

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Product Status	Not For New Designs
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	EBI/EMI, I ² C, IrDA, SCI, SmartCard, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	75
Program Memory Size	384КВ (384К х 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	40K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f61653rn50fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics atta abooks, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU ROHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

2.2 CPU Operating Modes

The H8SX CPU has four operating modes: normal, middle, advanced and maximum modes. These modes can be selected by the mode pins of this LSI.

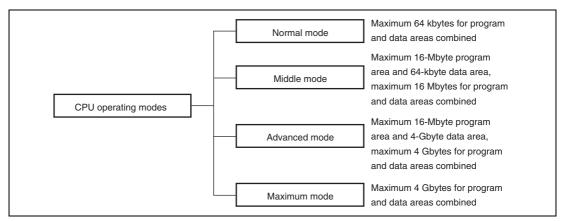


Figure 2.1 CPU Operating Modes

2.2.1 Normal Mode

The exception vector table and stack have the same structure as in the H8/300 CPU.

Address Space

The maximum address space of 64 kbytes can be accessed.

• Extended Registers (En)

The extended registers (E0 to E7) can be used as 16-bit registers, or as the upper 16-bit segments of 32-bit registers. When the extended register En is used as a 16-bit register it can contain any value, even when the corresponding general register Rn is used as an address register. (If the general register Rn is referenced in the register indirect addressing mode with pre-/post-increment or pre-/post-decrement and a carry or borrow occurs, however, the value in the corresponding extended register En will be affected.)

Instruction Set

All instructions and addressing modes can be used. Only the lower 16 bits of effective addresses (EA) are valid.

9.2.2 Access State Control Register (ASTCR)

ASTCR designates each area in the external address space as either 2-state access space or 3-state access space and enables/disables wait cycle insertion.

Bit	15	14	13	12	11	10	9	8
Bit Name	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0
Initial Value	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name	—	—	_	—	—	_	_	—
- Initial Value	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R	R

Bit	Bit Name	Initial Value	R/W	Description
15	AST7	1	R/W	Area 7 to 0 Access State Control
14	AST6	1	R/W	These bits select whether the corresponding area is to be
13	AST5	1	R/W	designated as 2-state access space or 3-state access
12	AST4	1	R/W	space. Wait cycle insertion is enabled or disabled at the same time.
11	AST3	1	R/W	0: Area n is designated as 2-state access space
10	AST2	1	R/W	Wait cycle insertion in area n access is disabled
9	AST1	1	R/W	1: Area n is designated as 3-state access space
8	AST0	1	R/W	Wait cycle insertion in area n access is enabled
				(n = 7 to 0)
7 to 0	_	All 0	R	Reserved
				These are read-only bits and cannot be modified.

Bit	Bit Name	Initial Value	R/W	Description
6	W12	1	R/W	Area 1 Wait Control 2 to 0
5 4	W11 W10	1 1	R/W R/W	These bits select the number of program wait cycles when accessing area 1 while bit AST1 in ASTCR is 1.
·				000: Program wait cycle not inserted
				001: 1 program wait cycle inserted
				010: 2 program wait cycles inserted
				011: 3 program wait cycles inserted
				100: 4 program wait cycles inserted
				101: 5 program wait cycles inserted
				110: 6 program wait cycles inserted
				111: 7 program wait cycles inserted
3	_	0	R	Reserved
				This is a read-only bit and cannot be modified.
2	W02	1	R/W	Area 0 Wait Control 2 to 0
1 0	W01 W00	1 1	R/W R/W	These bits select the number of program wait cycles when accessing area 0 while bit AST0 in ASTCR is 1.
•				000: Program wait cycle not inserted
				001: 1 program wait cycle inserted
				010: 2 program wait cycles inserted
				011: 3 program wait cycles inserted
				100: 4 program wait cycles inserted
				101: 5 program wait cycles inserted
				110: 6 program wait cycles inserted
				111: 7 program wait cycles inserted

9.2.9 Endian Control Register (ENDIANCR)

ENDIANCR selects the endian format for each area of the external address space. Though the data format of this LSI is big endian, data can be transferred in the little endian format during external address space access.

Note that the data format for the areas used as a program area or a stack area should be big endian.

Bit	7	6	5	4	3	2	1	0
Bit Name	LE7	LE6	LE5	LE4	LE3	LE2	_	—
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R

		Initial		
Bit	Bit Name	Value	R/W	Description
7	LE7	0	R/W	Little Endian Select
6	LE6	0	R/W	Selects the endian for the corresponding area.
5	LE5	0	R/W	0: Data format of area n is specified as big endian
4	LE4	0	R/W	1: Data format of area n is specified as little endian
3	LE3	0	R/W	(n = 7 to 2)
2	LE2	0	R/W	
1, 0	_	All 0	R	Reserved
_				These are read-only bits and cannot be modified.

Bit	Bit Name	Value	R/W	Description
9	BSWD01	0	R/W	Area 0 Burst Word Number Select
8	BSWD00	0	R/W	Selects the number of words in burst access to the area 0 burst ROM interface
				00: Up to 4 words (8 bytes)
				01: Up to 8 words (16 bytes)
				10: Up to 16 words (32 bytes)
				11: Up to 32 words (64 bytes)
7	BSRM1	0	R/W	Area 1 Burst ROM Interface Select
				Specifies the area 1 bus interface as a basic interface or a burst ROM interface. To set this bit to 1, clear bit BCSEL1 in SRAMCR to 0.
				0: Basic bus interface or byte-control SRAM interface
				1: Burst ROM interface
6	BSTS12	0	R/W	Area 1 Burst Cycle Select
5	BSTS11	0	R/W	Specifies the number of cycles of area 1 burst cycle
4	BSTS10	0	R/W	000: 1 cycle
				001: 2 cycles
				010: 3 cycles
				011: 4 cycles
				100: 5 cycles
				101: 6 cycles
				110: 7 cycles
				111: 8 cycles
3		All 0	R	Reserved
2				These are read-only bits and cannot be modified.
1	BSWD11	0	R/W	Area 1 Burst Word Number Select
0	BSWD10	0	R/W	Selects the number of words in burst access to the area 1 burst ROM interface
				00: Up to 4 words (8 bytes)
				01: Up to 8 words (16 bytes)
				10: Up to 16 words (32 bytes)
				11: Up to 32 words (64 bytes)

					EHWF	trobe signal	VR/LLB
					L		
Data Size	Access Address	Access Count	Bus Cycle	Data Size	D15	Data bus D8 D7	D0
Byte	n	1	1st	Byte		7	
Word	n	2	1st	Byte		7	0
vvord	11	2	2nd	Byte		15	
Longword	n	4	1st	Byte		7	0
			2nd	Byte		15	8
			3rd	Byte		23	1 16
			4th	Byte		311 1	24

Figure 9.11 Access Sizes and Data Alignment Control for 8-Bit Access Space (Little Endian)

(2) 16-Bit Access Space

With the 16-bit access space, the upper byte data bus (D15 to D8) and lower byte data bus (D7 to D0) are used for accesses. The amount of data that can be accessed at one time is one byte or one word.

Figures 8.12 and 8.13 illustrate data alignment control for the 16-bit access space. Figure 9.12 shows the data alignment when the data endian format is specified as big endian. Figure 9.13 shows the data alignment when the data endian format is specified as little endian.

In big endian, byte access for an even address is performed by using the upper byte data bus and byte access for an odd address is performed by using the lower byte data bus.

In little endian, byte access for an even address is performed by using the lower byte data bus, and byte access for an odd address is performed by using the third byte data bus.

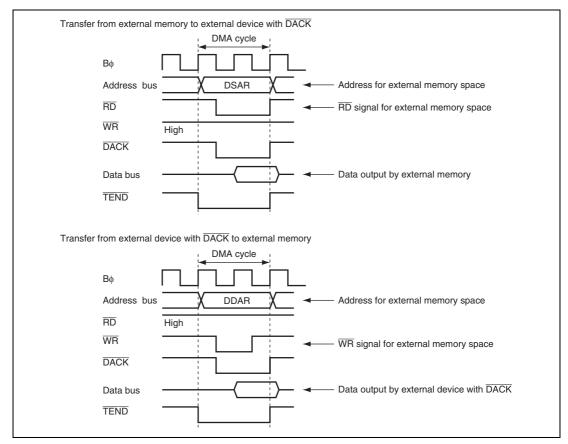
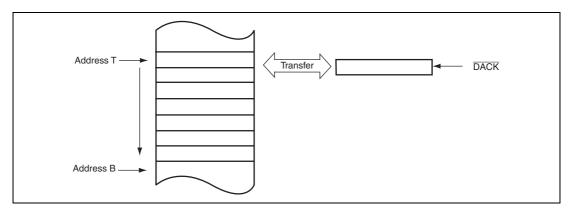
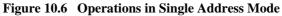
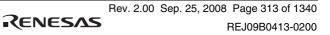





Figure 10.5 Example of Signal Timing in Single Address Mode

Bit	31	30	29	28	27	26	25	24
Bit Name	DTE	EDACKE	ETENDE	EDRAKE	DREQS	NRD	_	_
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R	R
Bit	23	22	21	20	19	18	17	16
Bit Name	ACT	_	_	_		_	ESIF	DTIF
Initial Value	0	0	0	0	0	0	0	0
R/W	R	R	R	R	R	R	R/(W)*	R/(W)*
Bit	15	14	13	12	11	10	9	8
Bit Name	DTSZ1	DTSZ0	MDS1	MDS0	TSEIE	_	ESIE	DTIE
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Bit	7	6	5	4	3	2	1	0
Bit Name	DTF1	DTF0	_	_	_	EDMAP2	EDMAP1	EDMAP0
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R	R	R/W	R/W	R/W

• EDMDR_1 to EDMDR_3

Note: * Only 0 can be written to this bit after having been read as 1, to clear the flag.

11.7 Ending EXDMA Transfer

The operation for ending EXDMA transfer depends on the transfer end conditions. When EXDMA transfer ends, the DTE bit and the ACT bit in EDMDR change from 1 to 0, indicating that EXDMA transfer has ended.

(1) Transfer End by EDTCR Change from 1, 2, or 4 to 0

When the value of EDTCR changes from 1, 2, or 4 to 0, EXDMA transfer ends on the corresponding channel. The DTE bit in EDMDR is cleared to 0, and the DTIF bit in EDMDR is set to 1. If the DTIE bit in EDMDR is set to 1 at this time, a transfer end interrupt request is generated by the transfer counter. EXDMA transfer does not end if the EDTCR value has been 0 since before the start of transfer.

(2) Transfer End by Transfer Size Error Interrupt

When the following conditions are satisfied while the TSEIE bit in EDMDR is set to 1, a transfer size error occurs and an EXDMA transfer is terminated. At this time, the DTE bit in EDMDR is cleared to 0 and the ESIF bit in EDMDR is set to 1.

- In normal transfer mode and repeat transfer mode, when the next transfer is requested while a transfer is disabled due to the EDTCR value less than the data access size.
- In block transfer mode, when the next transfer is requested while a transfer is disabled due to the EDTCR value less than the block size.
- In cluster transfer mode, when the next transfer is requested while a transfer is disabled due to the EDTCR value less than the cluster size.

When the TSEIE bit in EDMDR is cleared to 0, data is transferred until the EDTCR value reaches 0. A transfer size error is not generated. Operation in each transfer mode is described below.

- In normal transfer mode and repeat mode, when the EDTCR value is less than the data access size, data is transferred in bytes.
- In block transfer mode, when the EDTCR value is less than the block size, the specified size of data in EDTCR is transferred instead of transferring the block size of data. When the EDTCR value is less than the data access size, data is transferred in bytes.
- In cluster transfer mode, when the EDTCR value is less than the cluster size, the specified size of data in EDTCR is transferred instead of transferring the cluster size of data. When the EDTCR value is less than the data access size, data is transferred in bytes.

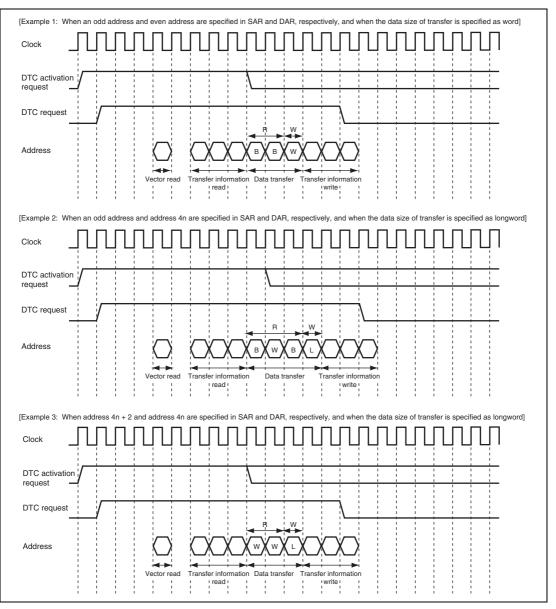


Figure 12.5 Bus Cycle Division Example

RENESAS

Table 14.32 TIORL_6 (Unit 1)

					Description
Bit 3 IOC3	Bit 2 IOC2	Bit 1 IOC1	Bit 0 IOC0	TGRC_6 Function	TIOCC6 Pin Function
0	0	0	0	Output	Output disabled
0	0	0	1	compare register* ²	Initial output is 0 output.
				register	0 output at compare match
0	0	1	0	_	Initial output is 0 output.
					1 output at compare match
0	0	1	1	_	Initial output is 0 output.
					Toggle output at compare match
0	1	0	0	_	Output disabled
0	1	0	1		Initial output is 1 output.
					0 output at compare match
0	1	1	0	_	Initial output is 1 output.
					1 output at compare match
0	1	1	1		Initial output is 1 output.
					Toggle output at compare match
1	0	0	0	Input	Capture input source is TIOCC6 pin.
				capture – register* ²	Input capture at rising edge
1	0	0	1		Capture input source is TIOCC6 pin.
					Input capture at falling edge
1	0	1	х	_	Capture input source is TIOCC6 pin.
					Input capture at both edges
1	1	х	х	_	Capture input source is channel 1/count clock.
					Input capture at TCNT_7 count-up/count-down*1

[Legend]

x: Don't care

Note: 1. When the bits TPSC2 to TPSC0 in TCR_7 are set to B'000 and $P\phi/1$ is used as the count clock of TCNT_7, this setting is invalid and input capture is not generated.

2. When the BFA bit in TMDR_6 is set to 1 and TGRC_6 is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

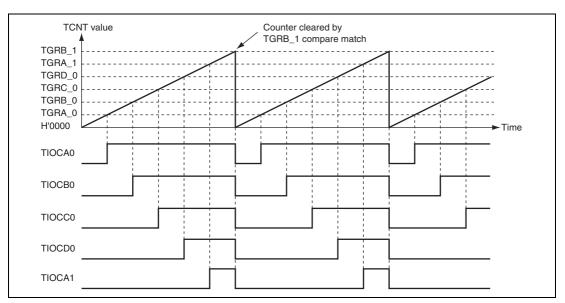


Figure 14.23 Example of PWM Mode Operation (2)

TCNT value TGRB changed TGRA TGRB TGRB changed TGRB changed Ó H'0000 - Time 0% duty TIOCA Output does not change when compare matches in cycle register and duty register occur simultaneously TCNT value TGRB changed TGRA \cap TGRB changed TGRB changed TGRB H'0000 ► Time 100% duty TIOCA Output does not change when compare matches in cycle register and duty register occur simultaneously TCNT value TGRB changed Ό TGRA TGRB changed TGRB TGRB changed H'0000 Time 100% duty 0% duty TIOCA

Figure 14.24 shows examples of PWM waveform output with 0% duty cycle and 100% duty cycle in PWM mode.

Figure 14.24 Example of PWM Mode Operation (3)

19.5 Operation

19.5.1 Cable Connection




Figure 19.2 Cable Connection Operation

The above flowchart shows the operation in the case of in section 19.9, Example of USB External Circuitry.

In applications that do not require USB cable connection to be detected, processing by the USB bus connection interrupt is not necessary. Preparations should be made with the bus-reset interrupt.

RENESAS

25.6 Usage Notes

1. In serial transfer, data are input or output in LSB order (see figure 25.3).

Figure 25.3 Serial Data Input/Output

- 2. If a pin with open-drain function is SAMPLEed while its open-drain function is enabled and while the corresponding OUT register is set to 1, the corresponding Control register is cleared to 0 (the pin status is Hi-Z). If the pin is SAMPLEed while the corresponding OUT register is cleared to 0, the corresponding Control register is 1 (the pin status is 0)
- 3. Pins of the boundary scan (TCK, TDI, TMS, and TRST) have to be pulled up by pull-up resistors.
- 4. Power supply pins (V_{cc} , V_{cL} , V_{ss} , AV_{cc} , AV_{ss} , AVref, $PLLV_{cc}$, $PLLV_{ss}$, DrV_{cc} , and DrV_{ss}) cannot be boundary-scanned.
- 5. Clock pins (EXTAL and XTAL) cannot be boundary-scanned.
- 6. Reset and standby signals ($\overline{\text{RES}}$ and $\overline{\text{STBY}}$) cannot be boundary-scanned.
- 7. Boundary scan pins (TCK, TMS, TRST, TDI, and TDO) cannot be boundary-scanned.
- 8. The boundary scan function is not available when this LSI are in the following states.
- (1) Reset state
- (2) Hardware standby mode, software standby mode, and deep software standby mode

29.3 DC Characteristics H8SX/1658M Group

Table 29.4DC Characteristics (1)

Conditions: $V_{cc} = PLLV_{cc} = 2.95 \text{ V}$ to 3.6 V, $AV_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{cc} , $V_{ss} = PLLV_{ss} = AV_{ss} = 0 \text{ V}^{*1}$, $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (regular specifications), $T_a = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (wide-range specifications)

ltem		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt	IRQ input pin,	VT [_]	$V_{cc} imes 0.2$	_	_	V	
trigger input voltage	TPU input pin, TMR input pin,	VT [∗]	—		$V_{cc} imes 0.7$	V	
vollage	port 2, port J, port K	$VT^{+} - VT^{-}$	$V_{cc} imes 0.06$		—	V	-
	IRQ0-B to IRQ7- B input pins	VT [_]	$AV_{cc} imes 0.2$	_	_	V	-
		VT⁺			$\mathrm{AV}_{\mathrm{cc}} imes 0.7$	V	_
		$VT^{+} - VT^{-}$	$AV_{cc} \times 0.06$	i —	—	V	
Input high voltage	MD, <u>RES</u> , <u>STBY</u> , EMLE, NMI	V _{IH}	$V_{cc} imes 0.9$	_	V _{cc} + 0.3	V	
(except Schmitt	EXTAL	-	$V_{cc} \times 0.7$	_	V _{cc} + 0.3	_	
trigger input	Other input pins						
pin)	Port 5	_	$AV_{cc} \times 0.7$	_	$AV_{cc} + 0.3$	_	
Input low voltage	MD, RES, STBY, EMLE	V	-0.3		$V_{cc} imes 0.1$	V	
(except Schmitt	EXTAL, NMI	_	-0.3	_	$V_{cc} imes 0.2$	_	
trigger input pin)	Other input pins	_	-0.3	—	$V_{cc} \times 0.2$	-	
	All output pins	V _{oh}	$V_{cc} - 0.5$	_	_	V	I _{oH} = -200 μA
voltage			V _{cc} - 1.0	_	_	-	I _{он} = –1 mA
Output low voltage	All output pins	V _{ol}	_	_	0.4	V	I _{oL} = 1.6 mA
Input	RES	I _{in}	_		10.0	μA	V _{in} = 0.5 to
leakage current	MD, <u>STBY,</u> EMLE, NMI	-	_		1.0	_	V_{cc}^{m} – 0.5 V
	Port 5	-	_		1.0	_	$V_{in} = 0.5 \text{ to}$ AV _{cc} - 0.5 V

- Notes: 1. When the A/D and D/A converters are not used, the AV_{cc} , V_{ret} , and AV_{ss} pins should not be open. Connect the AV_{cc} and V_{ref} pins to V_{cc}, and the AV_{ss} pin to V_{ss}.
 - 2. Current consumption values are for V_{μ} min = V_{cc} 0.5 V and V_{μ} max = 0.5 V with all output pins unloaded and all input pull-up MOSs in the off state.
 - 3. The values are for V_{_{RAM}} \le V_{_{CC}} < 3.0 V, V_{_{H}}min = V_{_{CC}} \times 0.9, and V_{_{II}}max = 0.3 V.
 - 4. I_{cc} depends on f as follows: $I_{cc}max = 30 (mA) + 1.1 (mA/MHz) \times f$ (normal operation) I_{cc} max = 35 (mA) + 0.5 (mA/MHz) × f (sleep mode)
 - The values are for reference.
 - 6. This can be applied at power-on.

Table 29.5 Permissible Output Currents

Conditions: $V_{cc} = PLLV_{cc} = 2.95 \text{ V}$ to 3.6 V, $AV_{cc} = 3.0 \text{ V}$ to 3.6 V, $V_{ref} = 3.0 \text{ V}$ to AV_{cc} , $V_{ss} = PLLV_{ss} = AV_{ss} = 0 V^*$, $T_a = -20^{\circ}C$ to $+75^{\circ}C$ (regular specifications), $T_a = -40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

Applicable products: H8SX/1658M Group

Symbol	Min.	Тур.	Max.	Unit
I _{ol}	—	—	2.0	mA
ut Σl _{oL}	—		80	mA
—І _{он}	—	_	2.0	mA
ut Σ– I_{OH}	—	—	40	mA
	I_{OL} $II \Sigma I_{OL}$ $-I_{OH}$	$I_{OL} - $ $Jt \Sigma I_{OL} - $ $-I_{OH} - $	I_{OL} I_{OL} I_{OH}	I_{OL} — — 2.0 $It \Sigma I_{OL}$ — — 80 $-I_{OH}$ — — 2.0

When the A/D and D/A converters are not used, the AV_{cc}, V_{ret} , and AV_{ss} pins should not Note: be open. Connect the AV_{cc} and V_{ref} pins to V_{cc}, and the AV_{ss} pin to V_{ss}.

Item	Page	Revision (See Manual for Details)
20.3.5 I ² C Bus Status Register (ICSR)	945	Deleted
		The description below for the bit 1 is deleted:
		[Clearing condition]
		When 0 is written to this bit after reading AAS = 1 (When- the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag- after writing 0 to it.)
	946	Deleted
		The description below for the bit 0 is deleted:
		[Clearing condition]
		When 0 is written to this bit after reading ADZ = 1 (When- the CPU is used to clear this flag by writing 0 while the
		corresponding interrupt is enabled, be sure to read the flag- after writing 0 to it.)
20.7 Usage Notes	964	Added
		6. Setting of the module stop function
Section 21 A/D Converter	971	Added
21.3.2 A/D Control/Status Register for Unit 0 (ADCSR_0)		Descriptions for bit 5 in the register table:
		Note: Do not write to ADST when activation is by an external trigger. For details, see section 21.7.3, Notes on A/D activation by an External Trigger.
21.3.3 A/D Control/Status Register for Unit 1 (ADCSR_1)	973	Added
		Descriptions for bit 5 in the register table:
		Note: Do not write to ADST when activation is by an external trigger. For details, see section 21.7.3, Notes on A/D activation by an External Trigger.
21.3.4 A/D Control/Status Register for Unit 2 (ADCR_0) Unit 0	975	Amended and added
		The description for bit 7,6, and 0 in the register table:
		001: External trigger disabled
		Note: Do not write to ADST when activation is by an external trigger. For details, see section 21.7.3, Notes on A/D activation by an External Trigger.

Item	Page	Revision (See Manual for Details)
29.9 Power-On Reset Circuit and Voltage-Detection Circuit Characteristics (H8SX/1658M Group)		Added
		Added due to the addition of the H8SX/1658M Group.
Appendix	1300	Replaced
B. Product Lineup		Replaced due to the addition of the H8SX/1658M Group
D. Treatment of Unused Pins	1302, 1303	Replaced
		Replaced due to the addition of the H8SX/1658M Group

