

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI
Peripherals	LVD, POR, PWM
Number of I/O	24
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	<u>.</u>
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.600", 15.24mm)
Supplier Device Package	28-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08se8vrl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCU	Block Diagram
2	Pin A	ssignments
3	Elect	rical Characteristics
	3.1	Parameter Classification
	3.2	Absolute Maximum Ratings6
	3.3	Thermal Characteristics
	3.4	ESD Protection and Latch-Up Immunity
	3.5	DC Characteristics
	3.6	Supply Current Characteristics
	3.7	External Oscillator (XOSC) Characteristics

	3.8	Internal Clock Source (ICS) Characteristics 20
	3.9	ADC Characteristics 22
	3.10	AC Characteristics
		3.10.1 Control Timing
		3.10.2 TPM/MTIM Module Timing
	3.11	Flash Specifications
4	Orde	ring Information
	4.1	Package Information
	4.2	Mechanical Drawings

Revision History

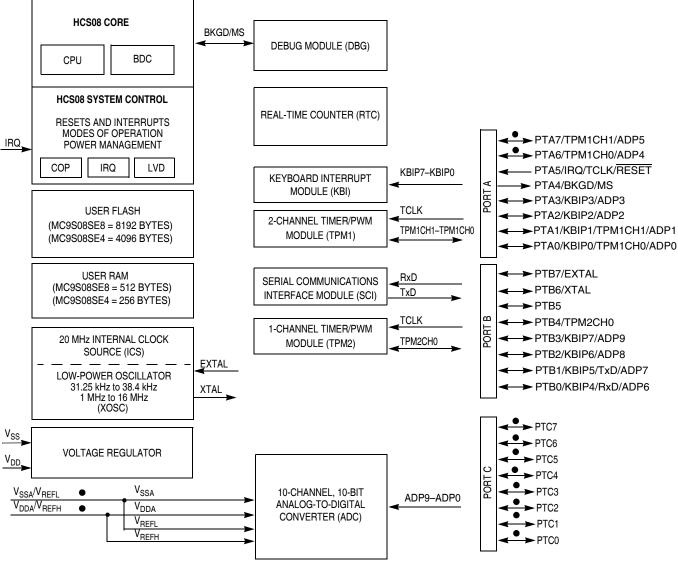
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: freescale.com

The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	10/8/2008	Initial public released.
2	1/16/2009	In Table 8, added the Max. of S2I _{DD} and S3I _{DD} in 0–105 °C; changed the Max. of S2I _{DD} and S3I _{DD} in 0–85 °C; changed the typical of S2I _{DD} and S3I _{DD} ; changed the S23I _{DDRTI} to P.
3	4/7/2009	Added $II_{OZTOT}I$ in the Table 7. Changed V_{DDAD} to V_{DDA} , V_{SSAD} to V_{SSA} . Updated Table 9, Table 10, Table 11, and Table 12. Updated Figure 13 and Figure 14.
4	4/10/2015	Updated Table 9.

Related Documentation

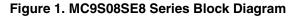
Find the most current versions of all documents at: http://www.freescale.com


Reference Manual (MC9S08SE8RM)

Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.



pins not available on 16-pin package

Notes:

When PTA4 is configured as BKGD, pin is bi-directional.

For the 16-pin package: V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

Pin Assignments

2 Pin Assignments

This chapter shows the pin assignments in the packages available for the MC9S08SE8 series.

Table 1. Pin Availability by Package Pin-Count

Pin Nu (Packa		<	- Lowest Pr	iority> Hig	hest
28 (SOIC/PDIP)	16 (TSSOP)	Port Pin	Alt 1	Alt 2	Alt 3
1		PTC5			
2		PTC4			
3	1	PTA5	IRQ	TCLK	RESET
4	2	PTA4		BKGD	MS
5	3				V _{DD}
6				V _{DDA}	V _{REFH}
7				V _{SSA}	V _{REFL}
8	4				V _{SS}
9	5	PTB7	EXTAL		
10	6	PTB6	XTAL		
11	7	PTB5			
12	8	PTB4		TPM2CH0	
13		PTC3			
14	_	PTC2			
15	_	PTC1			
16		PTC0			
17	9	PTB3	KBIP7		ADP9
18	10	PTB2	KBIP6		ADP8
19	11	PTB1	KBIP5	TxD	ADP7
20	12	PTB0	KBIP4	RxD	ADP6
21	_	PTA7		TPM1CH1 ¹	ADP5
22		PTA6		TPM1CH0 ¹	ADP4
23	13	PTA3	KBIP3		ADP3
24	14	PTA2	KBIP2		ADP2
25	15	PTA1	KBIP1	TPM1CH1 ¹	ADP1
26	16	PTA0	KBIP0	TPM1CH0 ¹	ADP0
27		PTC7			
28		PTC6			

¹ TPM1 pins can be remapped to PTA7, PTA6 and PTA1,PTA0

3 Electrical Characteristics

This chapter contains electrical and timing specifications.

3.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pull-up resistor associated with the pin is enabled.

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit	_	-2.5	V
Laich-up	Maximum input voltage limit	_	7.5	V

Table 5. ESD and Latch-up Test Conditions (continued)

Table 6. ESD and Latch-up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000		V
2	Machine model (MM)	V _{MM}	±200	_	۷
3	Charge device model (CDM)	V _{CDM}	±500	—	V
4	Latch-up current at $T_A = 125 \ ^{\circ}C$	I _{LAT}	±100		mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.5 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics. **Table 7. DC Characteristics**

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1		Operating voltage	—	2.7		5.5	V
		Output high voltage — Low drive (PTxDSn = 0)					
		5 V, $I_{Load} = -2 \text{ mA}$		V _{DD} – 1.5	—	—	
		$3 \text{ V}, \text{ I}_{\text{Load}} = -0.6 \text{ mA}$		V _{DD} – 1.5	—		
		$5 \text{ V}, \text{ I}_{\text{Load}} = -0.4 \text{ mA}$		V _{DD} – 0.8	—		
		3 V, I _{Load} = -0.24 mA	V _{OH}	V _{DD} – 0.8			v
		Output high voltage — High drive (PTxDSn = 1)					-
	_	5 V, I _{Load} = –10 mA		V _{DD} – 1.5	—	—	
2	Ρ	$3 \text{ V}, \text{ I}_{\text{Load}} = -3 \text{ mA}$		V _{DD} – 1.5	—	—	
		5 V, $I_{Load} = -2 \text{ mA}$		V _{DD} – 0.8	—	—	
		3 V, I _{Load} = -0.4 mA		V _{DD} – 0.8	_		
		Output low voltage — Low drive (PTxDSn = 0)					
		5 V, I _{Load} = 2 mA		1.5	—		
		3 V, I _{Load} = 0.6 mA		1.5	—	—	
		5 V, I _{Load} = 0.4 mA		0.8	—	—	
		3 V, I _{Load} = 0.24 mA	V _{OL}	0.8	—	—	v
		Output low voltage — High drive (PTxDSn = 1)	♥OL				v
	_	5 V, I _{Load} = 10 mA		1.5	—	—	
3	Ρ	3 V, I _{Load} = 3 mA		1.5	—	—	
		5 V, I _{Load} = 2 mA		0.8	—		
		3 V, I _{Load} = 0.4 mA		0.8	—	—	
		Output high current — Max total I _{OH} for all ports					
4	Ρ	5 V	I _{OHT}	—	—	100	mA
		3 V		—	—	60	

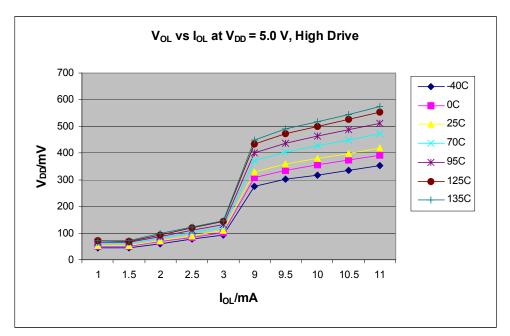


Figure 4. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 5 V)

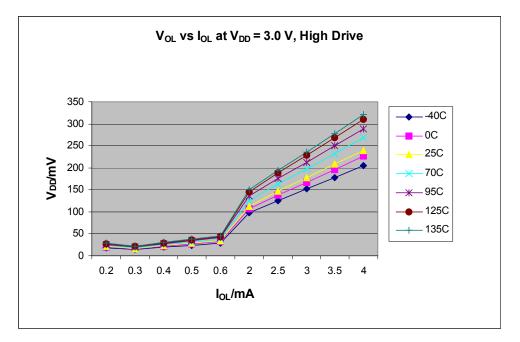


Figure 5. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 3 V)

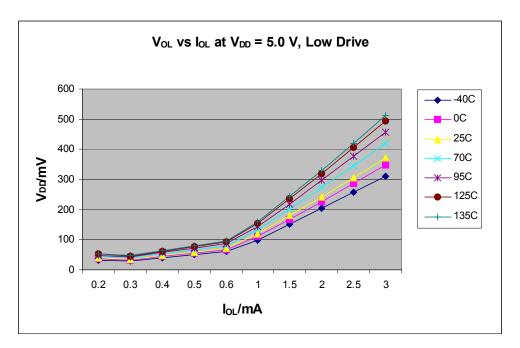


Figure 6. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 5 V)

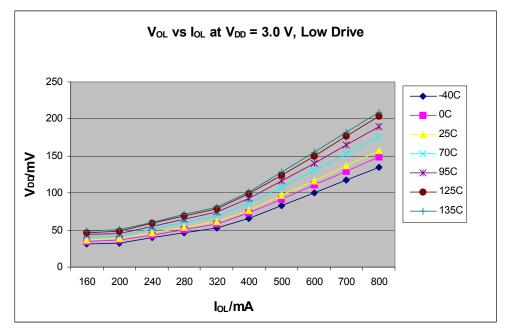


Figure 7. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 3 V)

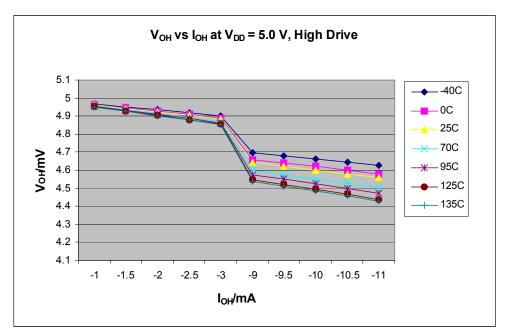


Figure 8. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 5 V)

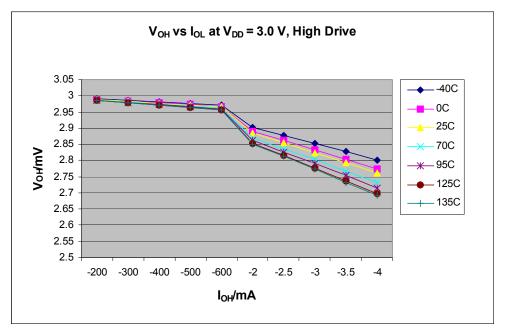


Figure 9. Typical V_{OH} vs. I_{OH} for High Drive Enabled Pad (V_{DD} = 3 V)

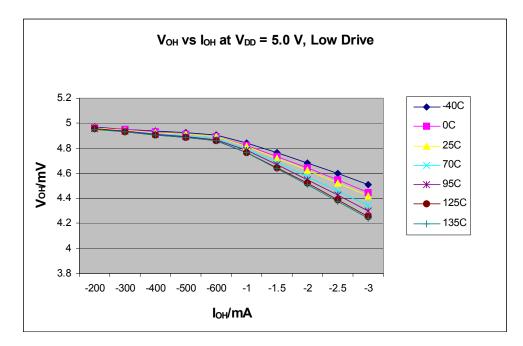


Figure 10. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad (V_{DD} = 5 V)

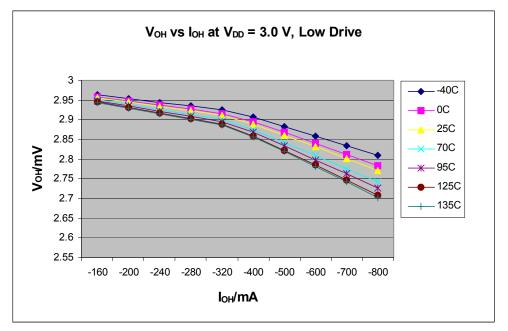


Figure 11. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad (V_{DD} = 3 V)

3.6 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

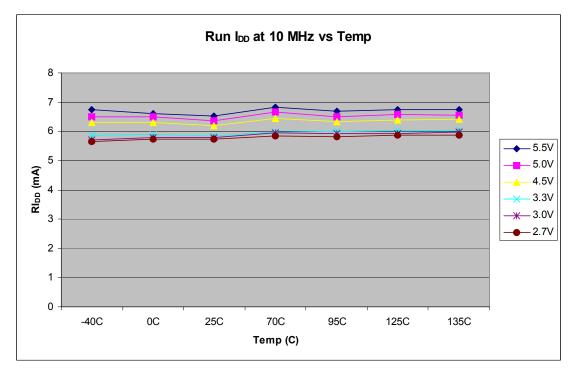


Figure 12. Typical Run I_{DD} Curves

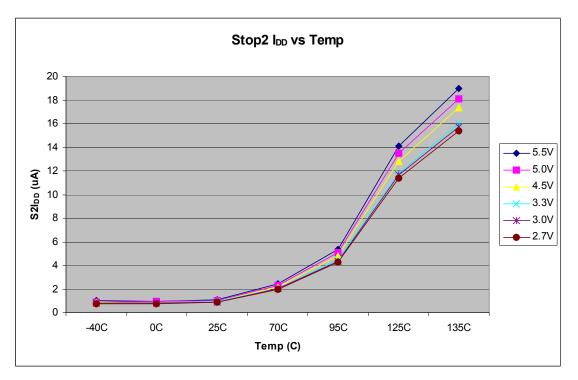


Figure 13. Typical Stop2 I_{DD} Curves

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
5	т	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ⁴	t CSTL-LP ÇSTH-HGO CSTH-LP CSTH-HGO	 	200 400 5 15		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE or FBE mode ² FBELP mode	f _{extal}	0.03125 0		20 20	MHz MHz

Table 9. Oscillator electrical specifications (Temperature Range = -40 to 125°C Ambient)

 $^1\,$ Typical column was characterized at 5.0 V, 25 $^\circ C$ or is recommended value.

² The input clock source must be divided using RDIV to within the range of 31.25 kHz to 39.0625 kHz.

³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications. This data will vary based upon the crystal manufacturer and board design. The crystal should be characterized by the crystal manufacturer.

⁴ 4 MHz crystal.

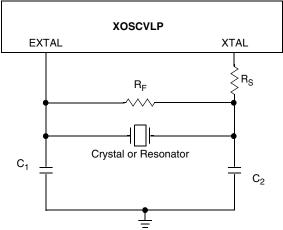


Figure 15. Typical Crystal or Resonator Circuit: High Range and Low Range/High Gain

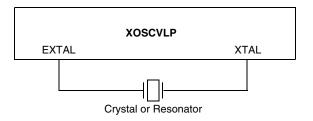


Figure 16. Typical Crystal or Resonator Circuit: Low Range/Low Power

3.8 Internal Clock Source (ICS) Characteristics

Num	С	Characteristic		Symbol	Min.	Typical ¹	Max.	Unit
1	Ρ	Average internal reference frequency at V _{DD} = 5 V and temperature = 25 °C		f _{int_t}	_	39.0625	_	kHz
2	Ρ	Internal reference frequency — user t	rimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μs
4	D	DCO output frequency range — trimmed ²	Low range (DRS = 00)	f _{dco_t}	16	_	20	MHz
5	D	DCO output frequency ² Reference = 32768 Hz and DMX32 =			_	59.77	_	MHz
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	_	± 0.2	±0.4	%f _{dco}
8	С	Total deviation of DCO output from trimmed frequency ³ Over full voltage and temperature range Over fixed voltage and temperature range of 0 to 70 °C		Δf_{dco_t}	_	−1.0 to 0.5 ±0.5	±2 ±1	%f _{dco}
10	С	FLL acquisition time ⁴		t _{Acquire}	_	_	1	ms
11	С	Long term jitter of DCO output clock (interval) ⁵	averaged over 2-ms	C _{Jitter}	_	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

 5 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

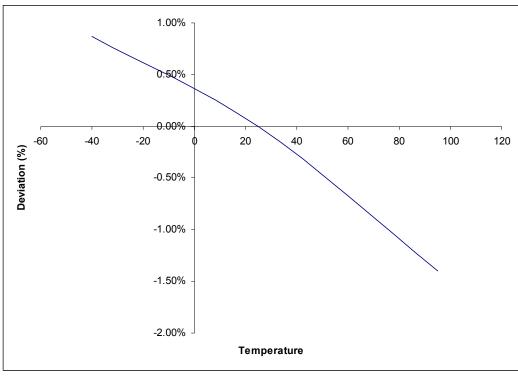


Figure 17. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

3.9 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Мах	Unit	Comment
Supply voltage	Absolute	V _{DDA}	2.7	_	5.5	V	
Supply voltage	Delta to $V_{DD} (V_{DD} - V_{DDA})^2$	ΔV_{DDA}	-100	0	100	mV	
Ground voltage	Delta to $V_{SS} (V_{SS} - V_{SSA})^2$	ΔV_{SSA}	-100	0	100	mV	
Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	
Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ	External to MCU
	8-bit mode (all valid f _{ADCK})			—	10		
ADC conversion	High speed (ADLPC = 0)	£	0.4	—	8.0	MHz	
clock frequency	Low power (ADLPC = 1)	f _{ADCK}	0.4		4.0		

Table 11. 10-Bit ADC Operating Conditions

- ¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- ² DC potential difference.

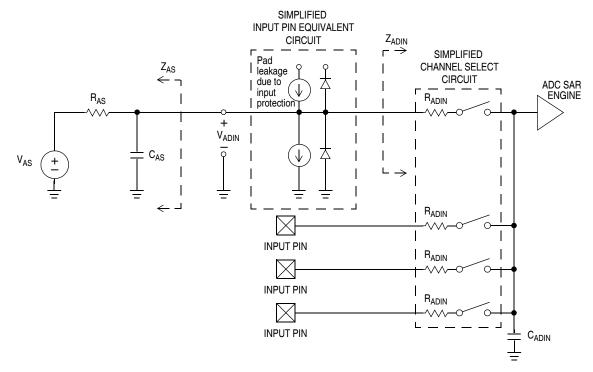


Figure 18. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment
Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1		т	I _{DDA}	_	133	_	μA	
Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1		т	I _{DDA}	_	218	_	μA	
Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1		т	I _{DDA}	_	327	_	μA	
Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1		D	I _{DDA}	_	0.582	1	mA	
Supply Current	Stop, Reset, Module Off	D	I _{DDA}	_	0.011	1	μA	

Table 12. 10-Bit ADC Characteristics	s (V _{REFH} = V _{DDA} ,	$V_{\text{REFL}} = V_{\text{SSA}}$
--------------------------------------	---	------------------------------------

Table 12. To-Dit ADC Characteristics (V _{REFH} – V _{DDA} , V _{REFL} – V _{SSA}) (continued)									
Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	Comment	
ADC	High Speed (ADLPC = 0)	_		2	3.3	5		t _{ADACK} =	
Asynchronous Clock Source	Low Power (ADLPC = 1)	D	f _{ADACK}	1.25	2	3.3	MHz	1/f _{ADACK}	
Conversion Time (Including	Short Sample (ADLSMP = 0)	D	t _{ADC}	_	20	_	ADCK	See SE8	
sample time)	Long Sample (ADLSMP = 1)				40	_	cycles	reference	
Sample Time	Short Sample (ADLSMP = 0)	D	t _{ADS}	_	3.5	_	ADCK cycles	manual for conversion time variances	
	Long Sample (ADLSMP = 1)			_	23.5	—	Cycles		
Temp Sensor	–40°C– 25°C	D	~		3.266	—	mV/°C		
Slope	25°C– 125°C	D	m	_	3.638	—	mv/ C		
Temp Sensor Voltage	25°C	D	V _{TEMP25}	_	1.396	_	mV		
Characteristics	for 28-pin packages only								
Total	10-bit mode	Ρ	_		±1	±2.5	LSB ³	Includes	
Unadjusted Error	8-bit mode	Ρ	E _{TUE}	-	±0.5	±1.0		quantization	
Differential	10-bit mode ²	Ρ		_	±0.5	±1.0	LSB ³		
Non-Linearity	8-bit mode ³	Ρ	DNL		±0.3	±0.5	LOD		
Integral	10-bit mode	Т	- INL		±0.5	±1.0	- LSB ³		
Non-Linearity	8-bit mode	Т		_	±0.3	±0.5			
Zero-Scale	10-bit mode	Ρ	E	_	±0.5	±1.5	LSB ³	., .,	
Error	8-bit mode	Ρ	E _{ZS}	_	±0.5	±0.5	1.50	$V_{ADIN} = V_{SSA}$	
Full-Scale	10-bit mode	Т	E .	_	±0.5	±1	LSB ³	V – V	
Error	8-bit mode	Т	E _{FS}	_	±0.5	±0.5	130	$V_{ADIN} = V_{DDA}$	
Quantization	10-bit mode	D	Eq		—	±0.5	LSB ³		
Error	8-bit mode	D	LQ		—	±0.5	LOD		
Input Leakage	10-bit mode	D	E _{IL}		±0.2	±2.5	LSB ³	Pad leakage ⁴ *	
Error	8-bit mode	D			±0.1	±1	LOD	R _{AS}	
Characteristics	for 16-pin package only								
Total	10-bit mode	Ρ	_	_	±1.5	±3.5	1003	Includes	
Unadjusted Error	8-bit mode	Ρ	E _{TUE}		±0.7	±1.5	LSB ³	quantization	

Table 12. 10-Bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

3.10 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	—	10	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	—	1300	μs
3	D	External reset pulse width ²	t _{extrst}	100	—	_	ns
4	D	Reset low drive ³	t _{rstdrv}	$34 imes t_{cyc}$	—	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ⁴	t _{MSH}	100	_		μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	Pin interrupt pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	С	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	40 75	_	ns
9	U	Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	11 35		ns

Table 13. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ When any reset is initiated, internal circuitry drives the reset pin (if enabled, RSTPE = 1) low for about 34 cycles of t_{cyc} .

⁴ To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁵ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 6 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40 °C to 125 °C.

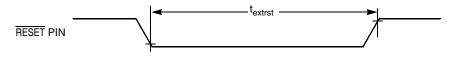
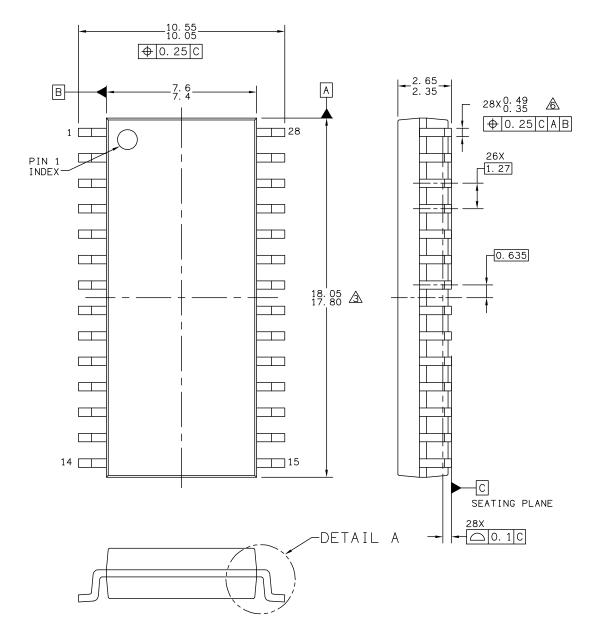
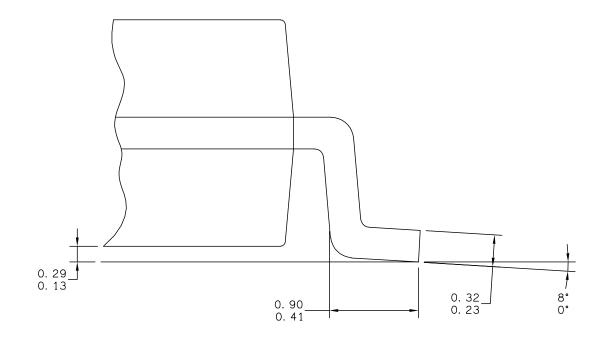



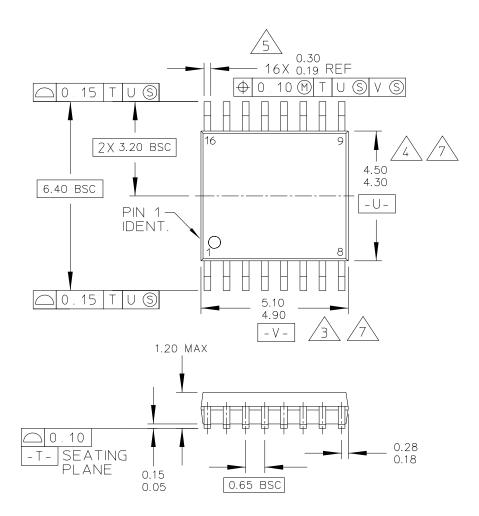
Figure 19. Reset Timing

MC9S08SE8 Series MCU Data Sheet, Rev. 4



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION N	DT TO SCALE
TITLE: SOIC, WIDE BOD	DOCUMENT	NO: 98ASB42345B	REV: G
28 LEAD	,	BER: 751F-05	10 MAR 2005
CASEOUTLINE	STANDARD	: MS-013AE	

MC9S08SE8 Series MCU Data Sheet, Rev. 4



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: SOIC, WIDE BOD	DOCUMENT NO): 98ASB42345B	REV: G	
28 LEAD	CASE NUMBER	R: 751F-05	10 MAR 2005	
CASEOUTLINE	STANDARD:	MS-013AE	•	

MC9S08SE8 Series MCU Data Sheet, Rev. 4

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NE	IT TO SCALE	
TITLE:	DOCUMENT NE]: 98ASH70247A	RE∨: B	
16 LD TSSOP, PITCH 0.6	CASE NUMBER: 948F-01 19 MAY 20			
	STANDARD: JE	DEC		

NOTES:

1. CONTROLLING DIMENSION: MILLIMETER

- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.
- <u>/3</u> DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE

4 DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE

5 DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 $\overline{7}$ dimensions are to be determined at datum plane $\overline{-W-}$.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	IT TO SCALE	
TITLE:	DOCUMENT NE	1: 98ASH70247A	RE∨: B	
16 LD TSSOP, PITCH 0.6	5MM	CASE NUMBER: 948F-01 19 MAY 2		
	STANDARD: JE	DEC		