

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	5
Program Memory Size	1.5KB (1K x 12)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	41 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f519-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2008, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

NOTES:

2.0 PIC12F519 DEVICE VARIETIES

When placing orders, please use the PIC12F519 Product Identification System at the back of this data sheet to specify the correct part number. A variety of packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in this section.

2.1 Quick Turn Programming (QTP) Devices

Microchip offers a QTP programming service for factory production orders. This service is made available for users who choose not to program medium-to-high quantity units and whose code patterns have stabilized. The devices are identical to the Flash devices but with all Flash locations and fuse options already programmed by the factory. Certain code and prototype verification procedures do apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.2 Serialized Quick Turn ProgrammingSM (SQTPSM) Devices

Microchip offers a unique programming service, where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry code, password or ID number.

NOTES:

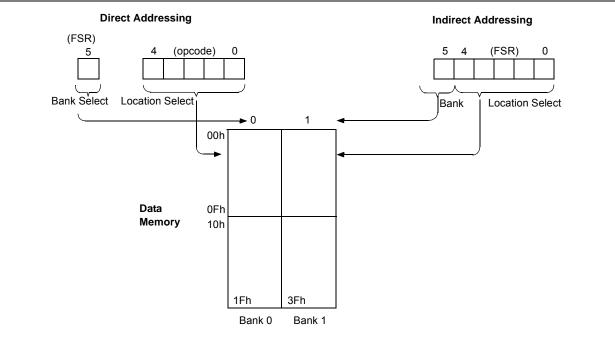
4.8 Indirect Data Addressing: INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

The FSR is an 8-bit wide register. It is used in conjunction with the INDF Register to indirectly address the data memory area.

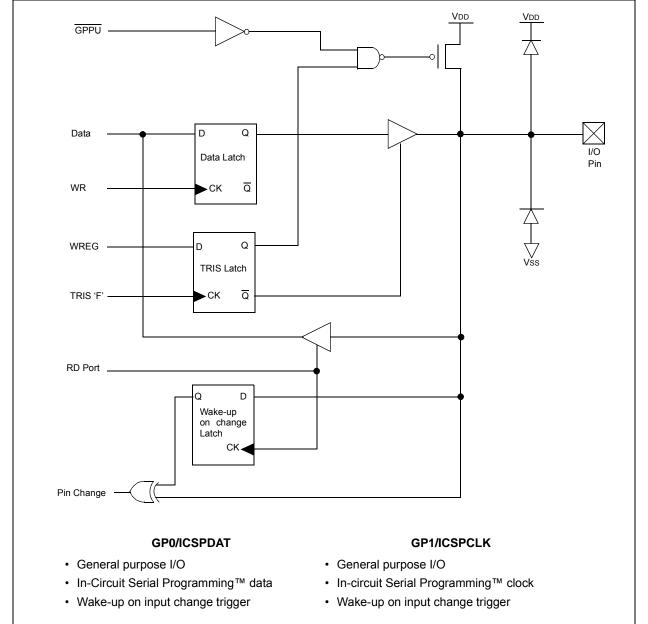
The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

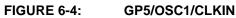

FSR<5> is used to select between banks (0 = Bank 0, 1 = Bank 1).

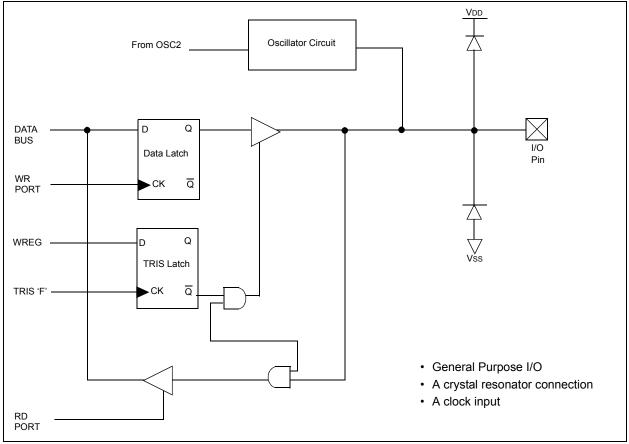
FSR<7:6> are unimplemented and read as '11'.

EXAMPLE 4-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	MOVLW MOVWF CLRF INCF BTESC	0x10 FSR INDF FSR,F FSR,4	<pre>;initialize pointer ;to RAM ;clear INDF ;register ;inc pointer ;all done?</pre>
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue
	:		


FIGURE 4-4: DIRECT/INDIRECT ADDRESSING




6.3 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All port pins, except GP3 which is input only, may be used for both input and output operations. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF GPIO, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit in TRISGPIO must be cleared (= 0). For use as an input, the corresponding TRISGPIO bit must be set. Any I/O pin (except GP3) can be programmed individually as input or output.

7.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module or as a postscaler for the Watchdog Timer (WDT), respectively (see **Section 8.6 "Watch-dog Timer (WDT)"**). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note:	The prescaler may be used by either the		
	Timer0 module or the WDT, but not both.		
	Thus, a prescaler assignment for the		
	Timer0 module means that there is no		
	prescaler for the WDT and vice versa.		

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

7.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and Prescaler
MOVLW	b'00xx1111'	
OPTION		
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	b'00xx1xxx'	;Set Postscaler to
OPTION		;desired WDT rate

To change the prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 7-2:	CHANGING PRESCALER
	(WDT \rightarrow TIMER0)

CLRWDT	;Clear WDT and
	;prescaler
MOVLW b'xxxx0xxx'	;Select TMR0, new
	;prescale value and
	;clock source
OPTION	
1	

8.9 Program Verification/Code Protection

If the code protection bits have not been programmed, the on-chip program and data memory can be read out for verification purposes.

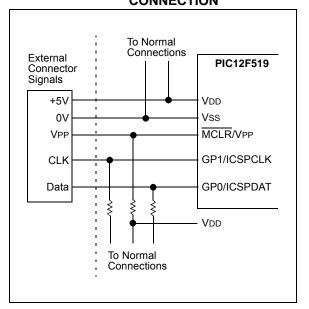
The first 64 locations and the last location (OSCCAL) can be read, regardless of the setting of the program memory's code protection bit. If the code protect bit specific to the FLASH data memory is programmed, then none of the contents of this memory region can be verified externally.

8.10 ID Locations

Four memory locations are designated as ID locations where users can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify.

Use only the lower 4 bits of the ID locations. The upper bits should be programmed as 0s.

8.11 In-Circuit Serial Programming™


The PIC12F519 device can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows users to manufacture boards with unprogrammed PIC12F519 device and then program the PIC12F519 device just before shipping the product. This also allows the most recent firmware, or a custom firmware, to be programmed.

The PIC12F519 device is placed into a Program/Verify mode by holding the GP1 and GP0 pins low while raising the \overline{MCLR} (VPP) pin from VIL to VIHH (see programming specification). The GP1 pin becomes the programming clock, and the GP0 pin becomes the programming data. Both GP1 and GP0 pins are Schmitt Trigger inputs in this mode.

After Reset, a 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a Load or a Read. For complete details of serial programming, please refer to the *"PIC12F519 Memory Programming Specification,"* (DS41316).

A typical In-Circuit Serial Programming connection is shown in Figure 8-12.

FIGURE 8-12: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

9.0 INSTRUCTION SET SUMMARY

The PIC12F519 instruction set is highly orthogonal and is comprised of three basic categories.

- Byte-oriented operations
- · Bit-oriented operations
- · Literal and control operations

Each PIC12F519 instruction is a 12-bit word divided into an **opcode**, which specifies the instruction type, and one or more **operands** which further specify the operation of the instruction. The formats for each of the categories is presented in Figure 9-1, while the various opcode fields are summarized in Table 9-1.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8 or 9-bit constant or literal value.

TABLE 9-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0 (store result in W) d = 1 (store result in file register 'f') Default is d = 1
label	Label name
TOS	Top-of-Stack
PC	Program Counter
WDT	Watchdog Timer counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
E	In the set of
italics	User defined term (font is courier)

All instructions are executed within a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file	e register	operatio	ons	
11	65	4		0
OPCODE	d	f	(FILE #)	
d = 0 for destination W d = 1 for destination f f = 5-bit file register address				
Bit-oriented file	egister o	peration	IS	
11	87	54		0
OPCODE	b (B	IT #)	f (FILE #)	
f = 5-bit file Literal and contr	0		серt Goтo)	
11	8	7		0
OPCODE			k (literal)	
k = 8-bit immediate value				
Literal and contr	ol operati	ons – G	ото i nstruct	ion
11	9	8		0
OPCODE k (literal)				
k = 9-bit im	mediate va	alue		

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) \to (dest)$
Status Affected:	C, DC, Z
Description:	Add the contents of the W register and register 'f'. If 'd' is'0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[label] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W).AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of the W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDWF	AND W with f			
Syntax:	[<i>label</i>] ANDWF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in [0,1] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	Z			
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped.
	If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded, and a NOP is executed instead, making this a two-cycle instruction.

Status Affected:

Description:

Ζ

register.

The contents of the W register are XOR'ed with the eight-bit literal 'k'.

The result is placed in the W

TRIS	Load TRIS Register	XORWF	Exclusive OR W with f	
Syntax:	[<i>label</i>] TRIS f	Syntax:	[<i>label</i>] XORWF f,d	
Operands:	f = 6	Operands:	$0 \le f \le 31$	
Operation:	(W) \rightarrow TRIS register f	-	d ∈ [0,1]	
Status Affected:	None	Operation:	(W) .XOR. (f) \rightarrow (dest)	
Description:	TRIS register 'f' (f = 6 or 7) is	Status Affected:	Z	
loaded with the contents of the W register.		Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W	
XORLW	XORLW Exclusive OR literal with W		register. If 'd' is '1', the result is stored back in register 'f'.	
Syntax:	[<i>label</i>] XORLW k		Ű	
Operands:	$0 \le k \le 255$			
Operation:	(W) .XOR. $k \rightarrow (W)$			

11.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +6.5V
Voltage on MCLR with respect to Vss	0 to +13.5V
Voltage on all other pins with respect to Vss	0.3V to (VDD + 0.3V)
Total power dissipation ⁽¹⁾	700 mW
Max. current out of Vss pin	200 mA
Max. current into Vod pin	150 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	25 mA
Max. output current sourced by I/O port	75 mA
Max. output current sunk by I/O port	75 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-\Sigma$	VOH) x IOH} + Σ (VOL x IOL)

[†]NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

TABLE 11-3: DC CHARACTERISTICS: PIC12F519 (Industrial, Extended)

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym.	Characteristic	Min.	Typ†	Max.	Units	Conditions
	VIL	Input Low Voltage		•			
		I/O ports					
D030		with TTL buffer	Vss	—	0.8	V	For all $4.5 \le VDD \le 5.5V$
D030A			Vss	—	0.15 VDD	V	Otherwise
D031		with Schmitt Trigger buffer	Vss	—	0.15 VDD	V	
D032		MCLR, TOCKI	Vss	—	0.15 VDD	V	
D033		OSC1 (EXTRC mode)	Vss	_	0.15 VDD	V	(Note 1)
D033A		OSC1 (XT and LP modes)	Vss	_	0.3	V	
	Vih	Input High Voltage					1
		I/O ports		—			
D040		with TTL buffer	2.0	_	Vdd	V	$4.5 \leq V \text{DD} \leq 5.5 \text{V}$
D040A			0.25 VDD + 0.8V	-	Vdd	V	Otherwise
D041		with Schmitt Trigger buffer	0.85 VDD	—	Vdd	V	For entire VDD range
D042		MCLR, TOCKI	0.85 VDD	—	Vdd	V	
D042A		OSC1 (EXTRC mode)	0.85 VDD	—	Vdd	V	(Note 1)
D043		OSC1 (XT and LP modes)	1.6	—	Vdd	V	
D070	IPUR	I/O PORT weak pull-up current ⁽⁵⁾	50	250	400	μA	VDD = 5V, VPIN = VSS
	lı∟	Input Leakage Current ^{(2), (3)}					
D060		I/O ports	—	-	±1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}, \ \text{Pin at high-impedance}$
D061		GP3/MCLR ⁽⁴⁾	—	±0.7	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
D063		OSC1	—	—	±5	μA	$Vss \leq V\text{PIN} \leq V\text{DD}, XT$ and LP osc configuration
		Output Low Voltage					
D080		I/O ports	—	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C
D080A			—	—	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
		Output High Voltage					
D090		I/O ports ⁽³⁾	VDD - 0.7	-	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
D090A			VDD - 0.7	—	—	V	IOH = -2.5 mA, VDD = 4.5V, -40° C to $+125^{\circ}$ C
		Capacitive Loading Specs on Output	t Pins				
D101		All I/O pins		_	50	pF	
		Flash Data Memory					
D120	ED	Byte endurance	100K	1M	—	E/W	$-40^\circ C \le T_A \le +85^\circ C$
D120A	ED	Byte endurance	10K	100K	—	E/W	$+85^{\circ}C \leq T_A \leq +125^{\circ}C$
D121	Vdrw	VDD for read/write	VMIN	_	5.5	V	

t

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC12F519 be driven Note 1:

2: ing conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

This specification applies to GP3/MCLR configured as GP3 with internal pull-up disabled. 4:

This specification applies to all weak pull-up devices, including the weak pull-up found on GP3/MCLR. The current value listed will be the 5: same whether or not the pin is configured as GP3 with pull-up enabled or MCLR.

VDD (Volts)	Temperature (°C)	Min.	Тур.	Max.	Units	
GP0/GP1						
2.0	-40	73K	105K	186K	Ω	
	25	73K	113K	187K	Ω	
	85	82K	123K	190K	Ω	
	125	86K	132K	190K	Ω	
5.5	-40	15K	21K	33K	Ω	
	25	15K	22K	34K	Ω	
	85	19K	26K	35K	Ω	
	125	23K	29K	35K	Ω	
GP3						
2.0	-40	63K	81K	96K	Ω	
	25	77K	93K	116K	Ω	
	85	82K	96K	116K	Ω	
	125	86K	100K	119K	Ω	
5.5	-40	16K	20K	22K	Ω	
	25	16K	21K	23K	Ω	
	85	24K	25K	28K	Ω	
	125	26K	27K	29K	Ω	

TABLE 11-4: PULL-UP RESISTOR RANGES

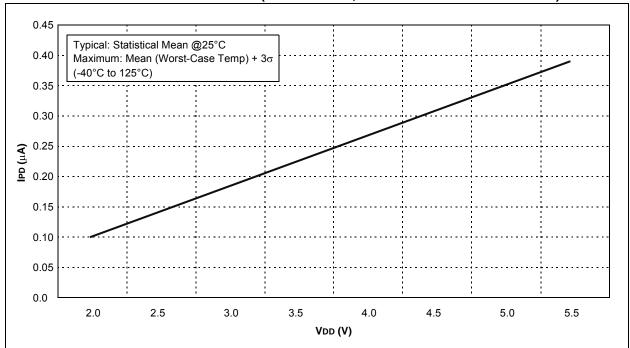
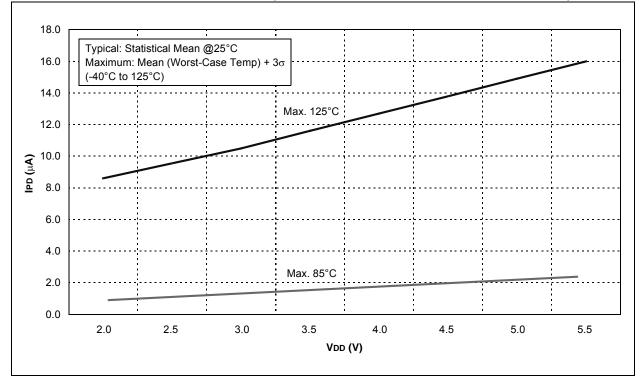
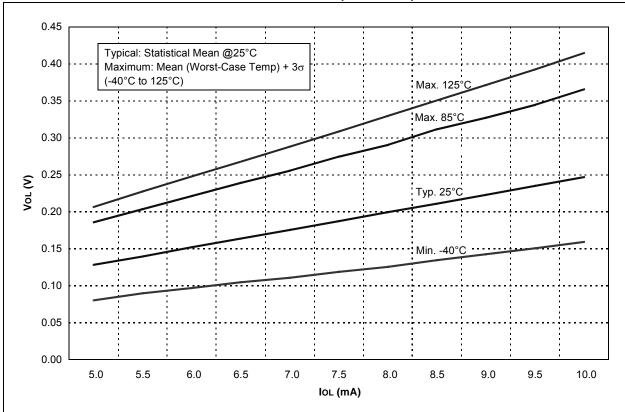
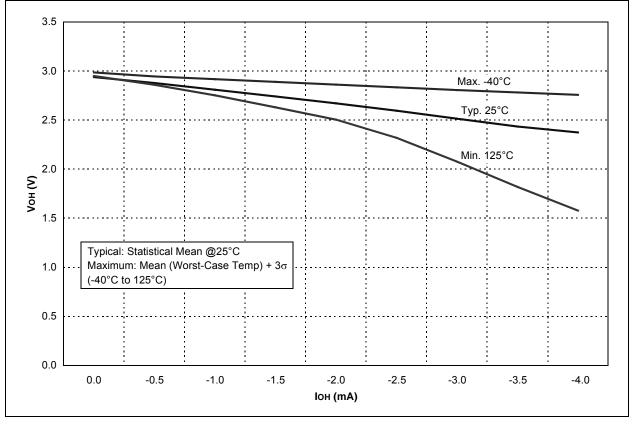
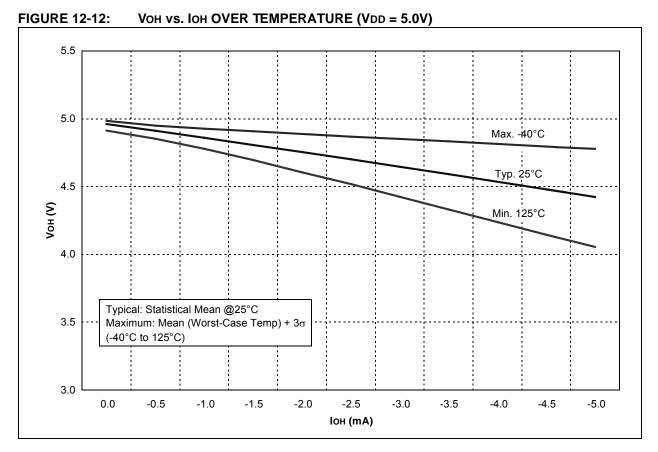
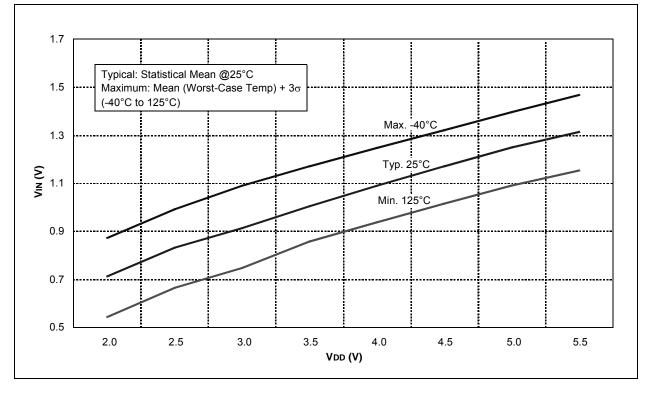
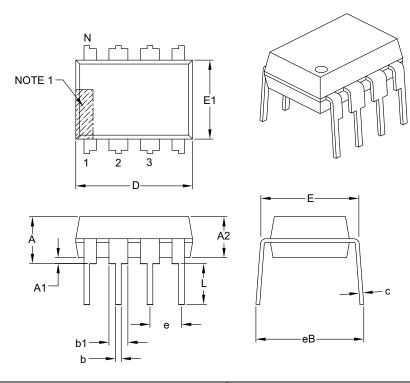




FIGURE 12-4: TYPICAL IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)


FIGURE 12-5: MAXIMUM IPD vs. VDD (SLEEP MODE, ALL PERIPHERALS DISABLED)




FIGURE 12-10: Vol vs. IoL OVER TEMPERATURE (VDD = 5.0V)



8-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		8		
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.290	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.348	.365	.400	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	-	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC12F519-I/P = Industrial temp., PDIP package (Pb-free) b) PIC12F519T-I/SN = Tape and Reel, Industrial temp., SOIC package
Device:	PIC12F519 PIC12F519T (Tape and Reel)	 c) PIC12F519 - E/MS 303 = Extended temp., MSOP package, QTP pattern #303
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	
Package:	MC = 8L DFN 2x3 (DUAL Flatpack No-Leads) MS = MSOP (Pb-free) P = 300 mil PDIP (Pb-free) SN = 3.90 mm SOIC, 8-LD (Pb-free)	
Pattern:	Special Requirements	
Note: Tape MSC	and Reel available for only the following packages: SOIC, DFN and PP.	