Infineon Technologies - CY8CLED16-48LTXIT Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

XF

Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (32KB)
Controller Series	CY8CLED
RAM Size	2K x 8
Interface	I ² C, SPI, UART/USART
Number of I/O	44
Voltage - Supply	3V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled16-48ltxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Contents

EZ-Color™ Functional Overview	4
Target Applications	4
The PSoC Core	4
The Digital System	4
The Analog System	5
Additional System Resources	6
EZ-Color Device Characteristics	6
Getting Started	6
Application Notes	6
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	7
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	8
Pin Information	9
Pinouts	9
Register Reference	11
Register Conventions	11
Register Mapping Tables	11
Electrical Specifications	14
Absolute Maximum Ratings	15

Operating Temperature	15
DC Electrical Characteristics	16
AC Electrical Characteristics	
Packaging Information	
Packaging Dimensions	
Thermal Impedances	42
Capacitance on Crystal Pins	42
Solder Reflow Peak Temperature	42
Development Tool Selection	43
Software	
Evaluation Tools	43
Device Programmers	44
Accessories (Emulation and Programming)	44
Ordering Information	44
Key Device Features	44
Ordering Code Definitions	44
Acronyms	45
Acronyms Used	45
Reference Documents	45
Document Conventions	
Units of Measure	
Numeric Conventions	46
Glossary	46
Document History Page	51
Sales, Solutions, and Legal Information	52
Worldwide Sales and Design Support	52
Products	52
PSoC® Solutions	52

EZ-Color™ Functional Overview

Cypress's EZ-Color family of devices offers the ideal control solution for High Brightness LED applications requiring intelligent dimming control. EZ-Color devices combine the power and flexibility of Programmable System-on-Chip (PSoC); with Cypress's precise illumination signal modulation (PrISM) modulation technology providing lighting designers a fully customizable and integrated lighting solution platform.

The EZ-Color family supports a range of independent LED channels from 4 channels at 32 bits of resolution each, up to 16 channels at 8 bits of resolution each. This enables lighting designers the flexibility to choose the LED array size and color quality. PSoC Designer software, with lighting specific drivers, can significantly cut development time and simplify implementation of fixed color points through temperature, optical, and LED binning compensation. EZ-Color's virtually limitless analog and digital customization allow for simple integration of features in addition to intelligent lighting, such as Battery Charging, Image Stabilization, and Motor Control during the development process. These features, along with Cypress' best-in-class quality and design support, make EZ-Color the ideal choice for intelligent HB LED control applications.

Target Applications

- LCD Backlight
- Large Signs
- General Lighting
- Architectural Lighting
- Camera/Cell Phone flash
- flashlights

The PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a central processing unit (CPU), memory, clocks, and configurable general purpose I/O (GPIO).

The M8C CPU core is a powerful processor with speeds up to 48 MHz, providing a four million instructions per second (MIPS) 8-bit Harvard-architecture microprocessor. The CPU utilizes an interrupt controller with 25 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and watchdog timers (WDT).

Memory encompasses 32 KB of flash for program storage, 2 KB of SRAM for data storage, and up to 2 KB of EEPROM emulated using the flash. Program flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The EZ-Color family incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low speed oscillator (ILO) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the 32.768 kHz external crystal oscillator (ECO) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the EZ-Color device.

EZ-Color GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The digital system is composed of 16 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user modules. Digital peripheral configurations include those listed below.

- PrISM (8-to 32-bit)
- PWMs (8-to 32-bit)
- PWMs with Dead band (8-to 32-bit)
- Counters (8-to 32-bit)
- Timers (8-to 32-bit)
- UART 8 bit with selectable parity (up to 4)
- SPI master and slave (up to 4 each)
- I²C slave and multi-master (1 available as a System Resource)
- Cyclical Redundancy Checker/Generator (8- to 32-bit)
- IrDA (up to 4)
- Generators (8-to 32-bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by EZ-Color device family. This allows you the optimum choice of system resources for your application. Family resources are shown in Table 1 on page 6.

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Resources include a multiplier, decimator, switch mode pump, low-voltage detection, and power-onreset (POR). Statements describing the merits of each system resource are presented below.

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital PSoC blocks as clock dividers.
- Multiply accumulate (MAC) provides fast 8-bit multiplier with 32-bit accumulate, to assist in general math and digital filters.

- The decimator provides a custom hardware filter for digital signal, processing applications including the creation of Delta Sigma ADCs.
- The I²C module provides 100 and 400 kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low-voltage-detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced power on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump (SMP) generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.

EZ-Color Device Characteristics

Depending on your EZ-Color device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks and 12, 6, or 4 analog blocks. The following table lists the resources available for specific EZ-Color device groups. The device covered by this data sheet is shown in the highlighted row of the table.

Table 1. EZ-Color Device Characteristics

Part Number	LED Channels	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size	CapSense
CY8CLED02	2	16	1	4	8	0	2	4	256 Bytes	4K	No
CY8CLED04	4	56	1	4	48	2	2	6	1K	16K	Yes
CY8CLED08	8	44	2	8	12	4	4	12	256 Bytes	16K	No
CY8CLED16	16	44	4	16	12	4	4	12	2K	32K	No

Getting Started

The quickest way to understand the device is to read this data sheet and then use the PSoC Designer Integrated development environment (IDE). This data sheet is an overview of the EZ-Color integrated circuit and presents specific pin, register, and electrical specifications. For in depth information, along with detailed programming information, see the Technical Reference Manual for this PSoC device.

For up-to-date ordering, packaging, and electrical specification information, see the latest device data sheets on the web at http://www.cypress.com.

Application Notes

Cypress application notes are an excellent introduction to the wide variety of possible PSoC designs.

Development Kits

PSoC Development Kits are available online from and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark.

Training

Free PSoC technical training (on demand, webinars, and workshops), which is available online via www.cypress.com, covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC consultant go to the CYPros Consultants web site.

Solutions Library

Visit our growing library of solution focused designs. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

Technical support – including a searchable Knowledge Base articles and technical forums – is also available online. If you cannot find an answer to your question, call our Technical Support hotline at 1-800-541-4736.

Development Tools

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- □ Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Table 5. Register Map Bank 1 Table: Configuration Space

Name	Addr(1,Hex)	Access	Name	Addr(1,Hex)	Access	Name	Addr(1,Hex)	Access	Name	Addr(1,Hex)	Access
PRT0DM0	00	RW	DBB20FN	40	RW	ASC10CR0	80	RW	RDI2RI	C0	RW
PRT0DM1	01	RW	DBB20IN	41	RW	ASC10CR1	81	RW	RDI2SYN	C1	RW
PRT0IC0	02	RW	DBB20OU	42	RW	ASC10CR2	82	RW	RDI2IS	C2	RW
PRT0IC1	03	RW		43		ASC10CR3	83	RW	RDI2LT0	C3	RW
PRT1DM0	04	RW	DBB21EN	44	RW	ASD11CR0	84	RW	RDI2LT1	C4	RW
PRT1DM1	05	RW	DBB21IN	45	RW	ASD11CR1	85	RW	RDI2RO0	C5	RW
PRT1IC0	06	RW	DBB210U	46	RW	ASD11CR2	86	RW	RDI2RO1	C6	RW
PRT1IC1	07	RW	2222100	10		ASD11CR3	87	RW/	112121101	C7	
PRT2DM0	08	DW/	DCB22EN	47	DW/	ASC12CR0	99	DW/	PDI2PI	C8	DW/
PRT2DM0	00	DW/	DCB22I N	40	DW/	ASC12CR0	80	DW/	RDISKI	0	DW/
PRIZUMI	03	DW/	DCB22IN	49	DW/	ASC12CR1	0.9	DW/	RDISSTN	C3	DW/
PRIZICO	0A 0B		DCB2200	4A 4D	R VV	A3C12CR2	0A 0D		RDI3I3	CA	RW DW
PRIZICI	0B	RW	DODOOFN	4D	DW/	ASC12CR3	0D	RW	RDI3LT0	CB	RW
PRI3DM0	00	RW	DCB23FN	40	RW	ASD13CR0	80	RW	RDI3L11	00	RW
PRT3DM1	00	RW	DCB23IN	4D	RW	ASD13CR1	8D	RW	RDI3RO0	CD	RW
PRI3IC0	0E	RW	DCB2300	4E	RW	ASD13CR2	8E	RW	RDI3RO1	CE	RW
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW		CF	
PRT4DM0	10	RW	DBB30FN	50	RW	ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW	DBB30IN	51	RW	ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW	DBB30OU	52	RW	ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53		ASD20CR3	93	RW	GDI_E_OU	D3	RW
PRT5DM0	14	RW	DBB31FN	54	RW	ASC21CR0	94	RW		D4	
PRT5DM1	15	RW	DBB31IN	55	RW	ASC21CR1	95	RW		D5	
PRT5IC0	16	RW	DBB31OU	56	RW	ASC21CR2	96	RW		D6	
PRT5IC1	17	RW		57		ASC21CR3	97	RW		D7	
PRT6DM0	18	RW	DCB32FN	58	RW	ASD22CR0	98	RW		D8	<u> </u>
PRT6DM1	19	RW	DCB32IN	59	RW	ASD22CR1	99	RW		D9	
PRT6IC0	1A	RW	DCB32OU	5A	RW	ASD22CR2	9A	RW		DA	
PRT6IC1	1B	RW		5B		ASD22CR3	9B	RW		DB	<u> </u>
PRT7DM0	10	RW	DCB33EN	50	RW	ASC23CR0	90	RW		DC	
PRT7DM1	10	RW	DCB33IN	5D	RW	ASC23CR1	90 9D	RW/	OSC GO EN	סס	RW/
PRT7IC0	16	RW	DCB330U	55	RW/	ASC23CR2	9E	RW/	OSC_CR4	DE	RW
PRT7IC1	15	DW/	00000	55	1.00	ASC23CR2	9E	DW/		DE	DW/
	20	DW/	CLK CB0	51	DW/	A30230N3	31			50	DW/
DBBOUFIN	20		CLK_CR0	60	RW DW/		AU		OSC_CR0	E0	RW DW
DBB00IN	21	RW	CLK_CRI	61	RW		AI		USC_CRI	EI	RW
DBB0000	22	RW	ABF_CR0	62	RW		A2		USC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLI_CR	E3	RW
DBB01FN	24	RW		64			A4		VLI_CMP	E4	ĸ
DBB01IN	25	RW		65			A5			E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7		DEC_CR2	E7	RW
DCB02FN	28	RW	ALT_CR1	68	RW		A8		IMO_TR	E8	W
DCB02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW		AE			EE	
	2F		TMP_DR3	6F	RW		AF			EF	
DBB10FN	30	RW	ACB00CR3	70	RW	RDIORI	B0	RW		F0	
DBB10IN	31	RW	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10OU	32	RW	ACB00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
DBB11FN	34	RW	ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
DBB11IN	35	RW	ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	<u> </u>
DBB110U	36	RW	ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
5551100	37		ACB01CR2	77	RW	TID IOT IOT	B7		CPU F	F7	RI
DCB12EN	38	RW	ACB02CR3	78	RW	RDI1RI	 B8	RW	v	F8	+
DCB12IN	30	RW/	ACB02CP0	70	RW/	RDI1SVN	BQ	RW		FQ	<u> </u>
DCB12IN	24	DW/		7.0	DW/	PDI419	D.	DW/		FA	DW/
DCB1200	3A 2D	RVV	ACB02CK1	78	RW DW/		DA	RW	PLO_PKI		RVV
DODIOE	3B 00	DW/	ACBUZCR2	70	RW		DB	RVV		FB FO	
DCB13FN	30	RW	ACBU3CR3	70	RW		BC DD	RVV		FC	
DCB13IN	30	RW	ACB03CR0	70	RW	KDI1KO0	BD BD	RW		FD	
DCB13OU	3E	RW	ACB03CR1	/E	RW	KDI1KO1	BE	RW	CPU_SCR1	FE	#
	3F	1	ACB03CR2	7F	RW		BF	1	CPU_SCR0	FF	#

Blank fields are reserved and should not be accessed.

Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8CLED16 EZ-Color device. For the most up-to-date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com.

Specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Refer to Table 20 for the electrical specifications for the internal main oscillator (IMO) using SLIMO mode.

Figure 5. Voltage versus CPU Frequency, and IMO Frequency Trim Options

DC Electrical Characteristics

DC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0 V to 3.6 V and -40 °C $\le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 6. DC Chip Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	3.00	_	5.25	V	See DC POR and LVD specifications, Table 3-15 on page 27.
I _{DD}	Supply current	-	8	14	mA	Conditions are 5.0 V, $T_A = 25$ °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DD3}	Supply current	-	5	9	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, T _A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 0.366 kHz.
I _{DDP}	Supply current when IMO = 6 MHz using SLIMO mode.	_	2	3	mA	Conditions are $V_{DD} = 3.3 \text{ V}$, $T_A = 25 \text{ °C}$, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz.
I _{SB}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	_	3	10	μA	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, -40°C $\leq T_A \leq 55$ °C.
I _{SBH}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, and internal slow oscillator active.	Ι	4	25	μA	Conditions are with internal slow speed oscillator, $V_{DD} = 3.3 \text{ V}, 55 \text{ °C} < T_A \le 85 \text{ °C}.$
I _{SBXTL}	Sleep (Mode) current with POR, LVD, Sleep Timer, WDT, internal slow oscillator, and 32 kHz crystal oscillator active.	Ι	4	12	μA	$ \begin{array}{l} \mbox{Conditions are with properly loaded,} \\ \mbox{1 } \mu W \mbox{ max, } 32.768 \mbox{ kHz crystal.} \\ \mbox{V}_{\mbox{DD}} = 3.3 \mbox{ V}, -40 ^{\circ}\mbox{C} \leq T_A \leq 55 ^{\circ}\mbox{C}. \end{array} $
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and 32 kHz crystal oscil- lator active.	-	5	27	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C.
V _{REF}	Reference voltage (Bandgap)	1.28	1.3	1.32	V	Trimmed for appropriate V _{DD} .

Table 15. 3.3-V DC Analog Reference Specifications

Reference ARF_CR[5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Unit
		V _{REFHI}	Ref High	V _{DD} /2 + BandGap	V _{DD} /2 + 1.225	V _{DD} /2 + 1.292	V _{DD} /2 + 1.361	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.067	V _{DD} /2 - 0.002	$V_{DD}/2 + 0.063$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – BandGap	V _{DD} /2 – 1.35	V _{DD} /2 - 1.293	V _{DD} /2 - 1.210	V
		V _{REFHI}	Ref High	V _{DD} /2 + BandGap	V _{DD} /2 + 1.218	V _{DD} /2 + 1.294	V _{DD} /2 + 1.370	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.038	V _{DD} /2 - 0.001	V _{DD} /2 + 0.035	V
05000		V _{REFLO}	Ref Low	V _{DD} /2 – BandGap	V _{DD} /2 – 1.329	V _{DD} /2 – 1.296	V _{DD} /2 – 1.259	V
00000		V _{REFHI}	Ref High	V _{DD} /2 + BandGap	V _{DD} /2 + 1.221	V _{DD} /2 + 1.294	V _{DD} /2 + 1.366	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.050	V _{DD} /2 - 0.002	V _{DD} /2 + 0.046	V
		V _{REFLO}	Ref Low	V _{DD} /2 – BandGap	V _{DD} /2 - 1.331	V _{DD} /2 - 1.296	V _{DD} /2 - 1.260	V
		V _{REFHI}	Ref High	V _{DD} /2 + BandGap	V _{DD} /2 + 1.226	V _{DD} /2 + 1.295	V _{DD} /2 + 1.365	V
	RefPower = Med Opamp bias = Low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 - 0.028	V _{DD} /2 – 0.001	V _{DD} /2 + 0.025	V
		V _{REFLO}	Ref Low	V _{DD} /2 – BandGap	V _{DD} /2 - 1.329	V _{DD} /2 - 1.297	V _{DD} /2 - 1.262	V
,		V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.098	P2[4] + P2[6] - 0.018	P2[4] + P2[6] + 0.055	V
	RefPower = High Opamp bias = High	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4] – P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.055	P2[4] – P2[6] + 0.013	P2[4] – P2[6] + 0.086	V
		V _{REFHI}	Ref High	P2[4] + P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.082	P2[4] + P2[6] - 0.011	P2[4] + P2[6] + 0.050	V
	RefPower = High Opamp bias = Low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
05001		V _{REFLO}	Ref Low	P2[4] – P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.037	P2[4] – P2[6] + 0.006	P2[4] – P2[6] + 0.054	V
00001		V _{REFHI}	Ref High	P2[4] + P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.079	P2[4] + P2[6] - 0.012	P2[4] + P2[6] + 0.047	V
	RefPower = Med Opamp bias = High	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.038	P2[4] – P2[6] + 0.006	P2[4] – P2[6] + 0.057	V
		V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.080	P2[4] + P2[6] - 0.008	P2[4] + P2[6] + 0.055	V
	RetPower = Med Opamp bias = Low	V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.032	P2[4] – P2[6] + 0.003	P2[4] – P2[6] + 0.042	V

Table 17.	DC POR,	SMP, a	nd LVD	Specifications	(con	tinued)	

Symbol	Description	Min	Тур	Max	Units	Notes
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \mbox{ Value for LVD Trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.86 2.96 3.07 3.92 4.39 4.55 4.63 4.72	2.92 3.02 3.13 4.00 4.48 4.64 4.73 4.81	2.98 ^[4] 3.08 3.20 4.08 4.57 4.74 ^[5] 4.82 4.91	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
Vpump0 Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	$\begin{array}{l} V_{DD} \mbox{ Value for SMP Trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \\ \end{array}$	2.96 3.03 3.18 4.11 4.55 4.63 4.72 4.90	3.02 3.10 3.25 4.19 4.64 4.73 4.82 5.00	3.08 3.16 3.32 4.28 4.74 4.82 4.91 5.10	V V V V V V V V	

DC Programming Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and --40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 18. DC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional requirements of external programmer tools.
V _{DDLV}	Low V _{DD} for verify	3.0	3.1	3.2	V	This specification applies to the functional requirements of external programmer tools.
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional requirements of external programmer tools.
V _{DDIWRITE}	Supply voltage for flash write operation	3.15	-	5.25	V	This specification applies to this device when it is executing internal flash writes.
I _{DDP}	Supply current during programming or verify	-	10	30	mA	
V _{ILP}	Input Low-voltage during programming or verify	-	-	0.8	V	
V _{IHP}	Input High-voltage during programming or verify	2.2	-	-	V	
I _{ILP}	Input Current when Applying V _{ILP} to P1[0] or P1[1] During Programming or Verify	-	-	0.2	mA	Driving internal pull-down resistor.
I _{IHP}	Input Current when Applying V _{IHP} to P1[0] or P1[1] During Programming or Verify	-	-	1.5	mA	Driving internal pull-down resistor.
V _{OLV}	Output Low-voltage during programming or verify	-	-	Vss + 0.75	V	
V _{OHV}	Output High-voltage during programming or verify	V _{DD} - 1.0	-	V _{DD}	V	
Flash _{ENPB}	flash endurance (per block)	50,000 ^[6]	-	-	-	Erase/write cycles per block.
Flash _{ENT}	flash endurance (total) ^[7]	1,800,000	-	-	-	Erase/write cycles.
Flash _{DR}	flash data retention	10	-	-	Years	

DC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 19. DC I²C Specifications

Parameter	Description	Min	Тур	Max	Units	Notes
V _{ILI2C} ^[8]	Input low level	-	-	0.3 × V _{DD}	V	$3.0~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C} ^[8]	Input high level	$0.7 \times V_{DD}$	-	-	V	$3.0~V \leq V_{DD} \leq 5.25~V$

Notes

- 6. The 50,000 cycle flash endurance per block is only guaranteed if the Flash is operating within one voltage range. Voltage ranges are 3.0 V to 3.6 V and 4.75 V to 5.25 V.
- 4.75 V to 5.25 V.
 7. A maximum of 36 x 50,000 block endurance cycles is allowed. This may be balanced between operations on 36x1 blocks of 50,000 maximum cycles each, 36x2 blocks of 25,000 maximum cycles each, or 36x4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36x50,000 and that no single block ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (flashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs Application Note AN2015 at http://www.cypress.com under Application Notes for more information.
 8. All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO specifications sections. The I²C GPIO pins also meet the mentioned specs.

AC Electrical Characteristics

AC Chip Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Note See the individual user module data sheets for information on maximum frequencies for user modules.

Table 20.	AC Chi	p-Level S	Specifications
		p =0.0	opounioanonio

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	Internal main oscillator frequency for 24 MHz	23.4	24	24.6 ^[9,10,11]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See the figure on page 19. SLIMO Mode = 0.
F _{IMO6}	Internal main oscillator frequency for 6 MHz	5.5	6	6.5 ^[9,10,11]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. See the figure on page 19. SLIMO Mode = 1.
F _{CPU1}	CPU frequency (5 V Nominal)	0.0914	24	24.6 ^[9,10]	MHz	_
F _{CPU2}	CPU frequency (3.3 V Nominal)	0.0914	12	12.3 ^[10,11]	MHz	_
F _{48M}	Digital PSoC block frequency	0	48	49.2 ^[9,10,12]	MHz	Refer to the AC Digital Block Speci- fications below.
F _{24M}	Digital PSoC block frequency	0	24	24.6 ^[10,12]	MHz	_
F _{32K1}	Internal low speed oscillator frequency	15	32	64	kHz	_
F _{32K_U}	Internal low speed oscillator untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the <i>PSoC Technical Reference Manual</i> for details on timing this.
DC _{ILO}	Internal low speed oscillator duty cycle	20	50	80	%	_
F _{32K2}	External crystal oscillator	_	32.768		kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL frequency	-	23.986	-	MHz	A multiple (x732) of crystal frequency.
T _{PLLSLEW}	PLL lock time	0.5	-	10	ms	_
T _{PLLSLEWL} OW	PLL lock time for low gain setting	0.5	_	50	ms	_
T _{OS}	External crystal oscillator startup to 1%	_	250	500	ms	_
T _{OSACC}	External crystal oscillator startup to 100 ppm	_	300	600	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T_{osacc} period. Correct operation assumes a properly loaded 1 μ W maximum drive level 32.768 kHz crystal. 3.0V $\leq V_{DD} \leq 5.5$ V, -40 °C $\leq T_A \leq 85$ °C.
T _{XRST}	External reset pulse width	10	_	_	μS	
DC24M	24 MHz duty cycle	40	50	60	%	_
Step24M	24 MHz trim step size	—	50	—	kHz	_

Notes

 Notes

 9. 4.75 V < V_{DD} < 5.25 V.</td>

 10. Accuracy derived from Internal Main Oscillator with appropriate trim for V_{DD} range.

 11. 3.0 V < V_{DD} < 3.6 V.</td>

 12. See the individual user module data sheets for information on maximum frequencies for user modules.

 13. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

Table 20. AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^[9, 11]	MHz	Trimmed. Utilizing factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	-
SR _{POWER_} UP	Power Supply Slew Rate	-	-	250	V/ms	V _{DD} slew rate during power up.
T _{POWERUP}	Time from End of POR to CPU Executing Code	-	16	100	ms	Power up from 0V. See the System Resets section of the <i>PSoC</i> <i>Technical Reference Manual.</i>
tjit_IMO ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	700	ps	
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	900		N = 32
	24 MHz IMO period jitter (RMS)	-	100	400		-
tjit_PLL ^[13]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	800	ps	-
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	300	1200		N = 32
	24 MHz IMO period jitter (RMS)	_	100	700		_

Figure 7. PLL Lock Timing Diagram

Figure 8. PLL Lock for Low Gain Setting Timing Diagram

AC GPIO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12.3	MHz	Normal Strong Mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.75 to 5.25 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.75 to 5.25 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1k resistance and the external capacitor.

Figure 11. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

Figure 12. Typical Opamp Noise

AC Low Power Comparator Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V at 25 °C and are for design guidance only.

Table 24. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RLPC}	LPC response time	-	1	50	μS	\geq 50 mV overdrive comparator reference set within V _{REFLPC} .

AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 25. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Unit	Notes
All functions	Block input clock frequency			•	•	
	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.2	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	
Timer	Input clock frequency					
	No capture, $V_{DD} \ge 4.75 \text{ V}$	-	-	49.2	MHz	
	No capture, V _{DD} < 4.75 V	-	-	24.6	MHz	
	With capture	-	-	24.6	MHz	
	Capture pulse width	50 ^[14]	-	-	ns	
Counter	Input clock frequency					
	No enable input, $V_{DD} \ge 4.75 \text{ V}$	-	-	49.2	MHz	
	No enable input, V_{DD} < 4.75 V	-	-	24.6	MHz	
	With enable input	-	-	24.6	MHz	
	Enable input pulse width	50 ^[14]	-	-	ns	
Dead Band	Kill pulse width					
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	50 ^[14]	-	-	ns	
	Disable mode	50 ^[14]	-	-	ns	
	Input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.2	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	
CRCPRS	Input clock frequency					
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	49.2	MHz	
	V _{DD} < 4.75 V	-	-	24.6	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	-	24.6	MHz	
SPIM	Input clock frequency	-	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	The input clock is the SPI SCLK in SPIS mode
	Width of SS_negated between transmissions	50 ^[14]	-	-	ns	

Note 14.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC I²C Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Symbol	Description	Standar	d-Mode	Fast-	Mode	Unite	Notos	
Symbol	Description	Min	Max	Min	Max	Units	NOLES	
F _{SCLI2C}	SCL Clock Frequency	0	100	0	400	kHz	-	
T _{HDSTAI2C}	Hold Time (repeated) START Condition. After this period, the first clock pulse is generated.	4.0	I	0.6	-	μS	_	
T _{LOWI2C}	LOW Period of the SCL Clock	4.7	-	1.3	Ι	μS	_	
T _{HIGHI2C}	HIGH Period of the SCL Clock	4.0	-	0.6	-	μS	_	
T _{SUSTAI2C}	Set-up Time for a Repeated START Condition	4.7		0.6	-	μS	_	
T _{HDDATI2C}	Data Hold Time	0	-	0	Ι	μS	_	
T _{SUDATI2C}	Data Set-up Time	250	-	100 ^[16]	-	ns	_	
T _{SUSTOI2C}	Set-up Time for STOP Condition	4.0	-	0.6	Ι	μS	-	
T _{BUFI2C}	Bus Free Time Between a STOP and START Condition	4.7	-	1.3	-	μS	_	
T _{SPI2C}	Pulse Width of spikes are suppressed by the input filter.	_	_	0	50	ns	_	

Note

16. A Fast-Mode I2C-bus device can be used in a Standard-Mode I2C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

PSoC Programmer is flexible and used on the bench in development. It is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube In-Circuit Emulator and PSoC MiniProg. It is available free of charge at http://www.cypress.com.

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit enables the user to program PSoC devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval Socket Programming and Evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample
- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Device Programmers

All device programmers are sold at the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular Programmer Base
- Three Programming Module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production programming environment. Note that CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240V power supply, euro-plug adapter
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 35. Emulation and Programming Accessories

Part No.	Pin Package	Flex-Pod Kit ^[19]	Foot Kit ^[20]	Adapter ^[21]
CY8CLED16-48LFXI	48-pin QFN	CY3250-LED16QFN	CY3250-48QFN-FK	Adapters can be found at http://www.emulation.com.

Ordering Information

Key Device Features

The following table lists the CY8CLED16 EZ-Color devices' key package features and ordering codes.

Table 36. Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	Digital PSoC Blocks	Analog PSoC Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
48-Pin QFN (Sawn)	CY8CLED16-48LTXI	32 K	2 K	Yes	–40 °C to +85 °C	16	12	44	12	4	Yes
48-Pin QFN (Tape and Reel) (Sawn)	CY8CLED16-48LTXIT	32 K	2 K	Yes	-40 °C to +85 °C	16	12	44	12	4	Yes

Ordering Code Definitions

Notes

19. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

20. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{21.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Glossary (continued)

bias	1. A systematic deviation of a value from a reference value.
	 The amount by which the average of a set of values departs from a reference value. The electrical machanical magnetic or other force (field) applied to a device to establish a
	reference level to operate the device.
block	1. A functional unit that performs a single function, such as an oscillator.
	 A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	 A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.