
PRT5IE	15	RW	DBB31DR1	55	W	ASC21CR1	95	RW	MVW_PP	D5	RW
PRT5GS	16	RW	DBB31DR2	56	RW	ASC21CR2	96	RW	I2C_CFG	D6	RW
PRT5DM2	17	RW	DBB31CR0	57	#	ASC21CR3	97	RW	I2C_SCR	D7	#
PRI6DR	18	RW	DCB32DR0	58	#	ASD22CR0	98	RW	I2C_DR	D8	RW
PR16IE	19	RW	DCB32DR1	59	W	ASD22CR1	99	RW	I2C_MSCR	D9	#
PRI6GS	1A 1D	RW	DCB32DR2	5A	RW	ASD22CR2	9A	RW	INT_CLR0	DA	RW
PRT6DM2	18	RW	DCB32CR0	5B	#	ASD22CR3	9B	RW	INT_CLR1	DB	RW
	10	RW	DCB33DR0	50	#	ASC23CR0	90	RW	INT_CLR2	DC	RW
PRI/IE	10	RW	DCB33DR1	5D	VV DW/	ASC23CR1	9D	RW	INT_CLR3	DD	RW
PRI/GS	16	RW DW/	DCB33DR2	DE EE	# KVV	ASC23CR2	9E	RW	INT_MSK3	DE	RW
	16	#	AMY IN	5F	# DW/	ASUZSUKS	9F	RVV	INT_WOKZ	DF	
DBB00DR0	20	# \\\/	AIVIA_IIN	61	RW		A0		INT_WSKU	E0 E1	RW DW/
DBB00DR2	27	RW	-	62			Δ2		INT_WORT	E1	RC
DBB00CR0	22	#	ARE CR	63	RW		A3		RES WDT	E2 E3	W
DBB01DR0	23	# #	CMP_CR0	64	#		A3 A4		DEC DH	E3	RC
DBB01DR1	25	w	ASY CR	65	#		A5		DEC DI	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	" RW	-	A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	F7	RW
DCB02DR0	28	#		68		MUL1 X	A8	W	MULO X	E8	W
DCB02DR1	29	W		69		MUL1 Y	A9	W	MULO Y	E9	W
DCB02DR2	2A	RW		6A		MUL1 DH	AA	R	MULO DH	EA	R
DCB02CR0	2B	#		6B		MUL1 DL	AB	R	MULO DL	EB	R
DCB03DR0	2C	#	TMP DR0	6C	RW	ACC1 DR1	AC	RW	ACC0 DR1	EC	RW
DCB03DR1	2D	W	TMP_DR1	6D	RW	ACC1 DR0	AD	RW	ACC0 DR0	ED	RW
DCB03DR2	2E	RW	TMP DR2	6E	RW	ACC1 DR3	AE	RW	ACC0 DR3	EE	RW
DCB03CR0	2F	#	TMP_DR3	6F	RW	ACC1_DR2	AF	RW	ACC0_DR2	EF	RW
DBB10DR0	30	#	ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
DBB10DR1	31	W	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10DR2	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
DBB10CR0	33	#	ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11DR0	34	#	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11DR1	35	W	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	1
DBB11DR2	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	1
DBB11CR0	37	#	ACB01CR2	77	RW		B7		CPU_F	F7	RL
DCB12DR0	38	#	ACB02CR3	78	RW	RDI1RI	B8	RW		F8	1
DCB12DR1	39	W	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB12DR2	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
DCB12CR0	3B	#	ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
DCB13DR0	3C	#	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	
DCB13DR1	3D	W	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	
DCB13DR2	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
DCB13CR0	3F	#	ACB03CR2	7F	RW		BF		CPU_SCR0	FF	#

Blank fields are reserved and should not be accessed.

Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED16 EZ-Color device. For the most up-to-date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Refer to Table 20 for the electrical specifications for the internal main oscillator (IMO) using SLIMO mode.

Figure 5. Voltage versus CPU Frequency, and IMO Frequency Trim Options

Absolute Maximum Ratings

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	Ŷ	Higher storage temperatures reduces data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrade reliability.
T _{BAKETEMP}	Bake temperature	Ι	125	See package label	°C	
T _{BAKETIME}	Bake time	See package label	_	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V _{DD} relative to Vss	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	Vss - 0.5	-	V _{DD} + 0.5	V	
V _{IOZ}	DC Voltage applied to Tri-state	Vss - 0.5	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
I _{MAIO}	Maximum current into any port pin configured as analog driver	-50	_	+50	mA	
ESD	Electro static discharge voltage	2000	_	_	V	Human body model ESD.
LU	Latch up current	-	_	200	mA	

Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-0	-	+85	°C	
Тյ	Junction temperature	-0	_	+100	°C	The temperature rise from ambient to junction is package specific. See Thermal Impedances per Package on page 42. The user must limit the power consumption to comply with this requirement.

DC Electrical Characteristics

DC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and -40 °C $\le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 6. DC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	3.00	_	5.25	V	See DC POR and LVD specifications, Table 3-15 on page 27.
I _{DD}	Supply current	-	8	14	mA	Conditions are 5.0 V, $T_A = 25$ °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DD3}	Supply current	-	5	9	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DDP}	Supply current when IMO = 6 MHz using SLIMO mode.	_	2	3	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz.
I _{SB}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	_	3	10	μA	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, -40°C $\leq T_A \leq 55$ °C.
I _{SBH}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	Ι	4	25	μA	Conditions are with internal slow speed oscillator, $V_{DD} = 3.3 \text{ V}, 55 \text{ °C} < T_A \le 85 \text{ °C}.$
I _{SBXTL}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, internal slow oscillator, and 32 kHz crystal oscillator active.	Ι	4	12	μA	$ \begin{array}{l} \mbox{Conditions are with properly loaded,} \\ \mbox{1 } \mu W \mbox{ max, } 32.768 \mbox{ kHz crystal.} \\ \mbox{V}_{\mbox{DD}} = 3.3 \mbox{ V}, -40 ^{\circ}\mbox{C} \leq T_A \leq 55 ^{\circ}\mbox{C}. \end{array} $
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and 32 kHz crystal oscil- lator active.	-	5	27	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C.
V _{REF}	Reference voltage (Bandgap)	1.28	1.3	1.32	V	Trimmed for appropriate V _{DD} .

DC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 7. DC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up Resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down Resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} - 1.0	_	_	V	IOH = 10 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined IOH budget.
V _{OL}	Low output level	_	_	0.75	V	IOL = 25 mA, V_{DD} = 4.75 to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined IOL budget.
I _{ОН}	High level source current	10	-	-	mA	VOH = V_{DD} -1.0 V. See the limitations of the total current in the Note for VOH.
I _{OL}	Low level sink current	25	-	-	mA	VOL = 0.75 V. See the limitations of the total current in the Note for VOL.
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25.
V _{IH}	Input high level	2.1	-		V	V _{DD} = 3.0 to 5.25.
V _H	Input hysterisis	-	60	-	mV	
IIL	Input leakage (Absolute Value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	_	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	_	3.5	10	pF	Package and pin dependent. Temp =25 °C.

Table 9. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Unit	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = Low, Opamp bias = Low	-	1.4	10	mV	Power = High, Opamp bias = High setting is not allowed for $3.3 \text{ V} \text{ V}_{\text{DD}}$
	Power = Low, Opamp bias = High	-	1.4	10	mV mV	operation.
	Power = Medium, Opamp bias = Low	_	1.4	10	mV	
	Power = High. Opamp bias = Low	_	1.4	10	mV	
	Power = High, Opamp bias = High	-	-	_	mV	
TCV _{OSOA}	Average input offset voltage drift	-	7	40	µV/°C	_
EBOA	Input leakage current (port 0 analog pins)	-	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
СМОА	Common mode voltage range	0	_	V _{DD}	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common mode rejection ratio	60	-	-	dB	-
G _{OLOA}	Open loop gain	80	-	-	dB	-
V _{OHIGHOA}	High output voltage swing (internal signals)	V _{DD} – 0.01	-	-	V	-
V _{OLOWOA}	Low output voltage swing (internal signals)	-	-	0.01	V	-
ISOA	Supply current (including associated AGND buffer) Power = Low, Opamp bias = Low Power = Low, Opamp bias = High Power = Medium, Opamp bias = Low Power = Medium, Opamp bias = High Power = High, Opamp bias = Low Power = High, Opamp bias = High	- - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200 -	μΑ μΑ μΑ μΑ μΑ μΑ	Power = High, Opamp bias = High setting is not allowed for 3.3 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	54	80	_	dB	$V_{SS} \leq V_{IN} \leq (V_{DD}-2.25)$ or $(V_{DD}-1.25~V) \leq V_{IN} \leq V_{DD}$

DC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 10. DC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} - 1	V	_
I _{SLPC}	LPC supply current	-	10	40	μA	-
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	-

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
		V _{REFHI}	Ref High	2 × BandGap	2.507	2.598	2.698	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	BandGap	1.203	1.307	1.424	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.012	Vss + 0.067	V
		V _{REFHI}	Ref High	2 × BandGap	2.516	2.598	2.683	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	BandGap	1.241	1.303	1.376	V
06110		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.007	Vss + 0.040	V
00110	RefPower = Med Opamp bias = High	V _{REFHI}	Ref High	2 × BandGap	2.510	2.599	2.693	V
		V _{AGND}	AGND	BandGap	1.240	1.305	1.374	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.008	Vss + 0.048	V
		V _{REFHI}	Ref High	2 × BandGap	2.515	2.598	2.683	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	BandGap	1.258	1.302	1.355	V
		V _{REFLO}	Ref Low	Vss	Vss	Vss + 0.005	Vss + 0.03	V
0b111	All power settings. Not allowed for 3.3 V.	-	_	-	_	_	_	-

Table 15. 3.3-V DC Analog Reference Specifications (continued)

DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 16. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	—	12.2	-	kΩ	
C _{SC}	Capacitor Unit Value (Switched Capacitor)	—	80	-	fF	

DC POR, SMP, and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, or 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 17.	DC POR	SMP.	and LVD	Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} r V _{PPOR1} r V _{PPOR2} r	V _{DD} Value for PPOR Trip (positive ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.91 4.39 4.55	_	V V V	
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} Value for PPOR Trip (negative ramp) PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.82 4.39 4.55	_	V V V	
V _{PH0} V _{PH1} V _{PH2}	PPOR Hysteresis PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	 	92 0 0	_ _ _	mV mV mV	

Notes

4. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

5. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

Table 17.	DC POR,	SMP, a	nd LVD	Specifications	(con	tinued)	

Symbol	Description	Min	Тур	Max	Units	Notes
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \mbox{ Value for LVD Trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72	2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81	2.98 ^[4] 3.08 3.20 4.08 4.57 4.74 ^[5] 4.82 4.91	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Vpump0 Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	$\begin{array}{l} V_{DD} \mbox{ Value for SMP Trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.96 3.03 3.18 4.11 4.55 4.63 4.72 4.90	3.02 3.10 3.25 4.19 4.64 4.73 4.82 5.00	3.08 3.16 3.32 4.28 4.74 4.82 4.91 5.10	V V V V V V V V	

AC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12.3	MHz	Normal Strong Mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.75 to 5.25 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.75 to 5.25 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%

AC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 30. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	-
T _{FSCLK}	Fall Time of SCLK	1	_	20	ns	-
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	_	-	ns	-
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	_	-	ns	-
F _{SCLK}	Frequency of SCLK	0	_	8	MHz	-
T _{ERASEB}	flash Erase Time (Block)	-	10	-	ms	-
T _{WRITE}	flash Block Write Time	-	40	-	ms	-
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	_	45	ns	V _{DD} > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-	_	50	ns	$3.0 \leq V_{DD} \leq 3.6$
T _{ERASEALL}	flash Erase Time (Bulk)	-	80	-	ms	Erase all blocks and protection fields at once.
T _{PROGRAM_HOT}	flash Block Erase + flash Block Write Time	-	_	100 ^[15]	ms	$0^{\circ}C \le T_{J} \le 100 \ ^{\circ}C$
T _{PROGRAM_COLD}	flash Block Erase + flash Block Write Time	_	_	200 ^[15]	ms	$-40^{\circ}C \leq T_{J} \leq 0 \ ^{\circ}C$

Note

^{15.} For the full industrial range, the user must employ a Temperature Sensor User Module (flashTemp) and feed the result to the temperature argument before writing. Refer to the flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.

Packaging Information

This section illustrates the packaging specifications for the CY8CLED16 EZ-Color device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the emulator pod drawings at http://www.cypress.com.

Packaging Dimensions

DIMENSIONS IN MILLIMETERS MIN. MAX.

Figure 15. 48-Pin (7 × 7 × 1.0 mm) QFN (Sawn)

Important Note

For information on the preferred dimensions for mounting QFN packages, see the following Application Note "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.

Pinned vias for thermal conduction are not required for the low-power device.

Thermal Impedances

Table 32. Thermal Impedances per Package

Package	Typical θ _{JA} ^[17]
28 SSOP	94 °C/W
48 QFN ^[18]	28 °C/W

Capacitance on Crystal Pins

Table 33. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
28 SSOP	2.8 pF
48 QFN	1.8 pF

Solder Reflow Peak Temperature

Following is the minimum solder reflow peak temperature to achieve good solderability.

Table 34. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Time at Maximum Peak Temperature
28 SSOP	260 °C	30 s
48 QFN	260 °C	30 s

Notes

17. $T_J = T_A + POWER \times \theta_{JA}$

18. To achieve the thermal impedance specified for the QFN package, refer to "Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages" available at http://www.amkor.com.

Acronyms

Acronyms Used

Table 37 lists the acronyms that are used in this document.

Table 37. Acronyms Used in this Datasheet

Acronym	Description	Acronym	Description
AC	alternating current	MAC	multiply-accumulate
ADC	analog-to-digital converter	MIPS	million instructions per second
API	application programming interface	PCB	printed circuit board
CMOS	complementary metal oxide semiconductor	PDIP	plastic dual-in-line package
CPU	central processing unit	PLL	phase-locked loop
CRC	cyclic redundancy check	POR	power-on reset
СТ	continuous time	PPOR	precision power on reset
DAC	digital-to-analog converter	PRS	pseudo-random sequence
DC	direct current	PSoC [®]	Programmable System-on-Chip
DTMF	dual-tone multi-frequency	PWM	pulse-width modulator
ECO	external crystal oscillator	QFN	quad flat no leads
EEPROM	electrically erasable programmable read-only memory	RTC	real time clock
GPIO	general purpose I/O	SAR	successive approximation
ICE	in-circuit emulator	SC	switched capacitor
IDE	integrated development environment	SMP	switch mode pump
ILO	internal low speed oscillator	SPI	serial peripheral interface
IMO	internal main oscillator	SRAM	static random access memory
I/O	input/output	SROM	supervisory read only memory
IrDA	infrared data association	SSOP	shrink small-outline package
ISSP	in-system serial programming	UART	universal asynchronous reciever / transmitter
LCD	liquid crystal display	USB	universal serial bus
LED	light-emitting diode	WDT	watchdog timer
LPC	low power comparator	XRES	external reset
LVD	low-voltage detect		

Reference Documents

Design Aids – Reading and Writing $PSoC^{\textcircled{B}}$ Flash – AN2015 (001-40459)

Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 (001-14503)

Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages – available at http://www.amkor.com.

Document Conventions

Units of Measure

Table 38 lists the units of measures.

Table 38. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
dB	decibels	ms	milliseconds
°C	degree Celsius	mH	millihenry
fF	femtofarad	ns	nanoseconds
kHz	kilohertz	μV	microvolts
kΩ	kilohm	V	volts
MHz	megahertz	mV	millivolts
μA	microamperes	μW	microwatts
μs	microseconds	%	percent
mA	milliamperes	W	watt
nA	nanoamperes	mm	millimeters
pF	picofarad	ps	picosecond
pА	pikoamperes	ppm	parts per million
rt-Hz	root hertz	nV	nanovolts

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimals.

Glossary

active high	1. A logic signal having its asserted state as the logic 1 state.
	2. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are switched capacitor (SC) and continuous time (CT) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog- to-digital (ADC) converter performs the reverse operation.
duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.
flash block	The smallest amount of flash ROM space that may be programmed at one time and the smallest amount of flash space that may be protected. A flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I^2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside

a PSoC by interfacing to the flash, SRAM, and register space.

Glossary (continued)

serial	1. Pertaining to a process in which all events occur one after the other.
	2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a single device or channel.
settling time	The time it takes for an output signal or value to stabilize after the input has changed from one value to another.
shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device where you can store and retrieve data at a high rate of speed. The term static is used because, after a value is loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform flash operations. The functions of the SROM may be accessed in normal user code, operating from flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.