
NXP USA Inc. - MC9S08SE4CTG Datasheet

Welcome to E-XFL.COM

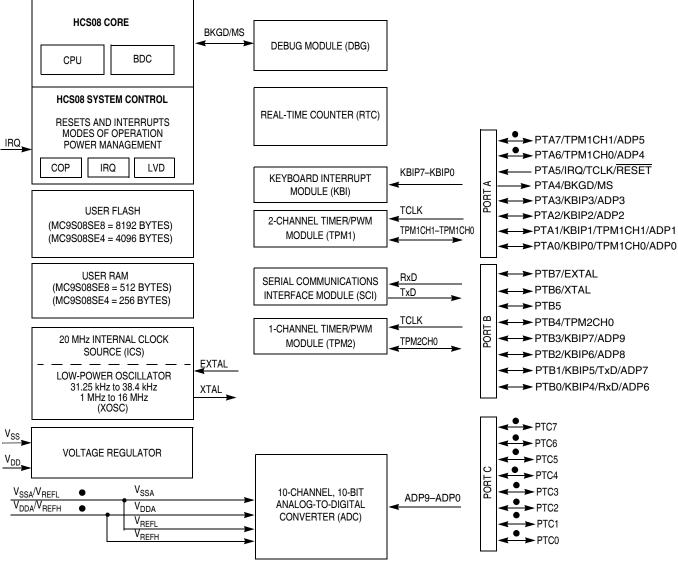
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

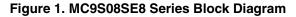
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI
Peripherals	LVD, POR, PWM
Number of I/O	14
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08se4ctg


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.



pins not available on 16-pin package

Notes:

When PTA4 is configured as BKGD, pin is bi-directional.

For the 16-pin package: V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

Pin Assignments

2 Pin Assignments

This chapter shows the pin assignments in the packages available for the MC9S08SE8 series.

Table 1. Pin Availability by Package Pin-Count

Pin Nu (Packa		< Lowest Priority > Highest			
28 (SOIC/PDIP)	16 (TSSOP)	Port Pin	Alt 1	Alt 2	Alt 3
1		PTC5			
2		PTC4			
3	1	PTA5	IRQ	TCLK	RESET
4	2	PTA4		BKGD	MS
5	3				V _{DD}
6				V _{DDA}	V _{REFH}
7				V _{SSA}	V _{REFL}
8	4				V _{SS}
9	5	PTB7	EXTAL		
10	6	PTB6	XTAL		
11	7	PTB5			
12	8	PTB4		TPM2CH0	
13		PTC3			
14	_	PTC2			
15	_	PTC1			
16		PTC0			
17	9	PTB3	KBIP7		ADP9
18	10	PTB2	KBIP6		ADP8
19	11	PTB1	KBIP5	TxD	ADP7
20	12	PTB0	KBIP4	RxD	ADP6
21	_	PTA7		TPM1CH1 ¹	ADP5
22		PTA6		TPM1CH0 ¹	ADP4
23	13	PTA3	KBIP3		ADP3
24	14	PTA2	KBIP2		ADP2
25	15	PTA1	KBIP1	TPM1CH1 ¹	ADP1
26	16	PTA0	KBIP0	TPM1CH0 ¹	ADP0
27		PTC7			
28		PTC6			

¹ TPM1 pins can be remapped to PTA7, PTA6 and PTA1,PTA0

3 Electrical Characteristics

This chapter contains electrical and timing specifications.

3.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Maximum current into V _{DD}	I _{DD}	120	mA
Digital input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Storage temperature range	T _{stg}	–55 to 150	°C

Table 3. Absolute Maximum Ratings

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low (which would reduce overall power consumption).

3.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit	
Operating temperature range (T _A	T _L to T _H -40 to 85 -40 to 105 -40 to 125	°C	
Maximum junction temperature	T_{JM}	135	°C	
	28-pin SOIC		70	°C/W
Thermal resistance single-layer board	28-pin PDIP	0	68	
	16-pin TSSOP		129	
	28-pin SOIC	θ_{JA}	48	
Thermal resistance four-layer board	28-pin PDIP		49	°C/W
	16-pin TSSOP		85	

Table 4.	Thermal	Characteristics
----------	---------	-----------------

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

Where:

 $\begin{array}{l} T_{A} = \text{Ambient temperature, }^{\circ}\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, }^{\circ}\text{C/W} \\ P_{D} = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins } - \text{user-determined} \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad Eqn. 3$$

Where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series resistance	R1	1500	Ω
Human body	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	—
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	—

Table 5. ESD and Latch-up Test Conditions

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit	_	-2.5	V
Laich-up	Maximum input voltage limit	_	7.5	V

Table 5. ESD and Latch-up Test Conditions (continued)

Table 6. ESD and Latch-up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000		V
2	Machine model (MM)	V _{MM}	±200	_	۷
3	Charge device model (CDM)	V _{CDM}	±500	—	V
4	Latch-up current at $T_A = 125 \ ^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.5 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics. **Table 7. DC Characteristics**

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1		Operating voltage	—	2.7		5.5	V
		Output high voltage — Low drive (PTxDSn = 0)					
		5 V, $I_{Load} = -2 \text{ mA}$		V _{DD} – 1.5	—	—	
		$3 \text{ V}, \text{ I}_{\text{Load}} = -0.6 \text{ mA}$		V _{DD} – 1.5	—		
		$5 \text{ V}, \text{ I}_{\text{Load}} = -0.4 \text{ mA}$		V _{DD} – 0.8	—		
		3 V, I _{Load} = -0.24 mA	V _{OH}	V _{DD} – 0.8			v
		Output high voltage — High drive (PTxDSn = 1)					-
	_	5 V, I _{Load} = –10 mA		V _{DD} – 1.5	—	—	
2	Ρ	$3 \text{ V}, \text{ I}_{\text{Load}} = -3 \text{ mA}$		V _{DD} – 1.5	—	—	
		5 V, $I_{Load} = -2 \text{ mA}$		V _{DD} – 0.8	—	—	
		3 V, I _{Load} = -0.4 mA		V _{DD} – 0.8	_		
		Output low voltage — Low drive (PTxDSn = 0)					
		5 V, I _{Load} = 2 mA		1.5	—		
		3 V, I _{Load} = 0.6 mA		1.5	—	—	
		5 V, I _{Load} = 0.4 mA		0.8	—	—	
		3 V, I _{Load} = 0.24 mA	V _{OL}	0.8	—	—	v
		Output low voltage — High drive (PTxDSn = 1)	♥OL				v
	_	5 V, I _{Load} = 10 mA		1.5	—	—	
3	Ρ	3 V, I _{Load} = 3 mA		1.5	—	—	
		5 V, I _{Load} = 2 mA		0.8	—		
		3 V, I _{Load} = 0.4 mA		0.8	—	—	
		Output high current — Max total I _{OH} for all ports					
4	Ρ	5 V	I _{OHT}	—	—	100	mA
		3 V		—	—	60	

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
5	Ρ	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}			100 60	mA
6	Ρ	Input high voltage; all digital inputs	V _{IH}	$0.65 \times V_{DD}$	_	—	v
7	Ρ	Input low voltage; all digital inputs	V _{IL}			$0.35 \times V_{DD}$	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{\text{DD}}$	_	—	mV
9	С	Input leakage current; input only pins ²	ll _{In} l	—	0.1	1	μA
10	Ρ	High impedance (off-state) leakage current ²	I _{oz}	—	0.1	1	μΑ
11	С	Total leakage combined for all inputs and Hi-Z pins — All input only and I/O ²	I _{OZTOT}	_	_	2	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
14	D	DC injection current ^{5, 6, 7} V _{IN} < V _{SS} , V _{IN} > V _{DD} Single pin limit Total MCU limit, includes sum of all stressed pins	I _{IC}	0.2 5		0.2 5	mA
15	С	Input capacitance; all non-supply pins	C _{In}		_	8	pF
16	С	RAM retention voltage	V _{RAM}	0.6	1.0	—	V
17	Ρ	POR re-arm voltage ⁸	V _{POR}	0.9	1.4	2.0	V
18	D	POR re-arm time	t _{POR}	10		—	μs
19	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
20	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
21	С	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
22	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	v
23	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
24	С	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V

Table 7. DC Characteristics (continued)

Num	С	Parameter		Symbol	Min	Typical ¹	Max	Unit
		Low-voltage inhibit reset/recover hysteresis						
25	Т		5 V	V _{hys}	—	100	—	mV
			3 V		—	60	—	
26	Ρ	Bandgap voltage reference ⁹		V _{BG}	1.18	1.20	1.21	V

Table 7. DC Characteristics (continued)

¹ Typical values are measured at 25 °C. Characterized, not tested.

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

- ³ Measured with V_{In} = V_{SS}.
- ⁴ Measured with $V_{In} = V_{DD}$.

 5 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.

- ⁶ Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- ⁷ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁸ Maximum is highest voltage that POR is guaranteed.
- ⁹ Factory trimmed at V_{DD} = 5.0 V, Temp = 25 °C.

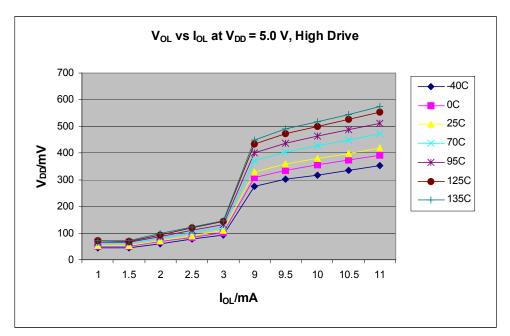


Figure 4. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 5 V)

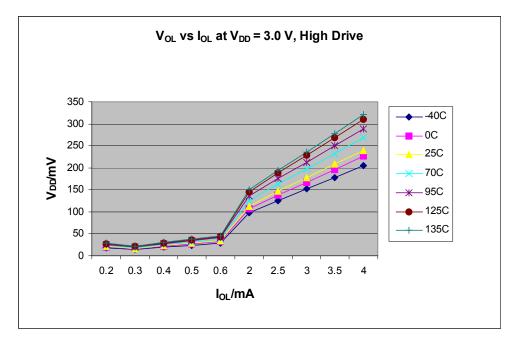


Figure 5. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 3 V)

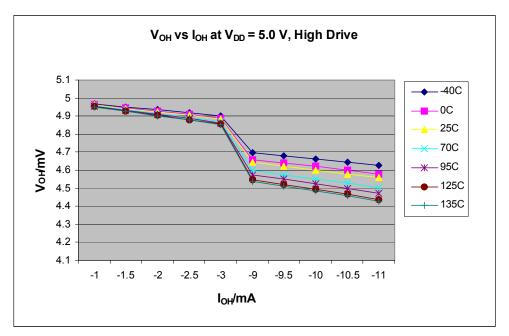


Figure 8. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 5 V)

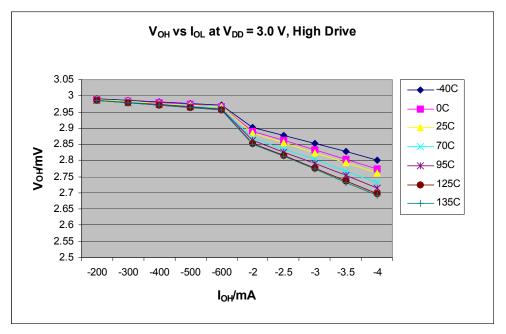


Figure 9. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 3 V)

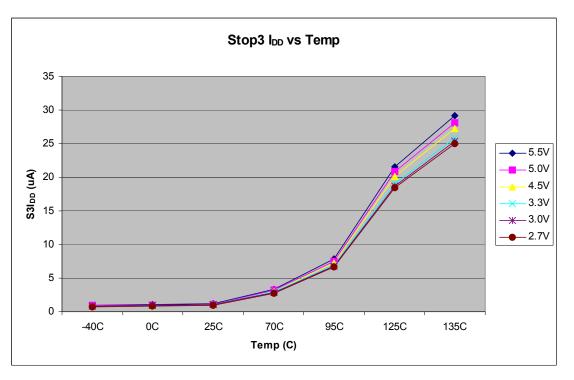


Figure 14. Typical Stop3 I_{DD} Curves

3.7 External Oscillator (XOSC) Characteristics

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) ² High range (RANGE = 1), low power (HGO = 0) ²	f _{lo} f _{hi-hgo} f _{hi-lp}	32 1 1		38.4 16 8	kHz MHz MHz
2	_	— Load capacitors		See crystal or resonator manufacturer's recommendat			
3	_	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1	_	MΩ
4		Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)	Rs		0 100 0		kΩ
4		High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz			0 0 0	0 10 20	N32

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
5	т	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP ÇSTH-HGO CSTH-LP CSTH-HGO	 	200 400 5 15		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0		20 20	MHz MHz

Table 9. Oscillator electrical specifications (Temperature Range = -40 to 125°C Ambient)

 $^1\,$ Typical column was characterized at 5.0 V, 25 $^\circ C$ or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

⁴ 4 MHz crystal.

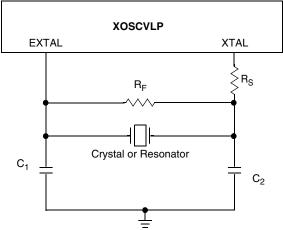


Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

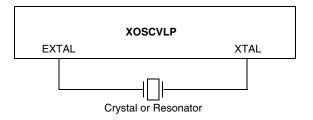


Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.8 Internal Clock Source (ICS) Characteristics

Num	С	Characteristic		Symbol	Min.	Typical ¹	Max.	Unit
1	Ρ	Average internal reference frequency at V _{DD} = 5 V and temperature = 25 °C		f _{int_t}	_	39.0625	_	kHz
2	Ρ	Internal reference frequency — user t	rimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μs
4	D	DCO output frequency range — trimmed ²	Low range (DRS = 00)	f _{dco_t}	16	_	20	MHz
5	D	DCO output frequency ² Reference = 32768 Hz and DMX32 =				59.77	_	MHz
6	С	Resolution of trimmed DCO output fre voltage and temperature (using FTRI		$\Delta f_{dco_res_t}$		±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO output fre voltage and temperature (not using F		$\Delta f_{dco_res_t}$		± 0.2	±0.4	%f _{dco}
8	С	Over full voltage and temperature ra	tion of DCO output from trimmed frequency ³ voltage and temperature range d voltage and temperature range of 0 to 70 °C			−1.0 to 0.5 ±0.5	±2 ±1	%f _{dco}
10	С	FLL acquisition time ⁴	L acquisition time ⁴		_	_	1	ms
11	С	Long term jitter of DCO output clock (interval) ⁵	averaged over 2-ms	C _{Jitter}	_	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

 5 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

Table 12: 10-bit Abe characteristics (V _{REFH} – V _{DDA} , V _{REFL} – V _{SSA}) (continued)									
Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment	
ADC	High Speed (ADLPC = 0)	_		2	3.3	5		t _{ADACK} =	
Asynchronous Clock Source	Low Power (ADLPC = 1)	D	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}	
Conversion Time (Including	Short Sample (ADLSMP = 0)	D	t _{ADC}	_	20	_	ADCK	See SE8	
sample time)	Long Sample (ADLSMP = 1)				40		cycles	reference	
Sample Time	Short Sample (ADLSMP = 0)	D	t _{ADS}	_	3.5	_	ADCK cycles	manual for conversion time variances	
	Long Sample (ADLSMP = 1)			_	23.5	_	Cycles		
Temp Sensor	–40°C– 25°C	D	~		3.266		mV/°C		
Slope	25°C– 125°C	D	m	_	3.638	_	mv/ C		
Temp Sensor Voltage	25°C	D	V _{TEMP25}	_	1.396	_	mV		
Characteristics	for 28-pin packages only								
Total	10-bit mode	Ρ	E _{TUE} -		±1	±2.5	LSB ³	Includes	
Unadjusted Error	8-bit mode	Ρ			±0.5	±1.0		quantization	
Differential	10-bit mode ²	Ρ		_	±0.5	±1.0	LSB ³		
Non-Linearity	8-bit mode ³	Ρ	DNL		±0.3	±0.5	LOD		
Integral	10-bit mode	Т	INL		±0.5	±1.0	LSB ³		
Non-Linearity	8-bit mode	Т		_	±0.3	±0.5	LOD		
Zero-Scale	10-bit mode	Ρ	E	_	±0.5	±1.5	LSB ³	V _{ADIN} = V _{SSA}	
Error	8-bit mode	Ρ	E _{ZS}	_	±0.5	±0.5	LOD	VADIN = VSSA	
Full-Scale	10-bit mode	Т	E .	_	±0.5	±1	LSB ³	V – V	
Error	8-bit mode	Т	E _{FS}	_	±0.5	±0.5	LOD	$V_{ADIN} = V_{DDA}$	
Quantization	10-bit mode	D	Eq		—	±0.5	LSB ³		
Error	8-bit mode	D	LQ		—	±0.5	LOD		
Input Leakage	10-bit mode	D	E _{IL}		±0.2	±2.5	LSB ³	Pad leakage ⁴ *	
Error	8-bit mode	D		_	±0.1	±1	LOD	R _{AS}	
Characteristics	for 16-pin package only								
Total	10-bit mode	Ρ	F		±1.5	±3.5	1003	Includes	
Unadjusted Error	8-bit mode	Ρ	E _{TUE}	_	±0.7	±1.5	LSB ³	quantization	

Table 12. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Differential	10-bit mode ³	Р	DNL		±0.5	±1.0	LSB ³	
Non-Linearity	8-bit mode ³	Р	DINL	_	±0.3	±0.5	LOD	
Integral	10-bit mode	Т	INL	—	±0.5	±1.0	LSB ³	
Non-Linearity	8-bit mode	Т		_	±0.3	±0.5	LOD	
Zero-Scale	10-bit mode	Р	E	—	±1.5	±2.1	LSB ³	$V_{ADIN} = V_{SSA}$
Error	8-bit mode	Р	E _{ZS}	_	±0.5	±0.7		
Full-Scale	10-bit mode	Т	E	—	±1	±1.5	LSB ³	V – V
Error	8-bit mode	Т	E _{FS}	—	±0.5	±0.5	LOD	$V_{ADIN} = V_{DDA}$
Quantization	10-bit mode	D	EQ	—	_	±0.5	LSB ³	
Error	8-bit mode		⊏Q	_	—	±0.5	LOD	
Input Leakage	10-bit mode	D	Е	—	±0.2	±2.5	LSB ³	Pad leakage ⁴ *
Error	8-bit mode		E _{IL}	—	±0.1	±1	LOB	R _{AS}

Table 12. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² Monotonicity and No-Missing-Codes guaranteed in 10-bit and 8-bit modes

³ 1 LSB = $(V_{\text{REFH}} - V_{\text{REFL}})/2^N$

⁴ Based on input pad leakage current. Refer to pad electricals.

3.11 Flash Specifications

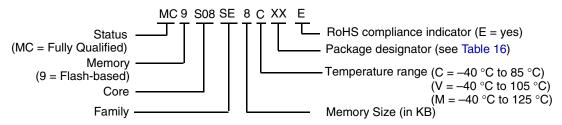
This section provides details about program/erase times and program-erase endurance for the flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section in the reference manual.

Num	С	Characteristic	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage for program/erase	V _{prog/erase}	2.7	—	5.5	V
2	D	Supply voltage for read operation	V _{Read}	2.7	—	5.5	V
3	D	Internal FCLK frequency ¹	f _{FCLK}	150	—	200	kHz
4	D	Internal FCLK period (1/FCLK)	t _{Fcyc}	5	—	6.67	μs
5	Р	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	Р	Byte program time (burst mode) ²	t _{Burst}		4		t _{Fcyc}
7	Р	Page erase time ²	t _{Page}		4000		t _{Fcyc}
8	Р	Mass erase time ²	t _{Mass}		20,000		t _{Fcyc}
9	С	Program/erase endurance ³ T_L to $T_H = -40 \text{ °C}$ to 125 °C T = 25 °C	n _{FLPE}	10,000	 100,000	_	cycles
10	С	Data retention ⁴	t _{D_ret}	15	100		years

Table 15. Flash Characteristics

¹ The frequency of this clock is controlled by a software setting.


² These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- ³ Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.
- ⁴ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

4 Ordering Information

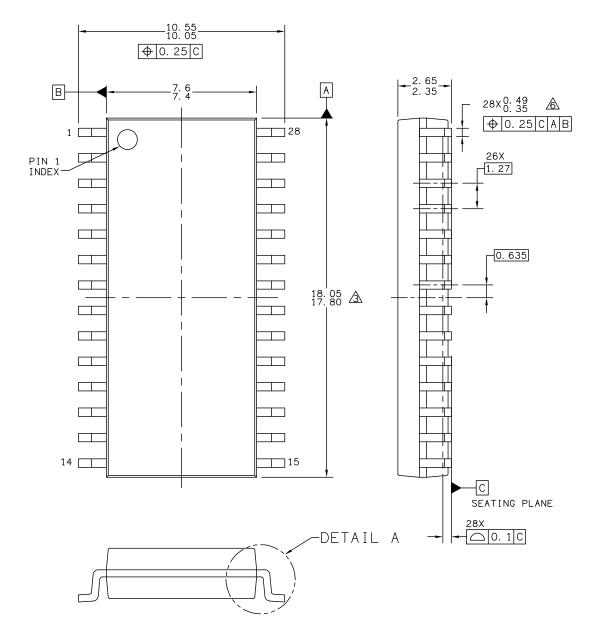
This chapter contains ordering information for the device numbering system.

Example of the device numbering system:

Ordering Information

4.1 Package Information

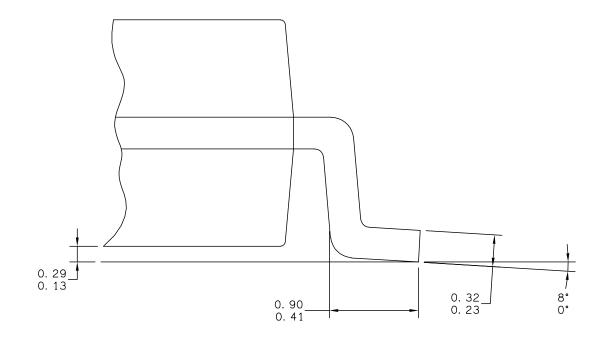
Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
28	Plastic Dual In-line Pin	PDIP	RL	710	98ASB42390B
28	Small Outline Integrated Circuit	SOIC	WL	751F	98ASB42345B
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A


Table 16. Package Descriptions

4.2 Mechanical Drawings

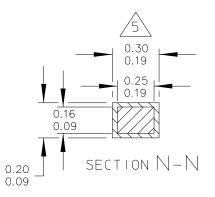
The following pages are mechanical drawings for the packages described in Table 16.

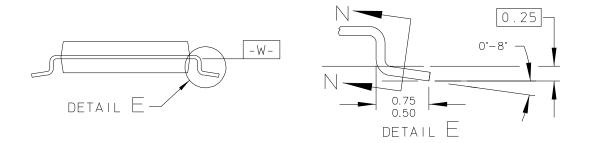
Ordering Information



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION N	DT TO SCALE			
TITLE: SOIC, WIDE BOD	DOCUMENT	NO: 98ASB42345B	REV: G			
28 LEAD	,	CASE NUMBER: 751F-05 10 MAR 2				
CASEOUTLINE	STANDARD	: MS-013AE				

MC9S08SE8 Series MCU Data Sheet, Rev. 4


Ordering Information



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BOD	Y.	DOCUMENT NO): 98ASB42345B	REV: G
28 LEAD	CASE NUMBER	R: 751F-05	10 MAR 2005	
CASEOUTLINE		STANDARD:	MS-013AE	

MC9S08SE8 Series MCU Data Sheet, Rev. 4

© FREESCALE SEMICONDUCTOR, INC. All rights reserved. MECHANICA		L OUTLINE	PRINT VERSION NOT TO SCALE	
		DOCUMENT NO: 98ASH70247A		RE∨: B
		CASE NUMBER	948F-01	19 MAY 2005
		STANDARD: JEDEC		

MC9S08SE8 Series MCU Data Sheet, Rev. 4