




Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| D.A. II.                   |                                                                      |
|----------------------------|----------------------------------------------------------------------|
| Details                    |                                                                      |
| Product Status             | Obsolete                                                             |
| Core Processor             | S08                                                                  |
| Core Size                  | 8-Bit                                                                |
| Speed                      | 20MHz                                                                |
| Connectivity               | LINbus, SCI                                                          |
| Peripherals                | LVD, POR, PWM                                                        |
| Number of I/O              | 24                                                                   |
| Program Memory Size        | 4KB (4K x 8)                                                         |
| Program Memory Type        | FLASH                                                                |
| EEPROM Size                | -                                                                    |
| RAM Size                   | 256 x 8                                                              |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                          |
| Data Converters            | A/D 8x10b                                                            |
| Oscillator Type            | Internal                                                             |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                   |
| Mounting Type              | Through Hole                                                         |
| Package / Case             | 28-DIP (0.600", 15.24mm)                                             |
| Supplier Device Package    | 28-PDIP                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08se4vrl |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## **Table of Contents**

| 1 | MCU   | Block Diagram                                 |   | 3.8  | Internal Clock Source (ICS) Characteristics | 20 |
|---|-------|-----------------------------------------------|---|------|---------------------------------------------|----|
| 2 | Pin A | ssignments4                                   |   | 3.9  | ADC Characteristics                         | 22 |
| 3 | Elect | rical Characteristics                         |   | 3.10 | AC Characteristics                          | 2! |
|   | 3.1   | Parameter Classification                      |   |      | 3.10.1 Control Timing                       | 2! |
|   | 3.2   | Absolute Maximum Ratings                      |   |      | 3.10.2 TPM/MTIM Module Timing               | 26 |
|   | 3.3   | Thermal Characteristics                       |   | 3.11 | Flash Specifications                        | 27 |
|   | 3.4   | ESD Protection and Latch-Up Immunity          | 4 | Orde | ring Information                            | 27 |
|   | 3.5   | DC Characteristics                            |   | 4.1  | Package Information                         | 28 |
|   | 3.6   | Supply Current Characteristics                |   | 4.2  | Mechanical Drawings                         | 28 |
|   | 3.7   | External Oscillator (XOSC) Characteristics 19 |   |      | -                                           |    |

# **Revision History**

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: freescale.com

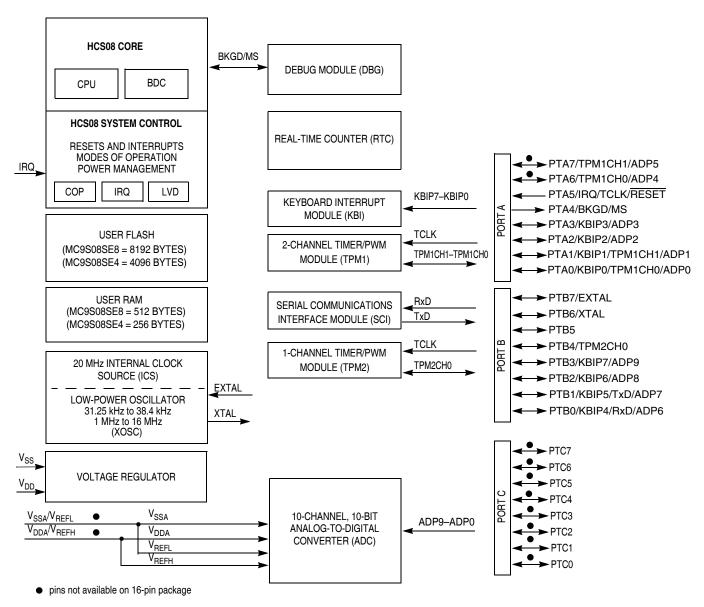
The following revision history table summarizes changes contained in this document.

| Revision | Date      | Description of Changes                                                                                                                                                                                                  |
|----------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 10/8/2008 | Initial public released.                                                                                                                                                                                                |
| 2        | 1/16/2009 | In Table 8, added the Max. of $S2I_{DD}$ and $S3I_{DD}$ in 0–105 °C; changed the Max. of $S2I_{DD}$ and $S3I_{DD}$ in 0–85 °C; changed the typical of $S2I_{DD}$ and $S3I_{DD}$ ; changed the $S23I_{DDRTI}$ to P.      |
| 3        | 4/7/2009  | Added II <sub>OZTOT</sub> I in the Table 7. Changed V <sub>DDAD</sub> to V <sub>DDA</sub> , V <sub>SSAD</sub> to V <sub>SSA</sub> . Updated Table 9, Table 10, Table 11, and Table 12. Updated Figure 13 and Figure 14. |
| 4        | 4/10/2015 | Updated Table 9.                                                                                                                                                                                                        |

## **Related Documentation**

Find the most current versions of all documents at: http://www.freescale.com

#### Reference Manual (MC9S08SE8RM)


Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

MC9S08SE8 Series MCU Data Sheet, Rev. 4



# 1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.



Notes:

When PTA4 is configured as BKGD, pin is bi-directional.

For the 16-pin package: V<sub>SSA</sub>/V<sub>REFL</sub> and V<sub>DDA</sub>/V<sub>REFH</sub> are double bonded to V<sub>SS</sub> and V<sub>DD</sub> respectively.

Figure 1. MC9S08SE8 Series Block Diagram



### **Pin Assignments**

# 2 Pin Assignments

This chapter shows the pin assignments in the packages available for the MC9S08SE8 series.

Table 1. Pin Availability by Package Pin-Count

| Pin Nu<br>(Packa  |               | <        | - Lowest Pri | iority> Hig          | hest              |
|-------------------|---------------|----------|--------------|----------------------|-------------------|
| 28<br>(SOIC/PDIP) | 16<br>(TSSOP) | Port Pin | Alt 1        | Alt 2                | Alt 3             |
| 1                 | _             | PTC5     |              |                      |                   |
| 2                 | _             | PTC4     |              |                      |                   |
| 3                 | 1             | PTA5     | IRQ          | TCLK                 | RESET             |
| 4                 | 2             | PTA4     |              | BKGD                 | MS                |
| 5                 | 3             |          |              |                      | $V_{DD}$          |
| 6                 | _             |          |              | V <sub>DDA</sub>     | V <sub>REFH</sub> |
| 7                 | _             |          |              | V <sub>SSA</sub>     | V <sub>REFL</sub> |
| 8                 | 4             |          |              |                      | V <sub>SS</sub>   |
| 9                 | 5             | PTB7     | EXTAL        |                      |                   |
| 10                | 6             | PTB6     | XTAL         |                      |                   |
| 11                | 7             | PTB5     |              |                      |                   |
| 12                | 8             | PTB4     |              | TPM2CH0              |                   |
| 13                | _             | PTC3     |              |                      |                   |
| 14                | _             | PTC2     |              |                      |                   |
| 15                | _             | PTC1     |              |                      |                   |
| 16                | _             | PTC0     |              |                      |                   |
| 17                | 9             | PTB3     | KBIP7        |                      | ADP9              |
| 18                | 10            | PTB2     | KBIP6        |                      | ADP8              |
| 19                | 11            | PTB1     | KBIP5        | TxD                  | ADP7              |
| 20                | 12            | PTB0     | KBIP4        | RxD                  | ADP6              |
| 21                | _             | PTA7     |              | TPM1CH1 <sup>1</sup> | ADP5              |
| 22                | _             | PTA6     |              | TPM1CH0 <sup>1</sup> | ADP4              |
| 23                | 13            | PTA3     | KBIP3        |                      | ADP3              |
| 24                | 14            | PTA2     | KBIP2        |                      | ADP2              |
| 25                | 15            | PTA1     | KBIP1        | TPM1CH1 <sup>1</sup> | ADP1              |
| 26                | 16            | PTA0     | KBIP0        | TPM1CH0 <sup>1</sup> | ADP0              |
| 27                | _             | PTC7     |              |                      |                   |
| 28                | _             | PTC6     |              |                      |                   |

<sup>1</sup> TPM1 pins can be remapped to PTA7, PTA6 and PTA1,PTA0



The average chip-junction temperature (T<sub>I</sub>) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

Where:

 $T_A = Ambient temperature, °C$ 

 $\theta_{JA}$  = Package thermal resistance, junction-to-ambient, °C/W

 $P_D = P_{int} + P_{I/O}$ 

 $P_{int} = I_{DD} \times V_{DD}$ , Watts — chip internal power

 $P_{I/O}$  = Power dissipation on input and output pins — user-determined

For most applications,  $P_{I/O} \ll P_{int}$  and can be neglected. An approximate relationship between  $P_D$  and  $T_J$  (if  $P_{I/O}$  is neglected) is:

$$P_D = K \div (T_{.1} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_\Delta + 273^{\circ}C) + \theta_{A\Delta} \times (P_D)^2$$
 Eqn. 3

Where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  $P_D$  (at equilibrium) for a known  $T_A$ . Using this value of K, the values of  $P_D$  and  $T_J$  can be obtained by solving Equation 1 and Equation 2 iteratively for any value of  $T_A$ .

### 3.4 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

**Table 5. ESD and Latch-up Test Conditions** 

| Model         | Description              | Symbol | Value | Unit |
|---------------|--------------------------|--------|-------|------|
|               | Series resistance        | R1     | 1500  | Ω    |
| Human<br>body | Storage capacitance      | С      | 100   | pF   |
| ,             | Number of pulses per pin | _      | 3     | _    |
|               | Series resistance        | R1     | 0     | Ω    |
| Machine       | Storage capacitance      | С      | 200   | pF   |
|               | Number of pulses per pin | _      | 3     |      |

MC9S08SE8 Series MCU Data Sheet, Rev. 4



**Table 7. DC Characteristics (continued)** 

| Num | С | Parameter                                                                                                                                                                          | Symbol                | Min                  | Typical <sup>1</sup> | Max                  | Unit |
|-----|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|----------------------|----------------------|------|
| 5   | Р | Output low current — Max total I <sub>OL</sub> for all ports<br>5 V<br>3 V                                                                                                         | I <sub>OLT</sub>      |                      | _                    | 100<br>60            | mA   |
| 6   | Р | Input high voltage; all digital inputs                                                                                                                                             | V <sub>IH</sub>       | $0.65 \times V_{DD}$ | _                    | _                    | V    |
| 7   | Р | Input low voltage; all digital inputs                                                                                                                                              | $V_{IL}$              | _                    |                      | $0.35 \times V_{DD}$ | \ \  |
| 8   | Р | Input hysteresis; all digital inputs                                                                                                                                               | V <sub>hys</sub>      | $0.06 \times V_{DD}$ | _                    | _                    | mV   |
| 9   | С | Input leakage current; input only pins <sup>2</sup>                                                                                                                                | II <sub>In</sub> I    | _                    | 0.1                  | 1                    | μΑ   |
| 10  | Р | High impedance (off-state) leakage current <sup>2</sup>                                                                                                                            | ll <sub>OZ</sub> l    | _                    | 0.1                  | 1                    | μΑ   |
| 11  | С | Total leakage combined for all inputs and Hi-Z pins<br>— All input only and I/O <sup>2</sup>                                                                                       | II <sub>OZTOT</sub> I | _                    | _                    | 2                    | μА   |
| 12  | Р | Internal pullup resistors <sup>3</sup>                                                                                                                                             | R <sub>PU</sub>       | 20                   | 45                   | 65                   | kΩ   |
| 13  | Р | Internal pulldown resistors <sup>4</sup>                                                                                                                                           | $R_{PD}$              | 20                   | 45                   | 65                   | kΩ   |
| 14  | D | DC injection current <sup>5, 6, 7</sup> V <sub>IN</sub> < V <sub>SS</sub> , V <sub>IN</sub> > V <sub>DD</sub> Single pin limit  Total MCU limit, includes sum of all stressed pins | I <sub>IC</sub>       | -0.2<br>-5           | _<br>_               | 0.2<br>5             | mA   |
| 15  | С | Input capacitance; all non-supply pins                                                                                                                                             | C <sub>In</sub>       | _                    | _                    | 8                    | pF   |
| 16  | С | RAM retention voltage                                                                                                                                                              | $V_{RAM}$             | 0.6                  | 1.0                  | _                    | V    |
| 17  | Р | POR re-arm voltage <sup>8</sup>                                                                                                                                                    | $V_{POR}$             | 0.9                  | 1.4                  | 2.0                  | V    |
| 18  | D | POR re-arm time                                                                                                                                                                    | t <sub>POR</sub>      | 10                   | _                    | _                    | μs   |
| 19  | Р | Low-voltage detection threshold — high range ${\rm V_{DD}} \ {\rm falling} \\ {\rm V_{DD}} \ {\rm rising}$                                                                         | V <sub>LVD1</sub>     | 3.9<br>4.0           | 4.0<br>4.1           | 4.1<br>4.2           | V    |
| 20  | Р | Low-voltage detection threshold — low range ${\rm V_{DD}\ falling} \\ {\rm V_{DD}\ falling}$                                                                                       | V <sub>LVD0</sub>     | 2.48<br>2.54         | 2.56<br>2.62         | 2.64<br>2.70         | V    |
| 21  | С | Low-voltage warning threshold — high range 1 $V_{DD}$ falling $V_{DD}$ rising                                                                                                      | V <sub>LVW3</sub>     | 4.5<br>4.6           | 4.6<br>4.7           | 4.7<br>4.8           | V    |
| 22  | Р | Low-voltage warning threshold — high range 0 V <sub>DD</sub> falling V <sub>DD</sub> rising                                                                                        | V <sub>LVW2</sub>     | 4.2<br>4.3           | 4.3<br>4.4           | 4.4<br>4.5           | V    |
| 23  | Р | Low-voltage warning threshold low range 1 \$V_{DD}\$ falling \$V_{DD}\$ rising                                                                                                     | V <sub>LVW1</sub>     | 2.84<br>2.90         | 2.92<br>2.98         | 3.00<br>3.06         | V    |
| 24  | С | Low-voltage warning threshold — low range 0 $V_{DD} \ \text{falling} \\ V_{DD} \ \text{rising}$                                                                                    | V <sub>LVW0</sub>     | 2.66<br>2.72         | 2.74<br>2.80         | 2.82<br>2.88         | V    |

11



#### **Table 7. DC Characteristics (continued)**

| Num | С | Parameter                                    |            | Symbol           | Min  | Typical <sup>1</sup> | Max  | Unit |
|-----|---|----------------------------------------------|------------|------------------|------|----------------------|------|------|
| 05  | + | Low-voltage inhibit reset/recover hysteresis | <i>E</i> V | V                |      | 100                  |      | m\/  |
| 25  |   |                                              | 5 V<br>3 V | V <sub>hys</sub> | _    | 100<br>60            | _    | mV   |
| 26  | Р | Bandgap voltage reference <sup>9</sup>       |            | $V_{BG}$         | 1.18 | 1.20                 | 1.21 | V    |

- Typical values are measured at 25 °C. Characterized, not tested.
- <sup>2</sup> Measured with  $V_{In} = V_{DD}$  or  $V_{SS}$ .
- <sup>3</sup> Measured with V<sub>In</sub> = V<sub>SS</sub>.
- <sup>4</sup> Measured with  $V_{In} = V_{DD}$ .
- All functional non-supply pins are internally clamped to V<sub>SS</sub> and V<sub>DD</sub>.
- <sup>6</sup> Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- Power supply must maintain regulation within operating  $V_{DD}$  range during instantaneous and operating maximum current conditions. If positive injection current ( $V_{In} > V_{DD}$ ) is greater than  $I_{DD}$ , the injection current may flow out of  $V_{DD}$  and could result in external power supply going out of regulation. Ensure external  $V_{DD}$  load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- <sup>8</sup> Maximum is highest voltage that POR is guaranteed.
- $^{9}$  Factory trimmed at  $V_{DD} = 5.0 \text{ V}$ , Temp = 25  $^{\circ}$ C.



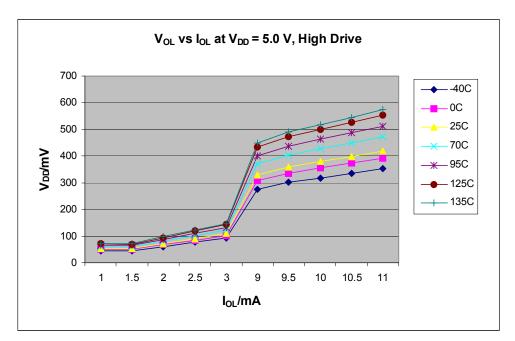



Figure 4. Typical  $V_{OL}$  vs.  $I_{OL}$  for High Drive Enabled Pad ( $V_{DD}$  = 5 V)

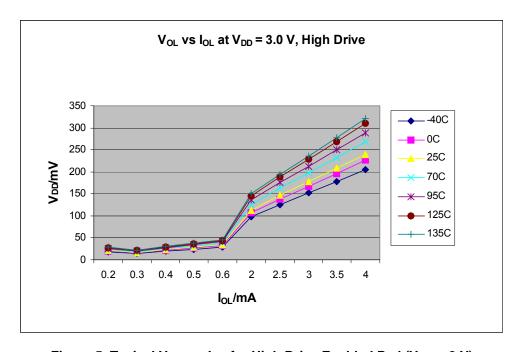



Figure 5. Typical  $V_{OL}$  vs.  $I_{OL}$  for High Drive Enabled Pad ( $V_{DD} = 3 \text{ V}$ )



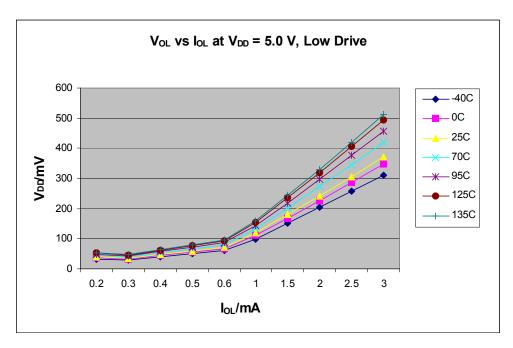



Figure 6. Typical  $V_{OL}$  vs.  $I_{OL}$  for Low Drive Enabled Pad ( $V_{DD} = 5 \text{ V}$ )

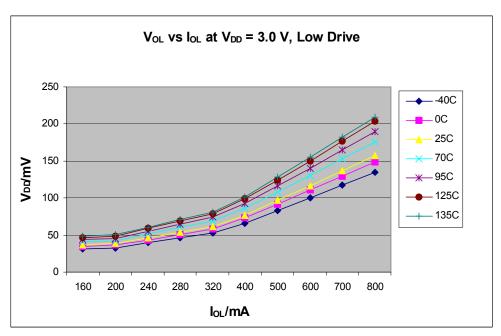



Figure 7. Typical  $V_{OL}$  vs.  $I_{OL}$  for Low Drive Enabled Pad ( $V_{DD}$  = 3 V)



**Table 8. Supply Current Characteristics** 

| Num | С                     | Parameter                                                       | Symbol               | V <sub>DD</sub><br>(V) | Typical <sup>1</sup> | Max              | Unit   | Temp<br>(°C)                          |
|-----|-----------------------|-----------------------------------------------------------------|----------------------|------------------------|----------------------|------------------|--------|---------------------------------------|
| 1   | С                     | Run supply current measured at                                  | RI <sub>DD</sub>     | 5                      | 2.4                  | 2.72             | mA     | -40 to 125                            |
|     |                       | (CPU clock = 4 MHz, f <sub>Bus</sub> = 2 MHz)                   |                      | 3                      | 2.18                 | 2.26             |        |                                       |
| 2   | Р                     | Run supply current <sup>2</sup> measured at                     | RI <sub>DD</sub>     | 5                      | 6.35                 | 7.29             | mA     | -40 to 125                            |
| _   | ľ                     | (CPU clock = 20 MHz, f <sub>Bus</sub> = 10 MHz)                 | טטייי                | 3                      | 5.79                 | 6.42             | 1117 ( | 40 10 123                             |
| 3   | Р                     | Wait supply current <sup>2</sup> measured at                    | WI <sub>DD</sub>     | 5                      | 1.4                  | 1.56             | mA     | -40 to 125                            |
|     | '                     | f <sub>Bus</sub> = 2 MHz                                        | WIDD                 | 3                      | 1.36                 | 1.53             | IIIA   | -40 to 125                            |
| 4   | В                     | Ston2 mode aupply augrent                                       | 501                  | 5                      | 1.4                  | 19<br>28<br>45.8 | μА     | -40 to 85<br>-40 to 105<br>-40 to 125 |
| 4   | 4 P Stop2 mode supply | Stop2 mode supply current                                       | S2I <sub>DD</sub>    | 3                      | 1.3                  | 15<br>22<br>37.2 | μΑ     | -40 to 85<br>-40 to 105<br>-40 to 125 |
| 5   | Р                     | Ston2 mode gupply gurrent                                       | 531                  | 5                      | 1.61                 | 23<br>43<br>76.1 | μΑ     | -40 to 85<br>-40 to 105<br>-40 to 125 |
| 5   |                       | Stop3 mode supply current                                       | S3I <sub>DD</sub>    | 3                      | 1.44                 | 19<br>38<br>66.4 | μΑ     | -40 to 85<br>-40 to 105<br>-40 to 125 |
| 6   | Р                     | RTC adder to stop2 or stop3 <sup>3</sup>                        | 6331                 | 5                      | 300                  | 500<br>500       | nA     | -40 to 85<br>-40 to 125               |
|     | '                     | 1110 adder to stope or stops                                    | · · · DDRII          | 3                      | 300                  | 500<br>500       | nA     | -40 to 85<br>-40 to 125               |
| 7   | С                     | IVD adder to stop? (IVDE - IVDSE - 1)                           | Cal                  | 5                      | 122                  | 180              | μΑ     | -40 to 125                            |
| /   |                       | LVD adder to stop3 (LVDE = LVDSE = 1)                           | S3I <sub>DDLVD</sub> | 3                      | 110                  | 160              | μΑ     | -40 to 125                            |
| 8   | С                     | Adder to stop3 for oscillator enabled <sup>4</sup> (OSCSTEN =1) | S3I <sub>DDOSC</sub> | 5,3                    | 5                    | 8                | μΑ     | -40 to 125                            |

Typical values are based on characterization data at 25 °C unless otherwise stated. See Figure 12 through Figure 13 for typical curves across voltage/temperature.

<sup>&</sup>lt;sup>2</sup> All modules except ADC active, ICS configured for FBE, and does not include any dc loads on port pins.

 $<sup>^3</sup>$  Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 220  $\mu$ A at 5 V with f<sub>Bus</sub> = 1 MHz.

<sup>&</sup>lt;sup>4</sup> Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal and low power mode (HGO = 0).



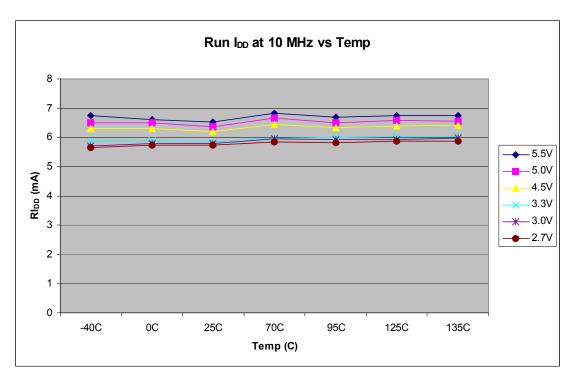



Figure 12. Typical Run  $I_{DD}$  Curves

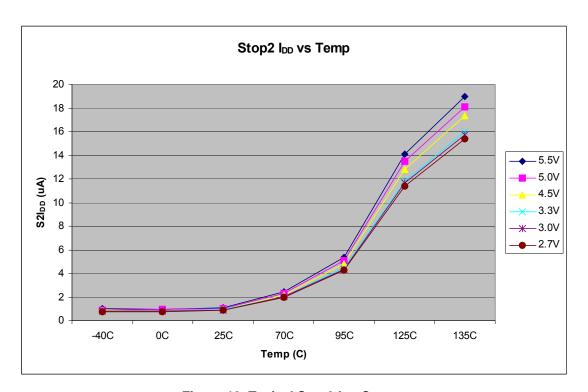



Figure 13. Typical Stop2  $I_{DD}$  Curves

MC9S08SE8 Series MCU Data Sheet, Rev. 4

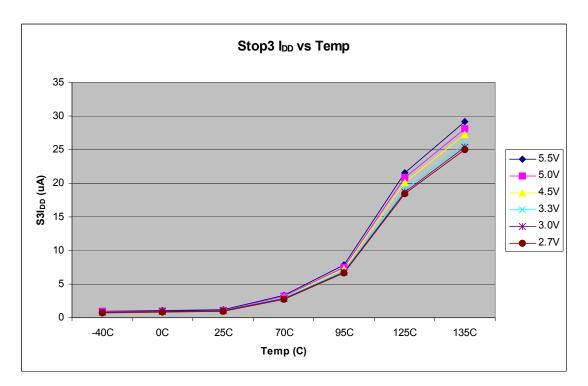



Figure 14. Typical Stop3  $I_{DD}$  Curves

# 3.7 External Oscillator (XOSC) Characteristics

**Table 9. Oscillator electrical specifications (Temperature Range = −40 to 125°C Ambient)** 

| Num | С | Characteristic                                                                                                                                                                                   | Symbol                                                       | Min.         | Typical <sup>1</sup>      | Max.            | Unit              |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------|---------------------------|-----------------|-------------------|
| 1   | С | Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) <sup>2</sup> High range (RANGE = 1), low power (HGO = 0) <sup>2</sup> | f <sub>lo</sub><br>f <sub>hi-hgo</sub><br>f <sub>hi-lp</sub> | 32<br>1<br>1 |                           | 38.4<br>16<br>8 | kHz<br>MHz<br>MHz |
| 2   |   | Load capacitors                                                                                                                                                                                  | C <sub>1,</sub> C <sub>2</sub>                               |              | crystal or<br>turer's rec |                 |                   |
| 3   | _ | Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)                                                                                                                     | R <sub>F</sub>                                               |              | 10<br>1                   | _<br>_          | МΩ                |
| 4   | _ | Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)                                                     | - R <sub>S</sub>                                             | _<br>_<br>_  | 0<br>100<br>0             | _<br>_<br>_     | kΩ                |
| 4   |   | High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz                                                                                                                                   | 1 115                                                        | _<br>_<br>_  | 0<br>0<br>0               | 0<br>10<br>20   | , V75             |



| Table 9. Oscillator electrical specifications (Te | emperature Range = -40 to 125°C Ambient) |
|---------------------------------------------------|------------------------------------------|
|---------------------------------------------------|------------------------------------------|

| Num | С | Characteristic                                                                                                                                                                                                                       | Symbol                            | Min.         | Typical <sup>1</sup>  | Max.             | Unit       |
|-----|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------|-----------------------|------------------|------------|
| 5   | Т | Crystal start-up time <sup>3</sup> Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) <sup>4</sup> High range, high gain (RANGE = 1, HGO = 1) <sup>4</sup> | CSTL-LP CSTH-HGO CSTH-LP CSTH-HGO | _            | 200<br>400<br>5<br>15 | _<br>_<br>_<br>_ | ms         |
| 6   | Т | Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode  FBELP mode                                                                                                                                               | f <sub>extal</sub>                | 0.03125<br>0 |                       | 20<br>20         | MHz<br>MHz |

<sup>&</sup>lt;sup>1</sup> Typical column was characterized at 5.0 V, 25 °C or is recommended value.

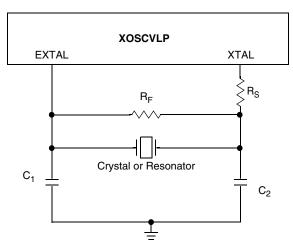



Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

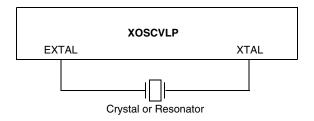



Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power

 $<sup>^{2}</sup>$  The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

<sup>&</sup>lt;sup>4</sup> 4 MHz crystal.



- $^{1}~$  Typical values assume V<sub>DDA</sub> = 5.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- <sup>2</sup> DC potential difference.



Figure 18. ADC Input Impedance Equivalency Diagram

Table 12. 10-Bit ADC Characteristics (V<sub>REFH</sub> = V<sub>DDA</sub>, V<sub>REFL</sub> = V<sub>SSA</sub>)

| Characteristic                                        | Conditions              | С | Symb             | Min | Typ <sup>1</sup> | Max | Unit | Comment |
|-------------------------------------------------------|-------------------------|---|------------------|-----|------------------|-----|------|---------|
| Supply Current<br>ADLPC = 1<br>ADLSMP = 1<br>ADCO = 1 |                         | Т | I <sub>DDA</sub> |     | 133              |     | μΑ   |         |
| Supply Current<br>ADLPC = 1<br>ADLSMP = 0<br>ADCO = 1 |                         | Т | I <sub>DDA</sub> |     | 218              |     | μΑ   |         |
| Supply Current<br>ADLPC = 0<br>ADLSMP = 1<br>ADCO = 1 |                         | Т | I <sub>DDA</sub> | _   | 327              | _   | μΑ   |         |
| Supply Current<br>ADLPC = 0<br>ADLSMP = 0<br>ADCO = 1 |                         | D | I <sub>DDA</sub> | _   | 0.582            | 1   | mA   |         |
| Supply Current                                        | Stop, Reset, Module Off | D | I <sub>DDA</sub> | _   | 0.011            | 1   | μΑ   |         |

MC9S08SE8 Series MCU Data Sheet, Rev. 4



Table 12. 10-Bit ADC Characteristics ( $V_{REFH} = V_{DDA}$ ,  $V_{REFL} = V_{SSA}$ ) (continued)

| Characteristic                | Conditions                | С | Symb                | Min  | Typ <sup>1</sup> | Max  | Unit               | Comment                                                |
|-------------------------------|---------------------------|---|---------------------|------|------------------|------|--------------------|--------------------------------------------------------|
| ADC                           | High Speed (ADLPC = 0)    | 1 |                     | 2    | 3.3              | 5    |                    | t <sub>ADACK</sub> = 1/f <sub>ADACK</sub>              |
| Asynchronous<br>Clock Source  | Low Power (ADLPC = 1)     | D | f <sub>ADACK</sub>  | 1.25 | 2                | 3.3  | MHz                |                                                        |
| Conversion<br>Time (Including | Short Sample (ADLSMP = 0) | D | t <sub>ADC</sub>    | _    | 20               | _    | ADCK               | See SE8 reference manual for conversion time variances |
| sample time)                  | Long Sample (ADLSMP = 1)  |   |                     | _    | 40               | _    | cycles             |                                                        |
| Sample Time                   | Short Sample (ADLSMP = 0) | D | t <sub>ADS</sub>    | -    | 3.5              | _    | ADCK<br>cycles     |                                                        |
|                               | Long Sample (ADLSMP = 1)  |   |                     | 1    | 23.5             | 1    | Cycles             |                                                        |
| Temp Sensor                   | -40°C- 25°C               | 2 | D m                 | 1    | 3.266            | 1    | mV/°C              |                                                        |
| Slope                         | 25°C– 125°C               | ם |                     | 1    | 3.638            | 1    | - mv/°C            |                                                        |
| Temp Sensor<br>Voltage        | 25°C                      | D | V <sub>TEMP25</sub> |      | 1.396            |      | mV                 |                                                        |
| Characteristics               | for 28-pin packages only  |   |                     |      |                  |      |                    |                                                        |
| Total                         | 10-bit mode               | Р | _                   | _    | ±1               | ±2.5 | LSB <sup>3</sup>   | Includes<br>quantization                               |
| Unadjusted<br>Error           | 8-bit mode                | Р | E <sub>TUE</sub>    | _    | ±0.5             | ±1.0 |                    |                                                        |
| Differential                  | 10-bit mode <sup>2</sup>  | Р | DNL                 | _    | ±0.5             | ±1.0 | - LSB <sup>3</sup> |                                                        |
| Non-Linearity                 | 8-bit mode <sup>3</sup>   | Р |                     | _    | ±0.3             | ±0.5 |                    |                                                        |
| Integral                      | 10-bit mode               | Т | <b> </b>            | _    | ±0.5             | ±1.0 | - LSB <sup>3</sup> |                                                        |
| Non-Linearity                 | 8-bit mode                | Т | INL                 | _    | ±0.3             | ±0.5 |                    |                                                        |
| Zero-Scale                    | 10-bit mode               | Р | E .                 | _    | ±0.5             | ±1.5 | LSB <sup>3</sup>   | V <sub>ADIN</sub> = V <sub>SSA</sub>                   |
| Error                         | 8-bit mode                | Р | - E <sub>ZS</sub>   |      | ±0.5             | ±0.5 | LOD                |                                                        |
| Full-Scale                    | 10-bit mode               | Τ | F                   | 1    | ±0.5             | ±1   | - LSB <sup>3</sup> | $V_{ADIN} = V_{DDA}$                                   |
| Error                         | 8-bit mode                | Т | E <sub>FS</sub>     | _    | ±0.5             | ±0.5 | - rsr.             |                                                        |
| Quantization                  | 10-bit mode               | D | F-                  | 1    | _                | ±0.5 | - LSB <sup>3</sup> |                                                        |
| Error                         | 8-bit mode                | ם | EQ                  | 1    | _                | ±0.5 | l ron              |                                                        |
| Input Leakage                 | 10-bit mode               | D | E <sub>IL</sub>     | _    | ±0.2             | ±2.5 | - LSB <sup>3</sup> | Padleakage <sup>4</sup> *                              |
| Error                         | 8-bit mode                |   | ⊢IL                 |      | ±0.1             | ±1   |                    | R <sub>AS</sub>                                        |
| Characteristics               | for 16-pin package only   |   |                     |      |                  |      |                    |                                                        |
| Total                         | 10-bit mode               | Р | _                   | _    | ±1.5             | ±3.5 | 1.053              | Includes                                               |
| Unadjusted<br>Error           | 8-bit mode                | Р | E <sub>TUE</sub>    | _    | ±0.7             | ±1.5 | LSB <sup>3</sup>   | quantization                                           |



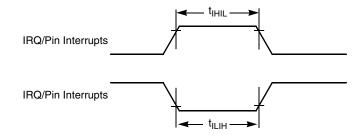



Figure 20. IRQ/Pin Interrupt Timing

## 3.10.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

| Num | С | Rating                    | Symbol              | Min | Max                 | Unit             |
|-----|---|---------------------------|---------------------|-----|---------------------|------------------|
| 1   | D | External clock frequency  | f <sub>TPMext</sub> | DC  | f <sub>Bus</sub> /4 | MHz              |
| 2   | D | External clock period     | t <sub>TPMext</sub> | 4   | _                   | t <sub>cyc</sub> |
| 3   | D | External clock high time  | t <sub>clkh</sub>   | 1.5 | _                   | t <sub>cyc</sub> |
| 4   | D | External clock low time   | t <sub>clkl</sub>   | 1.5 | _                   | t <sub>cyc</sub> |
| 5   | D | Input capture pulse width | t <sub>ICPW</sub>   | 1.5 | _                   | t <sub>cvc</sub> |

**Table 14. TPM Input Timing** 

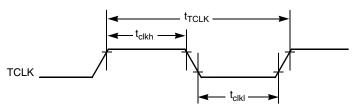



Figure 21. Timer External Clock

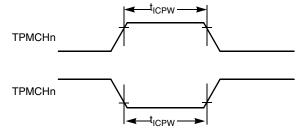
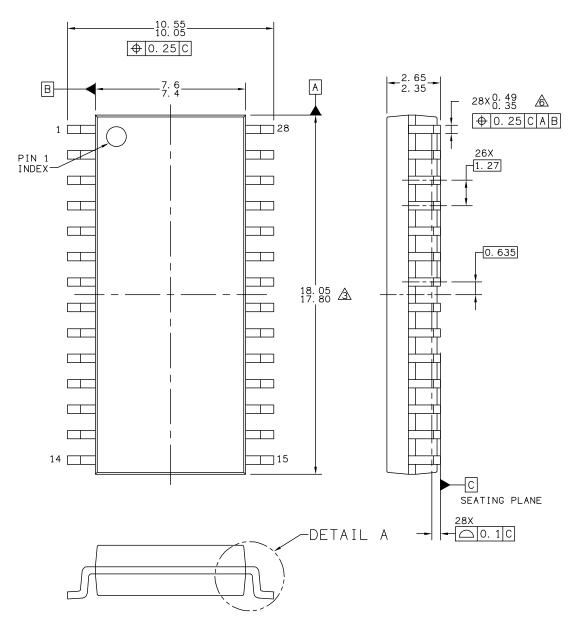




Figure 22. Timer Input Capture Pulse

MC9S08SE8 Series MCU Data Sheet, Rev. 4





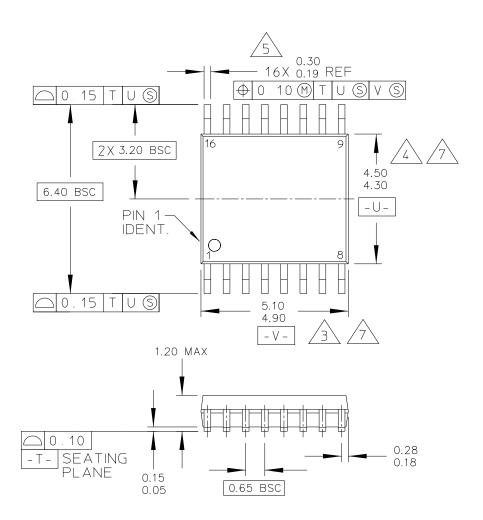
| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA    | L OUTLINE      | PRINT VERSION NO | OT TO SCALE |
|------------------------------------------------------|--------------|----------------|------------------|-------------|
| TITLE: SOIC, WIDE BOD                                | DOCUMENT NO  | ): 98ASB42345B | REV: G           |             |
| 28 LEAD                                              | CASE NUMBER  | R: 751F-05     | 10 MAR 2005      |             |
| CASEOUTLINE                                          | STANDARD: MS | S-013AE        |                  |             |



#### NOTES:

- POSITIONAL TOLERANCE OF LEADS, SHALL BE WITHIN 0.25 MM (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- A DIMENSION DOES NOT INCLUDE MOLD FLASH.
- 4. 710-01 OBSOLETE, NEW STD 710-02.
- 5. CONTROLLING DIMENSION: INCH

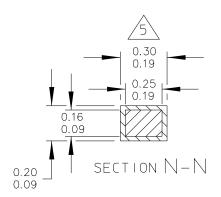
|            | IN                                                               | CH                  | MILL                      | _IMETER   |                          | INCH        |           | MIL    | LIMETER     |
|------------|------------------------------------------------------------------|---------------------|---------------------------|-----------|--------------------------|-------------|-----------|--------|-------------|
| DIM        | MIN                                                              | MAX                 | MIN                       | MAX       | DIM                      | MIN         | MAX       | MIN    | MAX         |
| А          | 1.435                                                            | 1.465               | 36.45                     | 37.21     |                          |             |           |        |             |
| В          | 0.540                                                            | 0.560               | 13.72                     | 14.22     |                          |             |           |        |             |
| С          | 0.155                                                            | 0.200               | 3.94                      | 5.08      |                          |             |           |        |             |
| D          | 0.014                                                            | 0.022               | 0.36                      | 0.56      |                          |             |           |        |             |
| F          | 0.040                                                            | 0.060               | 1.02                      | 1.52      |                          |             |           |        |             |
| G          | 0.100                                                            | BSC                 | 2.5                       | 34 BSC    |                          |             |           |        |             |
| Н          | 0.065                                                            | 0.085               | 1.65                      | 2.16      |                          |             |           |        |             |
| J          | 0.008                                                            | 0.015               | 0.20                      | 0.38      |                          |             |           |        |             |
| K          | 0.115                                                            | 0.135               | 2.92                      | 3.43      |                          |             |           |        |             |
| L          | 0.600                                                            | BSC                 | 15.2                      | 24 BSC    |                          |             |           |        |             |
| M          | 0*                                                               | 15°                 | 0.                        | 15°       |                          |             |           |        |             |
| N          | 0.020                                                            | 0.040               | 0.51                      | 1.02      |                          |             |           |        |             |
|            |                                                                  |                     |                           |           |                          |             |           |        |             |
| © Fi       | © FREESCALE SEMICONDUCTOR, INC.  ALL RIGHTS RESERVED.  MECHANICA |                     |                           | MECHANICA | L OUT                    | LINE        | PRINT VER | SION N | IT TO SCALE |
| TITLE      | TITLE:                                                           |                     |                           | DOCU      | DOCUMENT NO: 98ASB42390B |             |           | REV: D |             |
| 28 LD PDIP |                                                                  |                     | CASE NUMBER: 710-02 24 MA |           |                          | 24 MAY 2005 |           |        |             |
|            |                                                                  | STANDARD: NON-JEDEC |                           |           |                          |             |           |        |             |

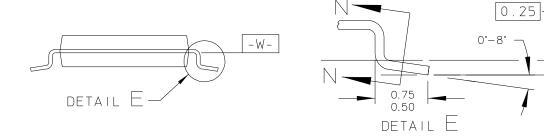

MC9S08SE8 Series MCU Data Sheet, Rev. 4

Freescale Semiconductor

31




### **Ordering Information**




| © FREESCALE SEMICONDUCTOR, INC. MECHANICA |                                 | L OUTLINE | PRINT VERSION NOT TO SCALE |  |  |
|-------------------------------------------|---------------------------------|-----------|----------------------------|--|--|
| TITLE:                                    | DOCUMENT NO                     | REV: B    |                            |  |  |
| 16 LD TSSOP, PITCH 0.6                    | CASE NUMBER: 948F-01 19 MAY 200 |           |                            |  |  |
|                                           | STANDARD: JE                    | DEC       |                            |  |  |

33







| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA                       | L OUTLINE   | UTLINE PRINT VERSION NOT T |  |
|------------------------------------------------------|---------------------------------|-------------|----------------------------|--|
| TITLE:                                               | DOCUMENT NO: 98ASH70247A REV: B |             |                            |  |
| 16 LD TSSOP, PITCH 0.                                | CASE NUMBER                     | 19 MAY 2005 |                            |  |
|                                                      | STANDARD: JE                    | DEC         |                            |  |

MC9S08SE8 Series MCU Data Sheet, Rev. 4



#### **Ordering Information**

#### NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.



DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE



/4/ DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE



DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

|   | $\wedge$ |   |
|---|----------|---|
| / | 7        | / |

DIMENSIONS ARE TO BE DETERMINED AT DATUM PLANE -W-

| © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA    | L OUTLINE      | PRINT VERSION NE | TO SCALE |
|------------------------------------------------------|--------------|----------------|------------------|----------|
| TITLE:                                               | DOCUMENT NO  | 1: 98ASH70247A | REV: B           |          |
| 16 LD TSSOP, PITCH 0.6                               | CASE NUMBER  | 948F-01        | 19 MAY 2005      |          |
| To Eb Todar, Thron S.o                               | STANDARD: JE | DEC            |                  |          |