

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	41 × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP, 8-MSOP (0.118", 3.00mm Width)
Supplier Device Package	8-MSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f519-i-ms

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 1: PIC12F519 8-PIN PDIP, SOIC, MSOP, 2X3 DFN DIAGRAM

Dovico	Program Memory	Data Mem	ory	1/0	Timors 9-bit
Device	Flash (words)	SRAM (bytes)	/tes) Flash (bytes)		Timers o-bit
PIC12F519	1024	41	64	6	1

NOTES:

FIGURE 3-1: PIC12F519 ARCHITECTURAL BLOCK DIAGRAM

TABLE 6-2: SUMMARY OF PORT REGISTERS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
GPIO	—		GP5	GP4	GP3	GP2	GP1	GP0	xx xxxx	uu uuuu
TRISGPIO	—	—	TRISGPI05	TRISGPIO4	TRISGPI03	TRISGPI02	TRISGPI01	TRISGPI00	11 1111	11 1111
STATUS	GPWUF	—	PA0	TO	PD	Z	DC	С	0-01 1xxx	q-0q quuu
OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0', Shaded cells = unimplemented, read as '0', q = depends on the condition

7.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.1.1 EXTERNAL CLOCK **SYNCHRONIZATION**

Increment Timer0 (Q4)

Timer0

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-4). Therefore, it is necessary for TOCKI to be high for at least 2 Tosc (and a small RC delay of 2 Tt0H) and low for at least 2 Tosc (and a small RC delay of 2 Tt0H). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler, so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4 Tosc (and a small RC delay of 4 Tt0H) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of Tt0H. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-4 shows the delay from the external clock edge to the timer incrementing.

T0 + 2

Note 1: Delay from clock input change to Timer0 increment is 3 Tosc to 7 Tosc. (Duration of Q = Tosc). Therefore, the error in measuring the interval between two edges on Timer0 input = ± 4 Tosc max.

T0 +

Τ0

2: External clock if no prescaler selected; prescaler output otherwise.

3: The arrows indicate the times at which sampling occurs.

8.5 Device Reset Timer (DRT)

On the PIC12F519 device, the DRT runs any time the device is powered up. DRT runs from Reset and varies based on oscillator selection and Reset type (see Table 8-5).

The DRT operates on an internal RC oscillator. The processor is kept in Reset as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the oscillator to stabilize.

Oscillator circuits based on crystals or ceramic resonators require a certain time after power-up to establish a stable oscillation. The on-chip <u>DRT</u> keeps the devices in a Reset <u>condition</u> after <u>MCLR</u> has reached a logic high (VIH MCLR) level. Programming GP3/MCLR/VPP as MCLR and using an external RC network connected to the MCLR input is not required in most cases. This allows savings in cost-sensitive and/or space restricted <u>applications</u>, as well as allowing the use of the GP3/MCLR/VPP pin as a general purpose input.

The Device Reset Time delays will vary from chip-to-chip due to VDD, temperature and process variation. See AC parameters for details.

The DRT will also be triggered upon a Watchdog Timer time-out from Sleep. This is particularly important for applications using the WDT to wake from Sleep mode automatically.

Reset sources are POR, MCLR, WDT time-out and wake-up on pin change. See Section 8.8.2 "Wake-up from Sleep", Notes 1, 2 and 3.

TABLE 8-5: DRT (DEVICE RESET TIMER PERIOD)

Oscillator Configuration	POR Reset	Subsequent Resets			
INTOSC, EXTRC	1 ms (typical)	10 μs (typical)			
LP, XT	18 ms (typical)	18 ms (typical)			

8.6 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the external RC oscillator of the (GP5)/OSC1/CLKIN pin and the internal 4 or 8 MHz oscillator. This means that the WDT will run even if the main processor clock has been stopped, for example, by execution of a SLEEP instruction. During normal operation or Sleep, a WDT Reset or wake-up Reset, generates a device Reset.

The $\overline{\text{TO}}$ bit (STATUS<4>) will be cleared upon a Watchdog Timer Reset.

The WDT can be permanently disabled by programming the configuration WDTE as a '0' (see **Section 8.1 "Configuration Bits"**). Refer to the PIC12F519 Programming Specification (DS41316) to determine how to access the Configuration Word.

8.6.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms, (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the OPTION register. Thus, a time-out period of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).

Under worst-case conditions (VDD = Min., Temperature = Max., max. WDT prescaler), it may take several seconds before a WDT time-out occurs.

8.6.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the postscaler, if assigned to the WDT, and prevents it from timing out and generating a device Reset.

The SLEEP instruction resets the WDT and the postscaler, if assigned to the WDT. This gives the maximum Sleep time before a WDT wake-up Reset.

FIGURE 8-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 8-6: SUMMARY OF REGISTER ASSOCIATED WITH THE WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
OPTION	GPWU	GPPU	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: Shaded boxes = Not used by Watchdog Timer.

9.0 INSTRUCTION SET SUMMARY

The PIC12F519 instruction set is highly orthogonal and is comprised of three basic categories.

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

Each PIC12F519 instruction is a 12-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands** which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 9-1, while the various opcode fields are summarized in Table 9-1.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top-of-Stack
PC	Program Counter
WDT	Watchdog Timer counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
∈	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file	regist	er c	per	atic	ons	
11	6	5	4			0
OPCODE		d		f	(FILE #)	
d = 0 for desti d = 1 for desti f = 5-bit file re	natior natior egister	n W n f r ade	dres	s		
Bit-oriented file re	gister	ор	erat	ion	S	
<u>11</u>	87		5	4		0
OPCODE	b	(Bľ	T #)		f (FILE #)	
iteral and contro	l oper	atio	ons (7	exc	серt GOTO)	0
OPCODE					k (literal)	Ū
k = 8-bit imm	ediate	val	ue			
Literal and contro	l oper	atio	ons -	- G(DTO instruct	tion
11		9	8			0
OPCODE					k (literal)	

TABLE 9-2:	INSTRUCTION SET	SUMMARY
------------	-----------------	---------

Mnemonic,		Description	Cycles	12-1	Bit Opc	ode	Status	Neteo
Opera	nds	Description		MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C, DC, Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	_	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	-	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2, 4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C, DC, Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
		BIT-ORIENTED FILE REGISTE	R OPER	ATIONS				
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
		LITERAL AND CONTROL C	PERATI	ONS				
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Call Subroutine	2	1001	kkkk	kkkk	None	1
CLRWDT	-	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	1100	kkkk	kkkk	None	
OPTION	-	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRISGPIO	f	Load TRISGPIO register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR literal to W	1	1111	kkkk	kkkk	Z	
Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for								

GOTO. See Section 4.6 "Program Counter".

2: When an I/O register is modified as a function of itself (e.g. MOVF GPIO, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state latches of GPIO. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	(W).OR. (f) \rightarrow (dest)
Status Affected:	Z
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \leq f \leq 31$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from the W register to register 'f'.

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$
Operation:	$(f) \rightarrow (dest)$
Status Affected:	Z
Description:	The contents of register 'f' are moved to destination 'd'. If 'd' is '0', destination is the W register. If 'd' is '1', the destination is file register 'f'. 'd' = 1 is useful as a test of a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The eight-bit literal 'k' is loaded into the W register. The "don't cares" will assembled as '0's.				

OPTION	Load OPTION Register				
Syntax:	[label] Option				
Operands:	None				
Operation:	$(W) \rightarrow Option$				
Status Affected:	None				
Description:	The content of the W register is loaded into the OPTION register.				

10.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

10.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

10.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

10.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

10.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

FIGURE 11-2: MAXIMUM OSCILLATOR FREQUENCY TABLE

VDD (Volts)	Temperature (°C)	Min.	Тур.	Max.	Units
GP0/GP1					
2.0	-40	73K	105K	186K	Ω
	25	73K	113K	187K	Ω
	85	82K	123K	190K	Ω
	125	86K	132K	190K	Ω
5.5	-40	15K	21K	33K	Ω
	25	15K	22K	34K	Ω
	85	19K	26K	35K	Ω
	125	23K	29K	35K	Ω
GP3					
2.0	-40	63K	81K	96K	Ω
	25	77K	93K	116K	Ω
	85	82K	96K	116K	Ω
	125	86K	100K	119K	Ω
5.5	-40	16K	20K	22K	Ω
	25	16K	21K	23K	Ω
	85	24K	25K	28K	Ω
	125	26K	27K	29K	Ω

TABLE 11-4: PULL-UP RESISTOR RANGES

TABLE 11-7: TIMING REQUIREMENTS

AC CHAR	ACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	aram Sym. Characteristic		Min.	Typ ⁽¹⁾	Max.	Units	
17	TosH2IoV	OSC1↑ (Q1 cycle) to Port Out Valid ^{(2), (3)}	_	—	100*	ns	
18	TosH2ıol	OSC1 [↑] (Q2 cycle) to Port Input Invalid (I/O in hold time) ⁽²⁾	50	—	_	ns	
19	TioV2osH	Port Input Valid to OSC1 [↑] (I/O in setup time)	20	—	_	ns	
20	TioR	Port Output Rise Time ⁽³⁾	_	10	50**	ns	
21	TIOF	Port Output Fall Time ⁽³⁾	—	10	50**	ns	

TBD = To be determined.

- * These parameters are characterized but not tested.
- ** These parameters are design targets and are not tested.
- **Note 1:** Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
 - 2: Measurements are taken in EXTRC mode.
 - 3: See Figure 11-3 for loading conditions.

FIGURE 11-6: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING

TABLE 11-10: TIMER0 CLOCK REQUIREMENTS

AC CHARACTERISTICS			Standard Oper Operating Temp Operating Volta Section TABLI Extended)"	Standard Operating Conditions (unless otherwise specified)Operating Temperature -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended)Operating Voltage VDD range is described inSection TABLE 11-3: "DC CHARACTERISTICS: PIC12F519 (Industrial, Extended)"					
Param No.	Sym.	Characte	Min.	Тур ⁽¹⁾	Max.	Units	Conditions		
40	Tt0H	T0CKI High Pulse	No Prescaler	0.5 TCY + 20*	—	_	ns		
		Width	With Prescaler	10*	—	—	ns		
41	TtOL TOC	T0CKI Low Pulse	No Prescaler	0.5 TCY + 20*	—		ns		
		Width	With Prescaler	10*	—		ns		
42	Tt0P	T0CKI Period		20 or Tcy + 40* N		—	ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	
4	* The	se parameters are cha	racterized but not	t tested.					

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 11-11: FLASH DATA MEMORY WRITE/ERASE REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified) Operating Temperature -40°C ≤ TA ≤ +85°C (industrial) -40°C ≤ TA ≤ +125°C (extended) Operating Voltage VDD range is described in Section TABLE 11-3: "DC CHARACTERISTICS: PIC12F519 (Industrial, Extended)"				
Param No.	Sym.	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
43	Tow	Flash Data Memory Write Cycle Time	2	3.5	5	ms	
44	TDE	Flash Data Memory Erase Cycle Time	2	3	4	ms	

These parameters are characterized but not tested.

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 12-3: IDD vs. VDD OVER Fosc (LP MODE)

FIGURE 12-4: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

FIGURE 12-5: MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)

FIGURE 12-10: Vol vs. IoL OVER TEMPERATURE (VDD = 5.0V)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com