

Welcome to E-XFL.COM

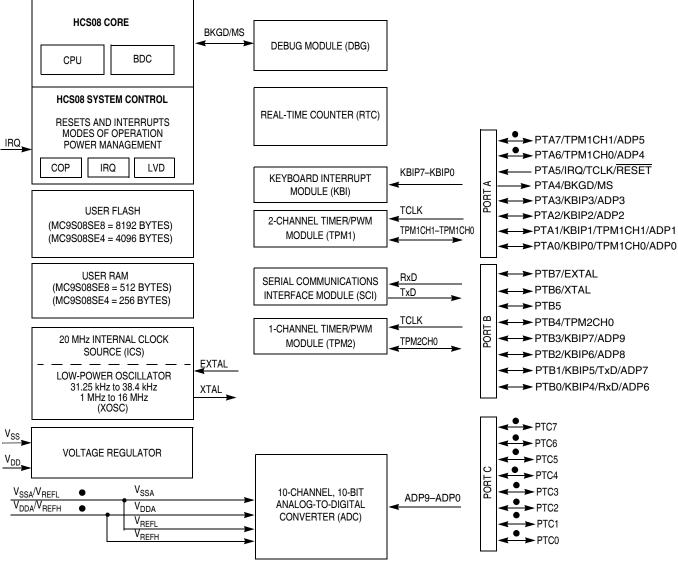
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

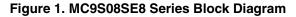
Details	
Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI
Peripherals	LVD, POR, PWM
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08se8mrl


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.



pins not available on 16-pin package

Notes:

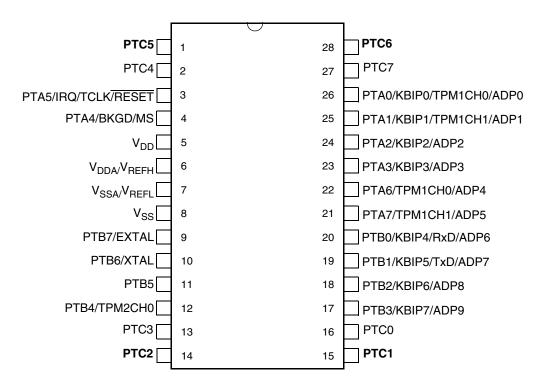
When PTA4 is configured as BKGD, pin is bi-directional.

For the 16-pin package: V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

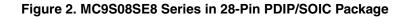
Pin Assignments

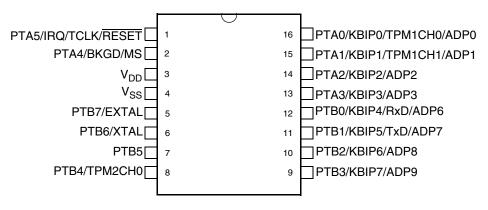
2 Pin Assignments

This chapter shows the pin assignments in the packages available for the MC9S08SE8 series.


Table 1. Pin Availability by Package Pin-Count

Pin Nu (Packa		<	- Lowest Pr	iority> Hig	hest
28 (SOIC/PDIP)	16 (TSSOP)	Port Pin	Alt 1	Alt 2	Alt 3
1		PTC5			
2		PTC4			
3	1	PTA5	IRQ	TCLK	RESET
4	2	PTA4		BKGD	MS
5	3				V _{DD}
6				V _{DDA}	V _{REFH}
7				V _{SSA}	V _{REFL}
8	4				V _{SS}
9	5	PTB7	EXTAL		
10	6	PTB6	XTAL		
11	7	PTB5			
12	8	PTB4		TPM2CH0	
13		PTC3			
14	_	PTC2			
15	_	PTC1			
16		PTC0			
17	9	PTB3	KBIP7		ADP9
18	10	PTB2	KBIP6		ADP8
19	11	PTB1	KBIP5	TxD	ADP7
20	12	PTB0	KBIP4	RxD	ADP6
21	_	PTA7		TPM1CH1 ¹	ADP5
22		PTA6		TPM1CH0 ¹	ADP4
23	13	PTA3	KBIP3		ADP3
24	14	PTA2	KBIP2		ADP2
25	15	PTA1	KBIP1	TPM1CH1 ¹	ADP1
26	16	PTA0	KBIP0	TPM1CH0 ¹	ADP0
27		PTC7			
28		PTC6			


¹ TPM1 pins can be remapped to PTA7, PTA6 and PTA1,PTA0



Pins in **bold** are lost in the next lower pin count package.

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

Where:

 $\begin{array}{l} T_{A} = \text{Ambient temperature, }^{\circ}\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, }^{\circ}\text{C/W} \\ P_{D} = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins } - \text{user-determined} \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2 \qquad Eqn. 3$$

Where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

3.4 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

During the device qualification ESD stresses were performed for the human body model (HBM), the machine model (MM) and the charge device model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
Human body	Series resistance	R1	1500	Ω
	Storage capacitance	С	100	pF
	Number of pulses per pin	—	3	—
	Series resistance	R1	0	Ω
Machine	Storage capacitance	С	200	pF
	Number of pulses per pin	_	3	—

Table 5. ESD and Latch-up Test Conditions

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
5	Ρ	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}			100 60	mA
6	Ρ	Input high voltage; all digital inputs	V _{IH}	$0.65 \times V_{DD}$	_	—	v
7	Ρ	Input low voltage; all digital inputs	V _{IL}			$0.35 \times V_{DD}$	v
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{\text{DD}}$	_	—	mV
9	С	Input leakage current; input only pins ²	ll _{In} l	—	0.1	1	μA
10	Ρ	High impedance (off-state) leakage current ²	I _{oz}	—	0.1	1	μΑ
11	С	Total leakage combined for all inputs and Hi-Z pins — All input only and I/O ²	I _{OZTOT}	_	_	2	μA
12	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
14	D	DC injection current ^{5, 6, 7} V _{IN} < V _{SS} , V _{IN} > V _{DD} Single pin limit Total MCU limit, includes sum of all stressed pins	I _{IC}	0.2 5		0.2 5	mA
15	С	Input capacitance; all non-supply pins	C _{In}		_	8	pF
16	С	RAM retention voltage	V _{RAM}	0.6	1.0	—	V
17	Ρ	POR re-arm voltage ⁸	V _{POR}	0.9	1.4	2.0	V
18	D	POR re-arm time	t _{POR}	10		—	μs
19	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
20	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
21	С	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
22	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	v
23	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
24	С	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V

Table 7. DC Characteristics (continued)

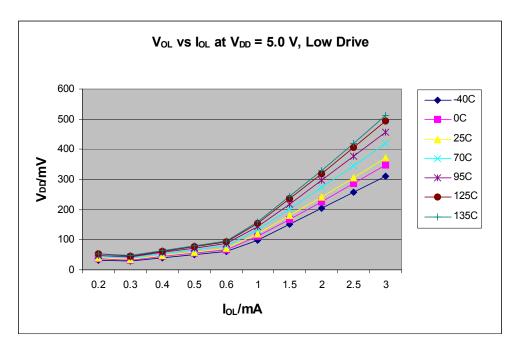


Figure 6. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 5 V)

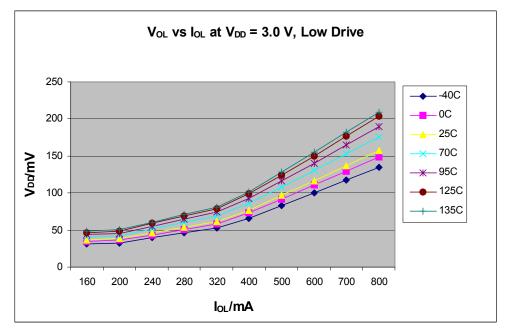


Figure 7. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 3 V)

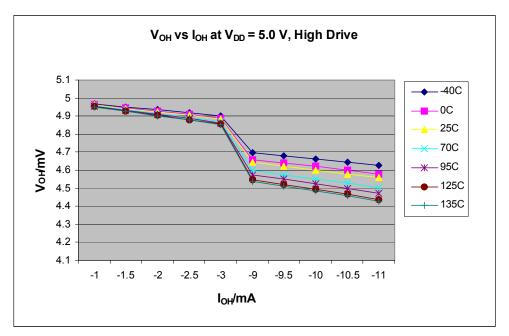


Figure 8. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 5 V)

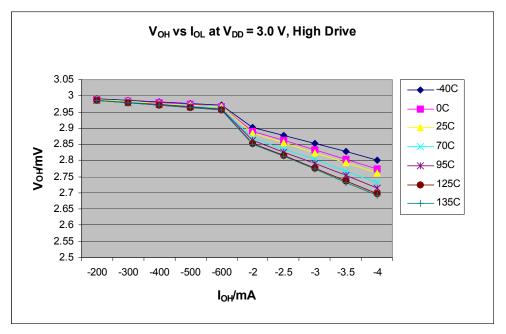


Figure 9. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 3 V)

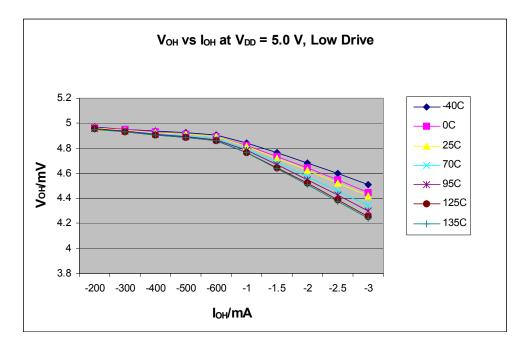


Figure 10. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad (V_{DD} = 5 V)

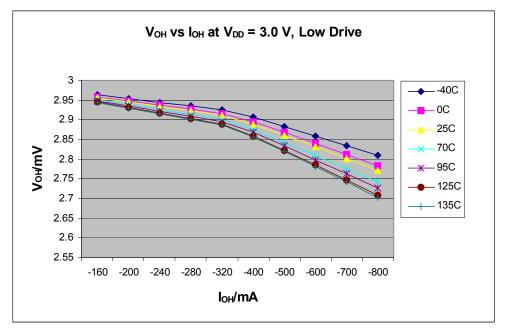


Figure 11. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad (V_{DD} = 3 V)

3.6 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

Num	с	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max	Unit	Тетр (°С)
1	с	Run supply current ² measured at	RI _{DD}	5	2.4	2.72	mA	-40 to 125
	Ĭ	(CPU clock = 4 MHz, f _{Bus} = 2 MHz)	טטייי	3	2.18	2.26	110.4	40 10 120
2	Р	Run supply current ² measured at	RI _{DD}	5	6.35	7.29	mA	-40 to 125
		(CPU clock = 20 MHz, f _{Bus} = 10 MHz)	טטייי	3	5.79	6.42		10 10 120
3	Р	Wait supply current ² measured at	WI _{DD}	5	1.4	1.56	mA	-40 to 125
0		f _{Bus} = 2 MHz	UUUU	3	1.36	1.53	110.4	40 10 120
4	Р	Stop2 mode supply current	501	5	1.4	19 28 45.8	μA	-40 to 85 -40 to 105 -40 to 125
4	+ P Stop2 mode supply current	S2I _{DD}	3	1.3	15 22 37.2	μA	-40 to 85 -40 to 105 -40 to 125	
5	Р	Stop3 mode supply current	621	5	1.61	23 43 76.1	μA	-40 to 85 -40 to 105 -40 to 125
5	F	Stops mode supply current	S3I _{DD}	3	1.44	19 38 66.4	μA	-40 to 85 -40 to 105 -40 to 125
6	Р	RTC adder to stop2 or stop3 ³	୧୦୦	5	300	500 500	nA	–40 to 85 –40 to 125
			S23I _{ddrti}	3	300	500 500	nA	-40 to 85 -40 to 125
7	с	LVD adder to stop3 (LVDE = LVDSE = 1)	631	5	122	180	μA	-40 to 125
		L V D adder to stops (LV DE = LV DSE = 1)	S3I _{DDLVD}	3	110	160	μA	-40 to 125
8	с	Adder to stop3 for oscillator enabled ⁴ (OSCSTEN =1)	S3I _{DDOSC}	5,3	5	8	μA	-40 to 125

Table 8. Supply Current Characteristics

¹ Typical values are based on characterization data at 25 °C unless otherwise stated. See Figure 12 through Figure 13 for typical curves across voltage/temperature.

² All modules except ADC active, ICS configured for FBE, and does not include any dc loads on port pins.

³ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 220 μ A at 5 V with f_{Bus} = 1 MHz.

⁴ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768 kHz crystal and low power mode (HGO = 0).

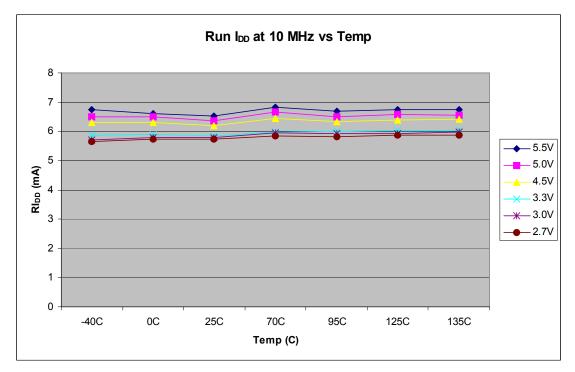


Figure 12. Typical Run I_{DD} Curves

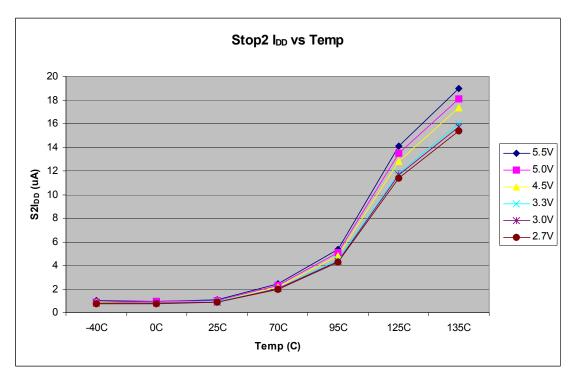


Figure 13. Typical Stop2 I_{DD} Curves

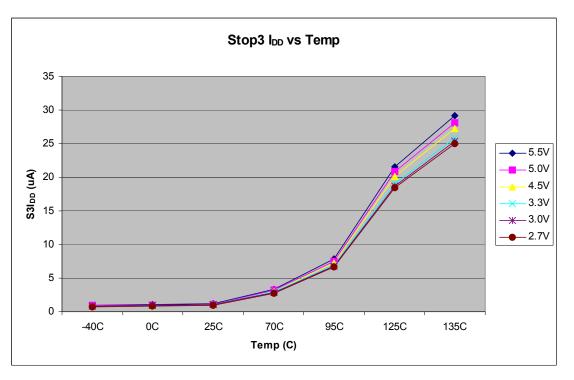


Figure 14. Typical Stop3 I_{DD} Curves

3.7 External Oscillator (XOSC) Characteristics

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) ² High range (RANGE = 1), low power (HGO = 0) ²	f _{lo} f _{hi-hgo} f _{hi-lp}	32 1 1		38.4 16 8	kHz MHz MHz
2	_	Load capacitors	C _{1,} C ₂		crystal or turer's rec		
3	_	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F	_	10 1	_	MΩ
4		Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)	Rs		0 100 0		kΩ
4		High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz			0 0 0	0 10 20	N32

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
5	т	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP ÇSTH-HGO CSTH-LP CSTH-HGO	 	200 400 5 15		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0		20 20	MHz MHz

Table 9. Oscillator electrical specifications (Temperature Range = -40 to 125°C Ambient)

 $^1\,$ Typical column was characterized at 5.0 V, 25 $^\circ C$ or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

⁴ 4 MHz crystal.

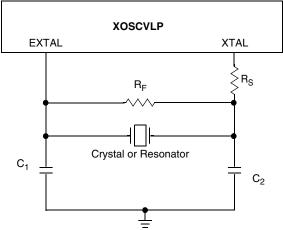


Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

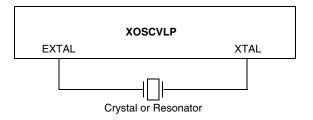


Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power

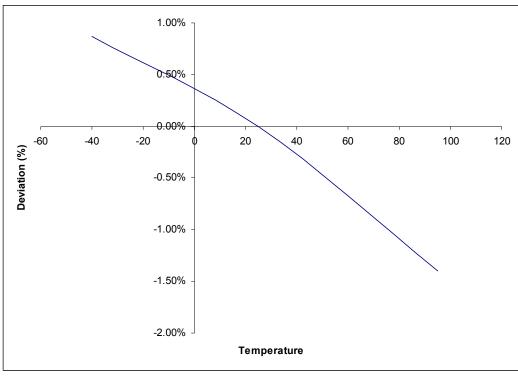


Figure 17. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

3.9 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7	_	5.5	V	
Supply voltage	Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	
Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ	External to MCU
	8-bit mode (all valid f _{ADCK})			—	10		
ADC conversion	High speed (ADLPC = 0)	f _{ADCK}	0.4	—	8.0	MHz	
clock frequency	Low power (ADLPC = 1)	ADCK	0.4		4.0		

Table 11. 10-Bit ADC Operating Conditions

Table 12. To-Dit ADO Onaracteristics (V _{REFH} – V _{DDA} , V _{REFL} – V _{SSA}) (continued)								
Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
ADC	High Speed (ADLPC = 0)	_		2	3.3	5		t _{ADACK} =
Asynchronous Clock Source	Low Power (ADLPC = 1)	D	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}
Conversion Time (Including	Short Sample (ADLSMP = 0)	D	t _{ADC}	_	20	_	ADCK	See SE8
sample time)	Long Sample (ADLSMP = 1)				40		cycles	reference
Sample Time	Short Sample (ADLSMP = 0)	D	t _{ADS}	_	3.5	_	ADCK cycles	manual for conversion time variances
	Long Sample (ADLSMP = 1)			_	23.5	_	Cycles	
Temp Sensor	–40°C– 25°C	D	~		3.266		mV/°C	
Slope	25°C– 125°C	D	m	_	3.638	_	mv/ C	
Temp Sensor Voltage	25°C	D	V _{TEMP25}	_	1.396	_	mV	
Characteristics	for 28-pin packages only							
Total	10-bit mode	Ρ	_		±1	±2.5	1.003	Includes
Unadjusted Error	8-bit mode	Ρ	E _{TUE}	-	±0.5	±1.0	LSB ³	quantization
Differential	10-bit mode ²	Ρ		_	±0.5	±1.0	LSB ³	
Non-Linearity	8-bit mode ³	Ρ	DNL		±0.3	±0.5	LSB	
Integral	10-bit mode	Т	INL		±0.5	±1.0	LSB ³	
Non-Linearity	8-bit mode	Т		_	±0.3	±0.5	LOD	
Zero-Scale	10-bit mode	Ρ	E	_	±0.5	±1.5	LSB ³	V _{ADIN} = V _{SSA}
Error	8-bit mode	Ρ	E _{ZS}	_	±0.5	±0.5	LOD	VADIN = VSSA
Full-Scale	10-bit mode	Т	E .	_	±0.5	±1	LSB ³	V – V
Error	8-bit mode	Т	E _{FS}	_	±0.5	±0.5	LOD	$V_{ADIN} = V_{DDA}$
Quantization	10-bit mode	D	Eq		—	±0.5	LSB ³	
Error	8-bit mode	D	LQ		—	±0.5	LOD	
Input Leakage	10-bit mode	D	E _{IL}		±0.2	±2.5	LSB ³	Pad leakage ⁴ *
Error	8-bit mode	D		_	±0.1	±1	LOD	R _{AS}
Characteristics	for 16-pin package only							
Total	10-bit mode	Ρ	F		±1.5	±3.5	1003	Includes
Unadjusted Error	8-bit mode	Ρ	E _{TUE}	_	±0.7	±1.5	LSB ³	quantization

Table 12. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

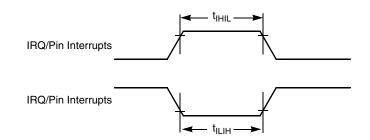


Figure 20. IRQ/Pin Interrupt Timing

3.10.2 TPM/MTIM Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Num	С	Rating	Symbol	Min	Max	Unit
1	D	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	D	External clock period	t _{TPMext}	4	—	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	—	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5		t _{cyc}

Table 14. TPM Input Timing

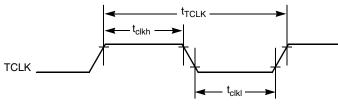


Figure 21. Timer External Clock

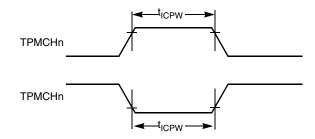
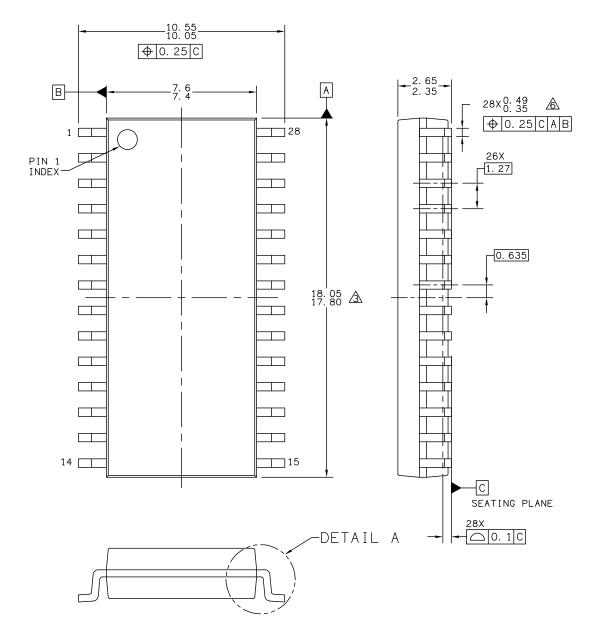


Figure 22. Timer Input Capture Pulse

Ordering Information

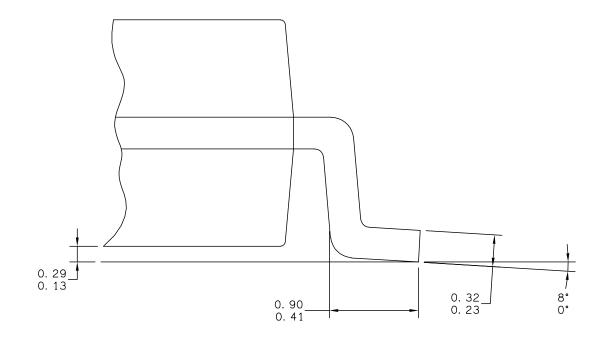
4.1 Package Information

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
28	Plastic Dual In-line Pin	PDIP	RL	710	98ASB42390B
28	Small Outline Integrated Circuit	SOIC	WL	751F	98ASB42345B
16	Thin Shrink Small Outline Package	TSSOP	TG	948F	98ASH70247A


Table 16. Package Descriptions

4.2 Mechanical Drawings

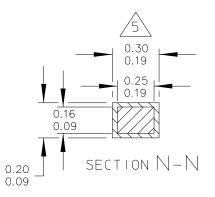
The following pages are mechanical drawings for the packages described in Table 16.

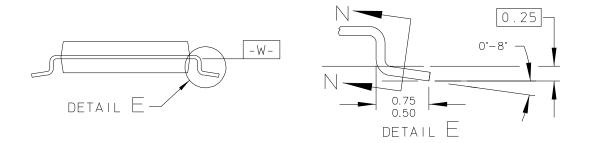

Ordering Information

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION N	PRINT VERSION NOT TO SCALE		
TITLE: SOIC, WIDE BOD	DOCUMENT	NO: 98ASB42345B	REV: G		
28 LEAD	,	BER: 751F-05	10 MAR 2005		
CASEOUTLINE	STANDARD	STANDARD: MS-013AE			

Ordering Information

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NOT TO SCALE	
TITLE: SOIC, WIDE BOD	DOCUMENT NO: 98ASB42345B		REV: G	
28 LEAD CASEOUTLINE		CASE NUMBER	R: 751F-05	10 MAR 2005
		STANDARD:	MS-013AE	




NOTES:

- POSITIONAL TOLERANCE OF LEADS, SHALL BE WITHIN 0.25 MM (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- $\boxed{3}$ dimension does not include mold flash.
- 4. 710-01 OBSOLETE, NEW STD 710-02.
- 5. CONTROLLING DIMENSION: INCH

	IN	СН	MILI	IMETER		INCH		MIL	MILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	МАХ	
А	1.435	1.465	36.45	37.21						
В	0.540	0.560	13.72	14.22						
С	0.155	0.200	3.94	5.08						
D	0.014	0.022	0.36	0.56						
F	0.040	0.060	1.02	1.52						
G	0.100	BSC	2.54 BSC							
Н	0.065	0.085	1.65	2.16						
J	0.008	0.015	0.20	0.38						
К	0.115	0.135	2.92	3.43						
L	L 0.600 BSC 15.24		24 BSC							
М	0*	15°	0°	15°						
N	0.020	0.040	0.51	1.02						
© FI	© FREESCALE SEMICONDUCTOR, INC. MECHANICAL ALL RIGHTS RESERVED.			AL OUTLINE PRINT VERSION NOT TO SCA			IT TO SCALE			
TITLE	TITLE:			DOCUMENT NO: 98ASB42390B			RE∨: D			
28 LD PDIP			CASE NUMBER: 710-02			24 MAY 2005				
					STANDARD: NON-JEDEC					

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	Mechanical outline		PRINT VERSION NOT TO SCALE		
TITLE:	DOCUMENT NE	98ASH70247A	RE∨: B		
16 LD TSSOP, PITCH 0.	CASE NUMBER	948F-01	19 MAY 2005		
	0.01111	STANDARD: JE	DEC		