

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	LINbus, SCI
Peripherals	LVD, POR, PWM
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	16-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08se8vtgr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCU	Block Diagram		3.8	Internal Clock Source (ICS) Characteristics	20
2	Pin A	ssignments4		3.9	ADC Characteristics	2
3	Elect	rical Characteristics		3.10	AC Characteristics	2
	3.1	Parameter Classification			3.10.1 Control Timing	2
	3.2	Absolute Maximum Ratings			3.10.2 TPM/MTIM Module Timing	20
	3.3	Thermal Characteristics		3.11	Flash Specifications	2
	3.4	ESD Protection and Latch-Up Immunity	4	Orde	ring Information	2
	3.5	DC Characteristics		4.1	Package Information	28
	3.6	Supply Current Characteristics		4.2	Mechanical Drawings	28
	3.7	External Oscillator (XOSC) Characteristics 19			-	

Revision History

To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: freescale.com

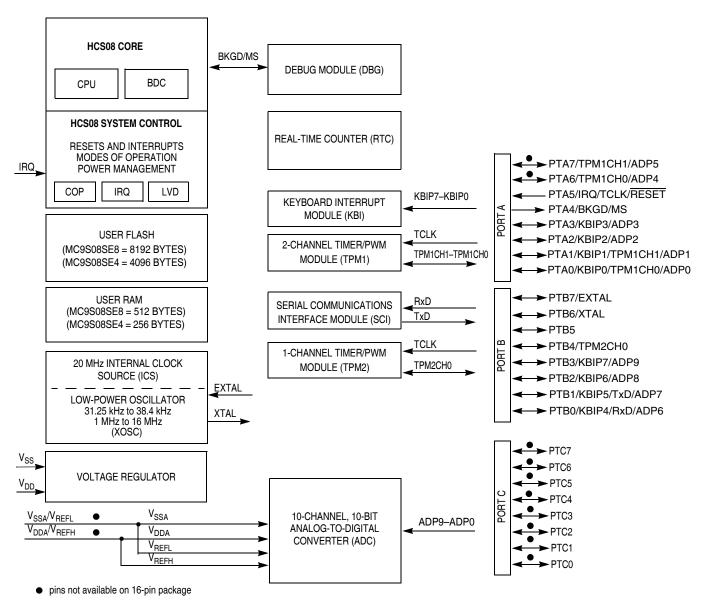
The following revision history table summarizes changes contained in this document.

Revision	Date	Description of Changes
1	10/8/2008	Initial public released.
2	1/16/2009	In Table 8, added the Max. of $S2I_{DD}$ and $S3I_{DD}$ in 0–105 °C; changed the Max. of $S2I_{DD}$ and $S3I_{DD}$ in 0–85 °C; changed the typical of $S2I_{DD}$ and $S3I_{DD}$; changed the $S23I_{DDRTI}$ to P.
3	4/7/2009	Added II _{OZTOT} I in the Table 7. Changed V _{DDAD} to V _{DDA} , V _{SSAD} to V _{SSA} . Updated Table 9, Table 10, Table 11, and Table 12. Updated Figure 13 and Figure 14.
4	4/10/2015	Updated Table 9.

Related Documentation

Find the most current versions of all documents at: http://www.freescale.com

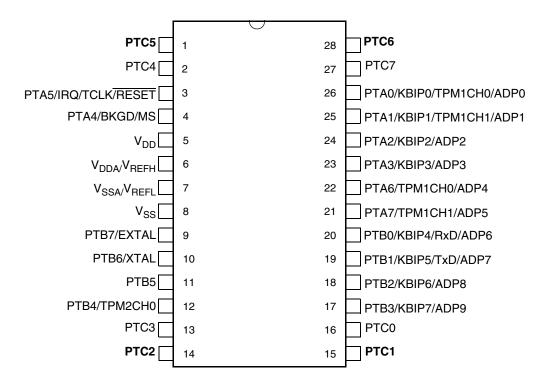
Reference Manual (MC9S08SE8RM)


Contains extensive product information including modes of operation, memory, resets and interrupts, register definition, port pins, CPU, and all module information.

MC9S08SE8 Series MCU Data Sheet, Rev. 4

1 MCU Block Diagram

The block diagram, Figure 1, shows the structure of the MC9S08SE8 series MCUs.


Notes:

When PTA4 is configured as BKGD, pin is bi-directional.

For the 16-pin package: V_{SSA}/V_{REFL} and V_{DDA}/V_{REFH} are double bonded to V_{SS} and V_{DD} respectively.

Figure 1. MC9S08SE8 Series Block Diagram

Pins in **bold** are lost in the next lower pin count package.

Figure 2. MC9S08SE8 Series in 28-Pin PDIP/SOIC Package

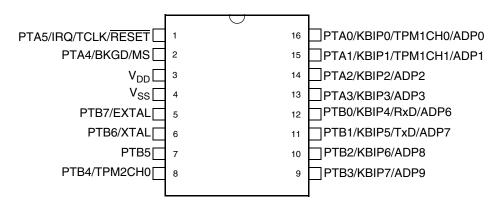


Figure 3. MC9S08SE8 in 16-Pin TSSOP Package

Table 5. ESD and Latch-up Test Conditions (continued)

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit	_	-2.5	٧
Laterrup	Maximum input voltage limit	_	7.5	V

Table 6. ESD and Latch-up Protection Characteristics

No.	Rating ¹	Symbol	Min	Max	Unit
1	Human body model (HBM)	V _{HBM}	±2000	_	V
2	Machine model (MM)	V _{MM}	±200	_	V
3	Charge device model (CDM)	V _{CDM}	±500	_	٧
4	Latch-up current at T _A = 125 °C	I _{LAT}	±100	_	mA

¹ Parameter is achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted.

3.5 DC Characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Table 7. DC Characteristics

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
1	_	Operating voltage	_	2.7		5.5	V
2	Р	Output high voltage — Low drive (PTxDSn = 0) $ 5 \text{ V, } I_{Load} = -2 \text{ mA} $ $ 3 \text{ V, } I_{Load} = -0.6 \text{ mA} $ $ 5 \text{ V, } I_{Load} = -0.4 \text{ mA} $ $ 3 \text{ V, } I_{Load} = -0.24 \text{ mA} $ $ 3 \text{ V, } I_{Load} = -0.24 \text{ mA} $ $ 0 \text{ Output high voltage} \text{ — High drive (PTxDSn = 1)} $ $ 5 \text{ V, } I_{Load} = -10 \text{ mA} $ $ 3 \text{ V, } I_{Load} = -3 \text{ mA} $ $ 5 \text{ V, } I_{Load} = -2 \text{ mA} $. V _{OH}	$V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.8$ $V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$			V
		3 V, I _{Load} = -0.4 mA Output low voltage — Low drive (PTxDSn = 0)		V _{DD} - 0.8		_	
		5 V, I _{Load} = 2 mA 3 V, I _{Load} = 0.6 mA 5 V, I _{Load} = 0.4 mA 3 V, I _{Load} = 0.24 mA	V	1.5 1.5 0.8 0.8		_ _ _	V
3	Р	Output low voltage — High drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA 3 V, I _{Load} = 3 mA 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 0.4 mA	. V _{OL}	1.5 1.5 0.8 0.8	 	_ _ _ _	V
4	Р	Output high current — Max total I _{OH} for all ports 5 V 3 V	I _{OHT}		_ _	100 60	mA

Table 7. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typical ¹	Max	Unit
5	Р	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}		_	100 60	mA
6	Р	Input high voltage; all digital inputs	V _{IH}	$0.65 \times V_{DD}$	_	_	V
7	Р	Input low voltage; all digital inputs	V_{IL}	_		$0.35 \times V_{DD}$	\ \
8	Р	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$	_	_	mV
9	С	Input leakage current; input only pins ²	II _{In} I	_	0.1	1	μΑ
10	Р	High impedance (off-state) leakage current ²	ll _{OZ} l	_	0.1	1	μΑ
11	С	Total leakage combined for all inputs and Hi-Z pins — All input only and I/O ²	II _{OZTOT} I	_	_	2	μА
12	Р	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
13	Р	Internal pulldown resistors ⁴	R_{PD}	20	45	65	kΩ
14	D	DC injection current ^{5, 6, 7} V _{IN} < V _{SS} , V _{IN} > V _{DD} Single pin limit Total MCU limit, includes sum of all stressed pins	I _{IC}	-0.2 -5	_ _	0.2 5	mA
15	С	Input capacitance; all non-supply pins	C _{In}	_	_	8	pF
16	С	RAM retention voltage	V_{RAM}	0.6	1.0	_	V
17	Р	POR re-arm voltage ⁸	V_{POR}	0.9	1.4	2.0	V
18	D	POR re-arm time	t _{POR}	10	_	_	μs
19	Р	Low-voltage detection threshold — high range ${\rm V_{DD}} \ {\rm falling} \\ {\rm V_{DD}} \ {\rm rising}$	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
20	Р	Low-voltage detection threshold — low range ${\rm V_{DD}\ falling} \\ {\rm V_{DD}\ falling}$	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	V
21	С	Low-voltage warning threshold — high range 1 V_{DD} falling V_{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	V
22	Р	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	V
23	Р	Low-voltage warning threshold low range 1 \$V_{DD}\$ falling \$V_{DD}\$ rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	V
24	С	Low-voltage warning threshold — low range 0 $V_{DD} \ \text{falling} \\ V_{DD} \ \text{rising}$	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	V

11

Table 7. DC Characteristics (continued)

Num	С	Parameter		Symbol	Min	Typical ¹	Max	Unit
05	+	Low-voltage inhibit reset/recover hysteresis	<i>E</i> V	V		100		m\/
25			5 V 3 V	V_{hys}	_	100 60	_	mV
26	Р	Bandgap voltage reference ⁹		V_{BG}	1.18	1.20	1.21	V

- Typical values are measured at 25 °C. Characterized, not tested.
- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with V_{In} = V_{SS}.
- ⁴ Measured with $V_{In} = V_{DD}$.
- All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ⁶ Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).
- ⁸ Maximum is highest voltage that POR is guaranteed.
- 9 Factory trimmed at $V_{DD} = 5.0 \text{ V}$, Temp = 25 $^{\circ}$ C.

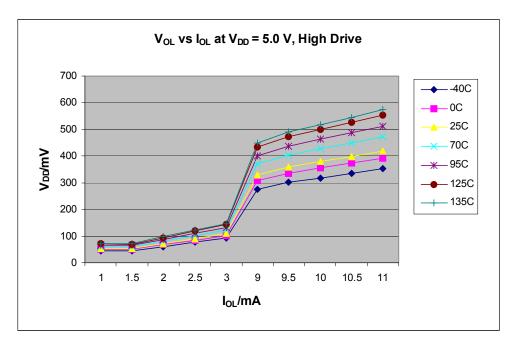


Figure 4. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad (V_{DD} = 5 V)

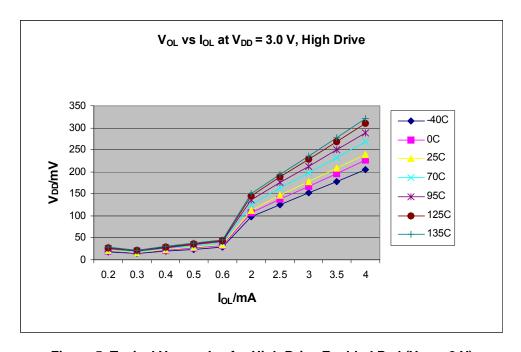


Figure 5. Typical V_{OL} vs. I_{OL} for High Drive Enabled Pad ($V_{DD} = 3 \text{ V}$)

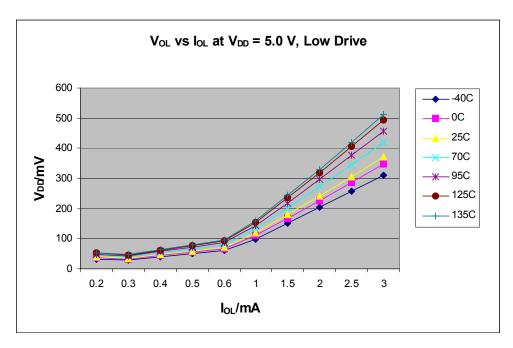


Figure 6. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad ($V_{DD} = 5 \text{ V}$)

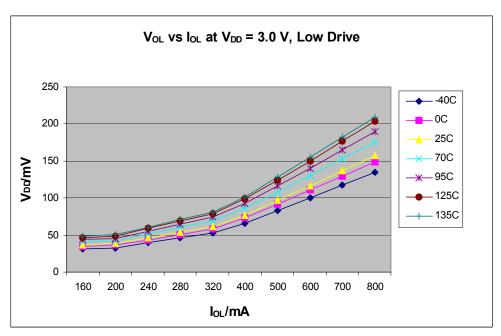


Figure 7. Typical V_{OL} vs. I_{OL} for Low Drive Enabled Pad (V_{DD} = 3 V)

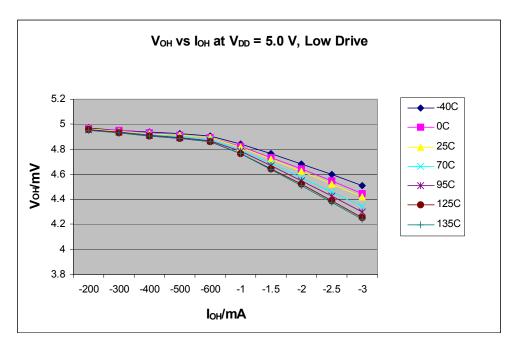


Figure 10. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad ($V_{DD} = 5 \text{ V}$)

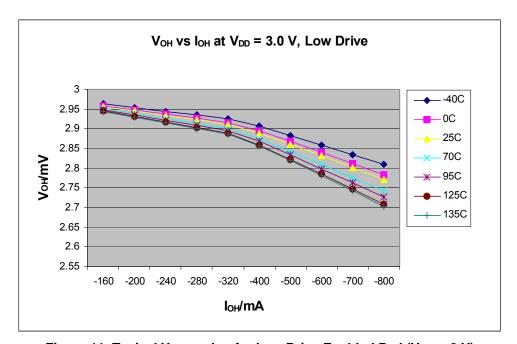


Figure 11. Typical V_{OH} vs. I_{OH} for Low Drive Enabled Pad ($V_{DD} = 3 \text{ V}$)

3.6 Supply Current Characteristics

This section includes information about power supply current in various operating modes.

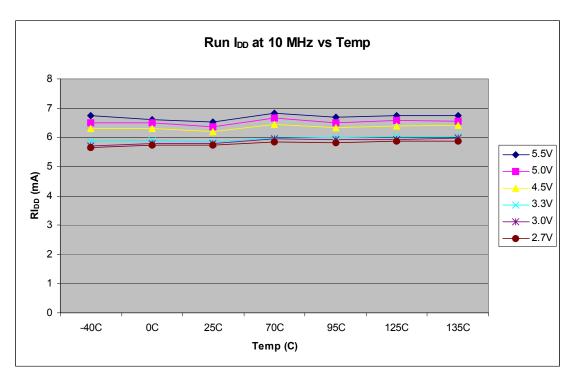


Figure 12. Typical Run I_{DD} Curves

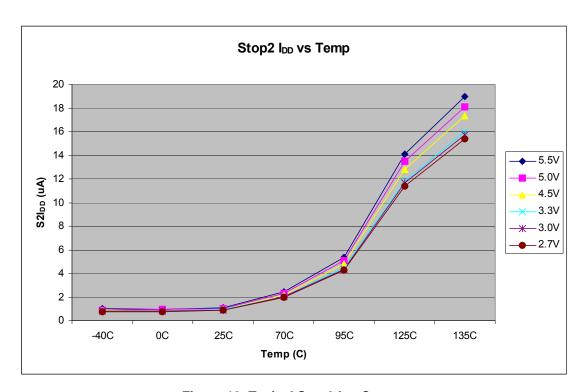


Figure 13. Typical Stop2 I_{DD} Curves

MC9S08SE8 Series MCU Data Sheet, Rev. 4

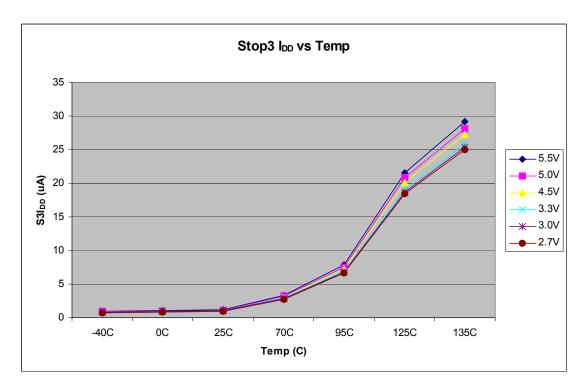


Figure 14. Typical Stop3 I_{DD} Curves

3.7 External Oscillator (XOSC) Characteristics

Table 9. Oscillator electrical specifications (Temperature Range = −40 to 125°C Ambient)

Num	С	Characteristic	Symbol	Min.	Typical ¹	Max.	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) ² High range (RANGE = 1), low power (HGO = 0) ²	f _{lo} f _{hi-hgo} f _{hi-lp}	32 1 1		38.4 16 8	kHz MHz MHz
2		Load capacitors	C _{1,} C ₂	See crystal or resonator manufacturer's recommendat			
3	_	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F		10 1	_ _	МΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0)	- R _S	_ _ _	0 100 0	_ _ _	kΩ
4		High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	1 115	_ _ _	0 0 0	0 10 20	, V75

3.8 Internal Clock Source (ICS) Characteristics

Table 10. ICS Frequency Specifications (Temperature Range = −40 to 85°C Ambient)

Num	С	Characteristic		Symbol	Min.	Typical ¹	Max.	Unit
1	Р	Average internal reference frequency at V _{DD} = 5 V and temperature = 25 °C		f _{int_t}	_	39.0625	_	kHz
2	Р	Internal reference frequency — user	trimmed	f _{int_ut}	31.25	_	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μs
4	D	DCO output frequency range — trimmed ²	Low range (DRS = 00)	f _{dco_t}	16	_	20	MHz
5	D	DCO output frequency ² Reference = 32768 Hz and DMX32 = 1		f _{dco_DMX32}	_	59.77	_	MHz
6	С	Resolution of trimmed DCO output frevoltage and temperature (using FTRI		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO output frevoltage and temperature (not using F		$\Delta f_{dco_res_t}$	_	± 0.2	± 0.4	%f _{dco}
8	С	Total deviation of DCO output from trimmed frequency ³ Over full voltage and temperature range Over fixed voltage and temperature range of 0 to 70 °C		Δf_{dco_t}	_	-1.0 to 0.5 ±0.5	± 2 ± 1	%f _{dco}
10	С	FLL acquisition time ⁴		t _{Acquire}	_	_	1	ms
11	С	Long term jitter of DCO output clock (interval) ⁵	averaged over 2-ms	C _{Jitter}	_	0.02	0.2	%f _{dco}

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This parameter is characterized and not tested on each device.

⁴ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{Bus}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

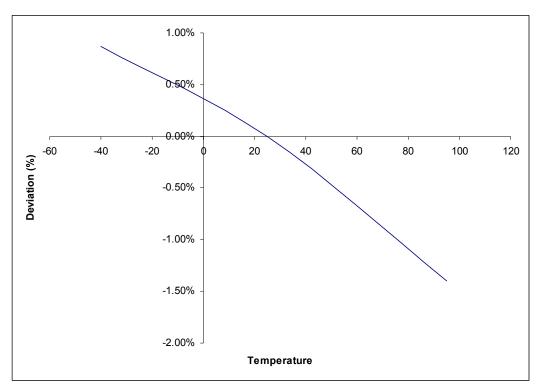


Figure 17. Deviation of DCO Output from Trimmed Frequency (20 MHz, 3.0 V)

3.9 ADC Characteristics

Table 11. 10-Bit ADC Operating Conditions

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply voltage	Absolute	V_{DDA}	2.7	_	5.5	V	
Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA}) ²	ΔV _{SSA}	-100	0	100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	
Analog source resistance	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ	External to MCU
	8-bit mode (all valid f _{ADCK})		_	_	10		
ADC conversion	High speed (ADLPC = 0)	f _{ADCK}	0.4	_	8.0	MHz	
clock frequency	Low power (ADLPC = 1)	ADCK	0.4	_	4.0	IVIIIZ	

MC9S08SE8 Series MCU Data Sheet, Rev. 4

3.10 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

3.10.1 Control Timing

Table 13. Control Timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	10	MHz
2	D	Internal low power oscillator period	t _{LPO}	700	_	1300	μs
3	D	External reset pulse width ²	t _{extrst}	100	_	_	ns
4	D	Reset low drive ³	t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after issuing background debug force reset to enter user or BDM modes	t _{MSSU}	500	_	_	ns
6	D	BKGD/MS hold time after issuing background debug force reset to enter user or BDM modes ⁴	t _{MSH}	100	_	_	μs
7	D	IRQ pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH,} t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
8	D	Pin interrupt pulse width Asynchronous path ² Synchronous path ⁵	t _{ILIH} , t _{IHIL}	100 1.5 × t _{cyc}	_	_	ns
9	С	Port rise and fall time — Low output drive (PTxDS = 0) (load = 50 pF) ⁶ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	40 75	_	ns
3	O	Port rise and fall time — High output drive (PTxDS = 1) (load = 50 pF) Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}	_	11 35	_	ns

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

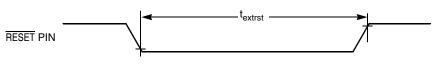
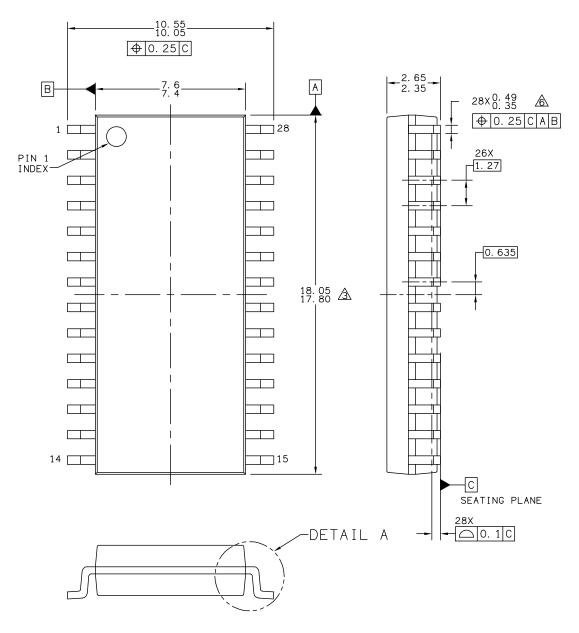


Figure 19. Reset Timing

MC9S08SE8 Series MCU Data Sheet, Rev. 4

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.


 $^{^{3}}$ When any reset is initiated, internal circuitry drives the reset pin (if enabled, RSTPE = 1) low for about 34 cycles of t_{cyc} .

To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.

⁵ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

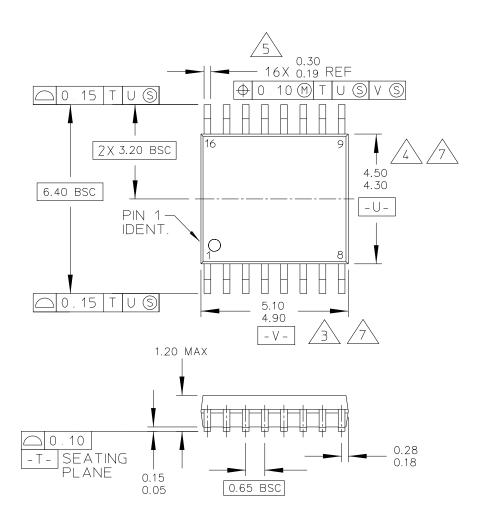
 $^{^6}$ Timing is shown with respect to 20% $\rm V_{DD}$ and 80% $\rm V_{DD}$ levels. Temperature range –40 °C to 125 °C.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: SOIC, WIDE BOD)Y.	DOCUMENT NO): 98ASB42345B	REV: G
28 LEAD	• •	CASE NUMBER	R: 751F-05	10 MAR 2005
CASEOUTLINE		STANDARD: MS	S-013AE	

NOTES:

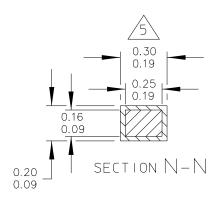
- POSITIONAL TOLERANCE OF LEADS, SHALL BE WITHIN 0.25 MM (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
- 2. DIMENSION TO CENTER OF LEADS WHEN FORMED PARALLEL.
- A DIMENSION DOES NOT INCLUDE MOLD FLASH.
- 4. 710-01 OBSOLETE, NEW STD 710-02.
- 5. CONTROLLING DIMENSION: INCH

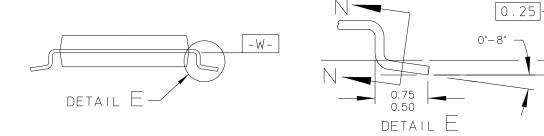
	IN	CH	MILL	_IMETER		INCH			ILLIMETER	
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
А	1.435	1.465	36.45	37.21						
В	0.540	0.560	13.72	14.22						
С	0.155	0.200	3.94	5.08						
D	0.014	0.022	0.36	0.56						
F	0.040	0.060	1.02	1.52						
G	0.100	BSC	2.5	34 BSC						
Н	0.065	0.085	1.65	2.16						
J	0.008	0.015	0.20	0.38						
K	0.115	0.135	2.92	3.43						
L	0.600	00 BSC 15.24 BSC		24 BSC						
M	0*	15°	0.	15°						
N	0.020	0.040	0.51	1.02						
© Fi	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA				L OUT	LINE	PRINT VER	SION N	IT TO SCALE	
TITLE:					DOCUMENT NO: 98ASB42390B			0B	REV: D	
28 LD PDIP					CASE NUMBER: 710-02 24 M			24 MAY 2005		
					STANDARD: NON-JEDEC					


MC9S08SE8 Series MCU Data Sheet, Rev. 4

Freescale Semiconductor

31


Ordering Information



© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE	
TITLE:		DOCUMENT NO	REV: B		
16 LD TSSOP, PITCH 0.6	5MM	CASE NUMBER: 948F-01 19 MAY 2005			
		STANDARD: JEDEC			

33

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NOT TO SCA		
TITLE:		DOCUMENT NO	REV: B		
16 LD TSSOP, PITCH 0.	65MM	CASE NUMBER: 948F-01 19 MAY 200			
		STANDARD: JEDEC			

MC9S08SE8 Series MCU Data Sheet, Rev. 4

Ordering Information

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE

/4/ DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

7 DIMENSIONS ARE TO BE DETERMINED AT DATUM PLANE -W-	7	DIMENSIONS	ARE	ТО	ВЕ	DETERMINED	ΑТ	DATUM	PLANE	-W-
--	---	------------	-----	----	----	------------	----	-------	-------	-----

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE	
TITLE:		DOCUMENT NO]: 98ASH70247A	RE√: B	
16 LD TSSOP, PITCH 0.6	5MM	CASE NUMBER: 948F-01 19 MAY 200			
		STANDARD: JE	DEC		

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2009, 2015. All rights reserved.

Document Number: MC9S08SE8

Rev. 4 4/2015

