

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8052
Core Size	8-Bit
Speed	12.58MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PSM, PWM, Temp Sensor, WDT
Number of I/O	34
Program Memory Size	62KB (62K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	4.75V ~ 5.25V
Data Converters	A/D 10x24b; D/A 1x12b, 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad, CSP
Supplier Device Package	56-LFCSP-VQ (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc845bcpz62-5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet

Hardware Design Considerations	89
External Memory Interface	89
Power Supplies	89
Power-On Reset Operation	90
Power Consumption	90
Power-Saving Modes	90
Grounding and Board Layout Recommendations	91

REVISION HISTORY

5/2016—Rev. C to Rev. D

Changed uC004 to AN-1074	Throughout
Updated Outline Dimensions	
Changes to Ordering Guide	109

12/2012-Rev. B to Rev. C

Changes to Figure 3 and Table 3	11
Changes to Burnout Current Sources Section	32
Change to ADCMODE (ADC Mode Register) Section	42
Changes to Mode 4 (Dual NRZ 16-Bit Σ - Δ DAC) Section	58
Change to Hardware Slave Mode Section	63
Updated Outline Dimensions	104
Changes to Ordering Guide	105

2/2005—Rev. A to Rev. B

Changes to Figure 1	1
Changes to the Burnout Current Sources Section	32
Changes to the Excitation Currents Section	36
Changes to Table 30	47
Changes to the Flash/EE Memory on the ADuC845, ADuC847,	
ADuC848 Section	48
Changes to Figure 39	57
Changes to On-Chip PLL (PLLCON) Section	60
Added 3 V Part Section Heading	88
Added 5 V Part Section	88
Changes to Figure 70	91
Changes to Figure 71	93

ADuC845/ADuC847/ADuC848

Other Hardware Considerations	92
QuickStart Development System	96
QuickStart-PLUS Development System	96
Timing Specifications	97
Outline Dimensions	106
Ordering Guide	107

6/2004—Rev. 0 to Rev. A

Changes to Figure 5	17
Changes to Figure 6	18
Changes to Figure 7	19
Changes to Table 5	24
Changes to Table 24	41
Changes to Table 25	43
Changes to Table 26	44
Changes to Table 27	45
Changes to User Download Mode Section	50
Added Figure 51 and Renumbered Subsequent Figures	50
Edits to the DACH/DACL Data Registers Section	53
Changes to Table 34	56
Added SPIDAT: SPI Data Register Section	65
Changes to Table 42	67
Changes to Table 43	68
Changes to Table 44	69
Changes to Table 45	71
Changes to Table 50	75
Changes to Timer/Counter 0 and 1 Data Registers Section	76
Changes to Table 54	80
Added the SBUF-UART Serial Port Data Register Section .	80
Addition to the Timer 3 Generated Baud Rates Section	83
Added Table 57 and Renumbered Subsequent Tables	84
Changes to Table 61	86

4/2004—Revision 0: Initial Version

Data Sheet

ADuC845/ADuC847/ADuC848

TRANSDUCER BURNOUT CURRENT SOURCES AIN+ Current -100 nA AIN+ is the selected positive input (AIN4 or	AIN6
SOURCES	AIN6
AIN+ Current -100 nA AIN+ is the selected positive input (AIN4 or	AIN6
Ally Gumment 100 and 1	
AIN- Current I I OU NA AIN- Is the selected negative input (AIN5 OI	r AIN7
Initial Tolerance at 25°C ±10 %	
Drift 0.03 %/°C	
EXCITATION CURRENT SOURCES	
Output Current 200 μ A Available from each current source	
Initial Tolerance at 25°C ± 10 %	
Drift 200 ppm/°C	
Initial Current Matching at 25°C ±1 % Matching between both current sources	
Drift Matching 20 ppm/°C	
Line Regulation (AV_DD)1 μ A/VAV_DD = 5 V ± 5%	
Load Regulation 0.1 µA/V	
Output Compliance ² AGND $AV_{DD} - 0.6$ V	
POWER SUPPLY MONITOR (PSM)	
AV _{DD} Trip Point Selection Range 2.63 4.63 V Four trip points selectable in this range	
AV _{DD} Trip Point Accuracy ± 3.0 % $T_{MAX} = 85^{\circ}C$	
± 4.0 % $T_{MAX} = 125^{\circ}C$	
DV _{DD} Trip Point Selection Range 2.63 4.63 V Four trip points selectable in this range	
DV _{DD} Trip Point Accuracy ± 3.0 % $I_{MAX} = 85^{\circ}C$	
$\pm 4.0 \% \qquad 1_{MAX} = 125 °C$	
XTAL 2)	
l ogic Inputs XTAL1 Only ²	
V_{INI} Input I ow Voltage 0.8 V $DV_{\text{DD}} = 5 \text{ V}$	
0.4 V $DV_{DD} = 3$ V	
V_{INH} , Input Low Voltage 3.5 V $DV_{\text{DD}} = 5 \text{ V}$	
2.5 V DV _{DD} = 3 V	
XTAL1 Input Capacitance 18 pF	
XTAL2 Output Capacitance 18 pF	
LOGIC INPUTS	
All Inputs Except SCLOCK, RESET, and XTAL1 ²	
V_{INL} , Input Low Voltage 0.8 V $DV_{DD} = 5 V$	
0.4 V $DV_{DD} = 3 V$	
V _{INH} , Input Low Voltage 2.0 V	
SCLOCK and RESET Only	
(Schmidt Triggered Inputs) ²	
V_{T+} 1.3 3.0 V $DV_{DD} = 5 V$	
$0.95 \qquad 2.5 V \qquad DV_{DD} = 3 V$	
V_{T-} 0.8 1.4 V $DV_{DD} = 5V$	
$V_{\rm c} = V_{\rm c} = 5 V_{\rm c} = 5 V_{\rm c}$	
$V_{1+}^{+} = V_{1-}^{-}$ 0.5 0.65 V DVDD = 5 V 01 5 V	
Port 0 P1 0 to P1 7 \overline{FA} +10 μA $V_{m} = 0 V_{0} r V_{0}$	
$\frac{10}{\mu \Lambda} = 0 \sqrt{0} \sqrt{0}$	
10 10 10 10 10 10 10 10	
Port 2 Port 3 +10 μ A $V_{IN} = DV_{DD}, DV_{DD} = 5 V$	
$-180 - 660 - 10 - 2V DV_{co} - 5V$	
$-20 -75 IIA V_{IN} = 0.45 V DV_{DD} = 5 V$	
Input Capacitance 10 pF All digital inputs	

ABOSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 2.

Parameter	Rating	
AV _{DD} to AGND	–0.3 V to +7 V	
AV _{DD} to DGND	–0.3 V to +7 V	
DV _{DD} to DGND	–0.3 V to +7 V	
DV _{DD} to DGND	–0.3 V to +7 V	
AGND to DGND ¹	–0.3 V to +0.3 V	
AV _{DD} to DV _{DD}	–2 V to +5 V	
Analog Input Voltage to AGND ²	-0.3 V to AV _{DD} + 0.3 V	
Reference Input Voltage to AGND	-0.3 V to AV _{DD} + 0.3 V	
AIN/REFIN Current (Indefinite)	30 mA	
Digital Input Voltage to DGND	-0.3 V to DV _{DD} + 0.3 V	
Digital Output Voltage to DGND	-0.3 V to DV _{DD} + 0.3 V	
Operating Temperature Range	-40°C to +125°C	
Storage Temperature Range	–65°C to +150°C	
Junction Temperature	150°C	
θ_{JA} Thermal Impedance (MQFP)	90°C/W	
θ_{JA} Thermal Impedance (LFCSP)	52°C/W	
Lead Temperature, Soldering		
Vapor Phase (60 sec)	215°C	
Infrared (15 sec)	220°C	

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

¹ AGND and DGND are shorted internally on the ADuC845, ADuC847, and ADuC848.

² Applies to the P1.0 to P1.7 pins operating in analog or digital input modes.

1. THE PIN NUMBERS REFER TO THE LFCSP PACKAGE ONLY.

Figure 5. Detailed Block Diagram of the ADuC847

04741-070

Data Sheet

Figure 6. Detailed Block Diagram of the ADuC848

8052 INSTRUCTION SET

Table 4 documents the number of clock cycles required for each instruction. Most instructions are executed in one or two clock cycles resulting in 12.58 MIPs peak performance when operating at PLLCON = 00H.

TIMER OPERATION

Timers on a standard 8052 increment by one with each machine cycle. On the ADuC845, ADuC847, and ADuC848, one machine cycle is equal to one clock cycle; therefore, the timers increment at the same rate as the core clock.

ALE

On the ADuC834, the output on the ALE pin is a clock at 1/6th of the core operating frequency. On the ADuC845, ADuC847, and ADuC848, the ALE pin operates as follows. For a single machine cycle instruction, ALE is high for the entire machine cycle. For a two or more machine cycle instruction, ALE is high for the first machine cycle and then low for the remainder of the machine cycles.

EXTERNAL MEMORY ACCESS

The ADuC845, ADuC847, and ADuC848 do not support external program memory access, but the devices can access up to 16 MB (24 address bits) of external data memory. When accessing external RAM, the EWAIT register might need to be programmed to give extra machine cycles to MOVX commands to allow differing external RAM access speeds.

FUNCTIONAL DESCRIPTION

8051 INSTRUCTION SET

Table 4. Optimized Single-Cycle 8051 Instruction Set

Mnemonic	Description	Bytes	Cycles ¹
Arithmetic			
A A,Rn	Add register to A	1	1
ADD A,@Ri	Add indirect memory to A	1	2
ADD A,dir	Add direct byte to A	2	2
ADD A,#data	Add immediate to A	2	2
ADDC A,Rn	Add register to A with carry	1	1
ADDC A,@Ri	Add indirect memory to A with carry	1	2
ADDC A,dir	Add direct byte to A with carry	2	2
ADD A,#data	Add immediate to A with carry	2	2
SUBB A,Rn	Subtract register from A with borrow	1	1
SUBB A,@Ri	Subtract indirect memory from A with borrow	1	2
SUBB A,dir	Subtract direct from A with borrow	2	2
SUBB A,#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC @Ri	Increment indirect memory	1	2
INC dir	Increment direct byte	2	2
INC DPTR	Increment data pointer	1	3
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC @Ri	Decrement indirect memory	1	2
DEC dir	Decrement direct byte	2	2
MUL AB	Multiply A by B	1	4
DIV AB	Divide A by B	1	9
DA A	Decimal adjust A	1	2
Logic			
ANL A.Rn	AND register to A	1	1
ANL A,@Ri	AND indirect memory to A	1	2
ANL A,dir	AND direct byte to A	2	2
ANL A,#data	AND immediate to A	2	2
ANL dir,A	AND A to direct byte	2	2
ANL dir,#data	AND immediate data to direct byte	3	3
ORL A,Rn	OR register to A	1	1
ORL A,@Ri	OR indirect memory to A	1	2
ORL A,dir	OR direct byte to A	2	2
ORL A,#data	OR immediate to A	2	2
ORL dir,A	OR A to direct byte	2	2
ORL dir,#data	OR immediate data to direct byte	3	3
XRL A,Rn	Exclusive-OR register to A	1	1
XRL A,@Ri	Exclusive-OR indirect memory to A	2	2
XRL A,#data	Exclusive-OR immediate to A	2	2
XRL dir,A	Exclusive-OR A to direct byte	2	2
XRL A,dir	Exclusive-OR indirect memory to A	2	2
XRL dir,#data	Exclusive-OR immediate data to direct	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
SWAP A	Swap nibbles of A	1	1
RL A	Rotate A left	1	1

Power Control Register (PCON)

The PCON SFR contains bits for power-saving options and general-purpose status flags as listed in Table 6.

SFR Address:	87H
Power-On Default:	00H
Bit Addressable:	No

Table 6. PCON SFR Bit Designations

Bit No.	Name	Description
7	SMOD	Double UART Baud Rate.
		0 = Normal, 1 = Double Baud Rate.
6	SERIPD	Serial Power-Down Interrupt Enable. If this bit is set, a serial interrupt from either SPI or I ² C can terminate the power-down mode.
5	INTOPD	INT0 Power-Down Interrupt Enable.
		If this bit is set, either a level ($\overline{ITO} = 0$) or a
		negative-going transition (IT0 = 1) on the
		INT0 pin terminates power-down mode.
4	ALEOFF	If set to 1, the ALE output is disabled.
3	GF1	General-Purpose Flag Bit.
2	GF0	General-Purpose Flag Bit.
1	PD	Power-Down Mode Enable. If set to 1, the device enters power-down mode.
0		Not Implemented. Write Don't Care.

ADuC845/ADuC847/ADuC848 Configuration Register (CFG845/CFG847/CFG848)

The CFG845/CFG847/CFG848 SFR contains the bits necessary to configure the internal XRAM and the extended SP. By default, it configures the user into 8051 mode, that is, extended SP, and the internal XRAM are disabled. When using in a program, use the device name only, that is, CFG845, CFG847, or CFG848.

SFR Address:	AFH
Power-On Default:	00H
Bit Addressable:	No

Bit No.	Name	Description
7	EXSP	Extended SP Enable.
		If this bit is set to 1, the stack rolls over from SPH/SP = 00FFH to 0100H.
		If this bit is cleared to 0, SPH SFR is disabled and the stack rolls over from SP = FFH to SP = 00H.
6		Not Implemented. Write Don't Care.
5		Not Implemented. Write Don't Care.
4		Not Implemented. Write Don't Care.
3		Not Implemented. Write Don't Care.
2		Not Implemented. Write Don't Care.
1		Not Implemented. Write Don't Care.
0	XRAMEN	If this bit is set to 1, the internal XRAM is mapped into the lower 2 kbytes of the external address space.
		If this bit is cleared to 0, the internal XRAM is accessible and up to 16 MB of external data memory become available. See Figure 8.

Signal Chain Overview (Chop Enabled, $\overline{CHOP} = 0$)

With the $\overline{\text{CHOP}}$ bit = 0 (see the ADCMODE SFR bit designations in Table 24), the chopping scheme is enabled. This is the default condition and gives optimum performance in terms of offset errors and drift performance. With chop enabled, the available output rates vary from 5.35 Hz to 105 Hz (SF = 255 and 13, respectively). A typical block diagram of the ADC input channel with chop enabled is shown in Figure 12.

The sampling frequency of the modulator loop is many times higher than the bandwidth of the input signal. The integrator in the modulator shapes the quantization noise (which results from the analog-to-digital conversion) so that the noise is pushed toward one-half of the modulator frequency. The output of the Σ - Δ modulator feeds directly into the digital filter. The digital filter then band-limits the response to a frequency significantly lower than one-half of the modulator frequency. In this manner, the 1-bit output of the comparator is translated into a band limited, low noise output from the ADCs.

The ADC filter is a low-pass $Sinc^3$ or $(sinx/x)^3$ filter whose primary function is to remove the quantization noise introduced at the modulator. The cutoff frequency and decimated output data rate of the filter are programmable via the Sinc filter word loaded into the filter (SF) register (see Table 28). The complete signal chain is chopped, resulting in excellent dc offset and offset drift specifications and is extremely beneficial in applications where drift, noise rejection, and optimum EMI rejection are important. With chop enabled, the ADC repeatedly reverses its inputs. The decimated digital output words from the Sinc³ filter, therefore, have a positive offset and a negative offset term included. As a result, a final summing stage is included so that each output word from the filter is summed and averaged with the previous filter output to produce a new valid output result to be written to the ADC data register. Programming the Sinc³ decimation factor is restricted to an 8-bit register called SF (see Table 28), the actual decimation factor is the register value times 8. Therefore, the decimated output rate from the Sinc³ filter (and the ADC conversion rate) is

$$f_{ADC} = \frac{1}{3} \times \frac{1}{8 \times SF} \times f_{MOD}$$

where:

 f_{ADC} is the ADC conversion rate.

SF is the decimal equivalent of the word loaded to the filter register.

 f_{MOD} is the modulator sampling rate of 32.768 kHz.

The chop rate of the channel is half the output data rate:

$$f_{CHOP} = \frac{1}{2 \times f_{ADC}}$$

As shown in the block diagram (Figure 12), the Sinc³ filter outputs alternately contain $+V_{OS}$ and $-V_{OS}$, where V_{OS} is the respective channel offset.

Figure 12. Block Diagram of the ADC Input Channel with Chop Enabled

USER DOWNLOAD MODE (ULOAD)

Figure 28 shows that it is possible to use the 62 kbytes of Flash/EE program memory available to the user as one single block of memory. In this mode, all the Flash/EE memory is read-only to user code.

However, most of the Flash/EE program memory can also be written to during run time simply by entering ULOAD mode. In ULOAD mode, the lower 56 kbytes of program memory can be erased and reprogrammed by the user software as shown in Figure 30. ULOAD mode can be used to upgrade the code in the field via any user-defined download protocol. By configuring the SPI port on the ADuC845/ADuC847/ADuC848 as a slave, it is possible to completely reprogram the 56 kbytes of Flash/EE program memory in under 5 s (see the AN-1074 Application Note).

Alternatively, ULOAD mode can be used to save data to the 56 kbytes of Flash/EE memory. This can be extremely useful in data logging applications where the devices can provide up to 60 kbytes of data memory on-chip (4 kbytes of dedicated Flash/EE data memory also exist).

The upper 6 kbytes of the 62 kbytes of Flash/EE program memory (8 kbytes on the 32-kbyte parts) are programmable only via serial download or parallel programming. This means that this space appears as read-only to user code; therefore, it cannot be accidentally erased or reprogrammed by erroneous code execution, making it very suitable to use the 6 kbytes as a bootloader. A bootload enable option exists in the Windows[®] serial downloader (WSD) to "Always RUN from E000H after Reset." If using a bootloader, this option is recommended to ensure that the bootloader always executes correct code after reset.

Programming the Flash/EE program memory via ULOAD mode is described in the Flash/EE Memory Control SFR section of ECON and also in the AN-1074 Application Note.

The 32-kbyte memory parts have the user bootload space starting at 6000H. The memory mapping is shown in Figure 31.

Figure 31. Flash/EE Program Memory Map in ULOAD Mode (32-kbyte Part)

ULOAD mode is not available on the 8-kbyte Flash/EE program memory parts.

Flash/EE Program Memory Security

The ADuC845/ADuC847/ADuC848 facilitate three modes of Flash/EE program memory security: the lock, secure, and serial safe modes. These modes can be independently activated, restricting access to the internal code space. They can be enabled as part of serial download protocol, as described in the AN-1074 Application Note, or via parallel programming.

Lock Mode

This mode locks the code memory, disabling parallel programming of the program memory. However, reading the memory in parallel mode and reading the memory via a MOVC command from external memory are still allowed. This mode is deactivated by initiating an ERASE CODE AND DATA command in serial download or parallel programming modes.

Secure Mode

This mode locks the code memory, disabling parallel programming of the program memory. Reading/verifying the memory in parallel mode and reading the internal memory via a MOVC command from external memory are also disabled. This mode is deactivated by initiating an ERASE CODE AND DATA command in serial download or parallel programming modes.

Serial Safe Mode

This mode disables serial download capability on the device. If serial safe mode is activated and an attempt is made to reset the device into serial download mode, that is, RESET asserted (pulled high) and de-asserted (pulled low) with PSEN low, the device interprets the serial download reset as a normal reset only. It therefore does not enter serial download mode, but executes only a normal reset sequence. Serial safe mode can be disabled only by initiating an ERASE CODE AND DATA command in parallel programming mode.

Hardware Slave Mode

After reset, the ADuC845/ADuC847/ADuC848 default to hardware slave mode. Slave mode is enabled by clearing the I2CM bit in I2CCON. The devices have a full hardware slave. In slave mode, the I²C address is stored in the I2CADD register. Data received or to be transmitted is stored in the I2CDAT register.

Once enabled in I²C slave mode, the slave controller waits for a start condition. If the parts detect a valid start condition, followed by a valid address, followed by the R/W bit, then the I2CI interrupt bit is automatically set by hardware. The I²C peripheral generates a core interrupt only if the user has preconfigured the I²C interrupt enable bit in the IEIP2 SFR as well as the global interrupt bit, EA, in the IE SFR. Therefore,

MOV IEIP2, #01h ;Enable I²C Interrupt SETB EA

An autoclear of the I2CI bit is implemented on the devices so that this bit is cleared automatically upon read or write access to the I2CDAT SFR.

MOV	I20	CDAT,	A	;I2CI	auto-cleared
MOV	A,	I2CDA	Т	;I2CI	auto-cleared

If for any reason the user tries to clear the interrupt more than once, that is, access the data SFR more than once per interrupt, the I²C controller stops. The interface then must be reset by using the I2CRS bit.

The user can choose to poll the I2CI bit or to enable the interrupt. In the case of the interrupt, the PC counter vectors to 003BH at the end of each complete byte. For the first byte, when the user gets to the I2CI ISR, the 7-bit address and the R/W bit appear in the I2CDAT SFR.

The I2CTX bit contains the R/W bit sent from the master. If I2CTX is set, the master is ready to receive a byte; therefore the slave transmits data by writing to the I2CDAT register. If I2CTX is cleared, the master is ready to transmit a byte; therefore the slave receives a serial byte. Software can interrogate the state of I2CTX to determine whether it should write to or read from I2CDAT.

Once the device has received a valid address, hardware holds SCLOCK low until the I2CI bit is cleared by software. This allows the master to wait for the slave to be ready before transmitting the clocks for the next byte.

The I2CI interrupt bit is set every time a complete data byte is received or transmitted, provided that it is followed by a valid ACK. If the byte is followed by a NACK, an interrupt is not generated.

The device continues to issue interrupts for each complete data byte transferred until a stop condition is received or the interface is reset. When a stop condition is received, the interface resets to a state in which it is waiting to be addressed (idle). Similarly, if the interface receives a NACK at the end of a sequence, it also returns to the default idle state. The I2CRS bit can be used to reset the I²C interface. This bit can be used to force the interface back to the default idle state.

SPI SERIAL INTERFACE

The ADuC845/ADuC847/ADuC848 integrate a complete hardware serial peripheral interface (SPI) interface on-chip. SPI is an industry-standard synchronous serial interface that allows 8 bits of data to be synchronously transmitted and received simultaneously, that is, full duplex. Note that the SPI pins are multiplexed with the Port 2 pins, P2.0, P2.1, P2.2, and P2.3. These pins have SPI functionality only if SPE is set. Otherwise, with SPE cleared, standard Port 2 functionality is maintained. SPI can be configured for master or slave operation and typically consists of Pins SCLOCK, MISO, MOSI, and \overline{SS} .

SCLOCK (Serial Clock I/O Pin)

Pin 28 (MQFP Package), Pin 30 (LFCSP Package) The master clock (SCLOCK) is used to synchronize the data transmitted and received through the MOSI and MISO data lines.

A single data bit is transmitted and received in each SCLOCK period. Therefore, a byte is transmitted/received after eight SCLOCK periods. The SCLOCK pin is configured as an output in master mode and as an input in slave mode. In master mode, the bit rate, polarity, and phase of the clock are controlled by the CPOL, CPHA, SPR0, and SPR1 bits in the SPICON SFR (see Table 41). In slave mode, the SPICON register must be configured with the same phase and polarity (CPHA and CPOL) as the master. The data is transmitted on one edge of the SCLOCK signal and sampled on the other.

MISO (Master In, Slave Out Pin)

Pin 30 (MQFP Package), Pin 32 (LFCSP Package)

The MISO pin is configured as an input line in master mode and an output line in slave mode. The MISO line on the master (data in) should be connected to the MISO line in the slave device (data out). The data is transferred as byte-wide (8-bit) serial data, MSB first.

MOSI (Master Out, Slave In Pin)

Pin 29 (MQFP Package), Pin31 (LFCSP Package)

The MOSI pin is configured as an output line in master mode and an input line in slave mode. The MOSI line on the master (data out) should be connected to the MOSI line in the slave device (data in). The data is transferred as byte-wide (8-bit) serial data, MSB first.

SS (Slave Select Input Pin)

Pin 31 (MQFP Package), Pin 33 (LFCSP Package) The SS pin is used only when the ADuC845/ADuC847/ ADuC848 are configured in SPI slave mode. This line is active low. Data is received or transmitted in slave mode only when the SS pin is low, allowing the devices to be used in singlemaster, multislave SPI configurations. If CPHA = 1, the SS input can be pulled low permanently. If CPHA = 0, the \overline{SS} input must be driven low before the first bit in a byte-wide transmission or reception and must return high again after the last bit in that byte-wide transmission or reception. In SPI slave mode, the logic level on the external \overline{SS} pin (Pin 31/Pin 33) can be read via the SPR0 bit in the SPICON SFR.

The SFR register in Table 41 is used to control the SPI interface.

TIMECON—TIC Control Register

SFR Address:	A1H
Power-On Default:	00H
Bit Addressable:	No

Table 45. TIMECON SFR Bit DesignationsBit No.NameDescription

Bit No.	Name	Description		
7		Not Implemented. Write Don't Care.		
6	TFH	Twenty-Four Hour Select Bit.		
		Set by the user to enable the hour counter to count from 0 to 23.		
		Cleared by the user to enable the hour counter to count from 0 to 255.		
5, 4	ITS1, ITS0	Interval Timebase Selection Bits.		
		ITS1 ITS0 Interval Timebase		
		0 0 1/128 Second		
		0 1 Seconds		
		1 0 Minutes		
		1 1 Hours		
3	ST1	Single Time Interval Bit.		
		Set by the user to generate a single interval timeout. If set, a timeout clears the TIEN bit.		
		Cleared by the user to allow the interval counter to be automatically reloaded and start counting again at each interval timeout.		
2	ТΙΙ	TIC Interrupt Bit.		
		Set when the 8-bit interval counter matches the value in the INTVAL SFR.		
		Cleared by user software.		
1	TIEN	Time Interval Enable Bit.		
		Set by the user to enable the 8-bit time interval counter.		
		Cleared by the user to disable the interval counter.		
0	TCEN	Time Clock Enable Bit.		
		Set by the user to enable the time clock to the time interval counters.		
		Cleared by the user to disable the clock to the time interval counters and reset the time interval SFRs to the last value written to them by the user. The time registers (HTHSEC, SEC, MIN, and HOUR) can be written while TCEN is low.		

T2CON-Timer/Counter 2 Control Register

SFR Address:	C8H
Power-On Default:	00H
Bit Addressable:	Yes

Table 52. T2CON SFR Bit Designations

Bit No.	Name	Description
7	TF2	Timer 2 Overflow Flag.
		Set by hardware on a Timer 2 overflow. TF2 cannot be set when either RCLK = 1 or TCLK = 1.
		Cleared by user software.
6	EXF2	Timer 2 External Flag.
		Set by hardware when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1.
		Cleared by user software.
5	RCLK	Receive Clock Enable Bit.
		Set by the user to enable the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3.
		Cleared by the user to enable Timer 1 overflow to be used for the receive clock.
4	TCLK	Transmit Clock Enable Bit.
		Set by the user to enable the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3.
		Cleared by the user to enable Timer 1 overflow to be used for the transmit clock.
3	EXEN2	Timer 2 External Enable Flag.
		Set by the user to enable a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port.
		Cleared by the user for Timer 2 to ignore events at T2EX.
2	TR2	Timer 2 Start/Stop Control Bit.
		Set by the user to start Timer 2.
		Cleared by the user to stop Timer 2.
1	CNT2	Timer 2 Timer or Counter Function Select Bit.
		Set by the user to select the counter function (input from external T2 pin).
		Cleared by the user to select the timer function (input from on-chip core clock).
0	CAP2	Timer 2 Capture/Reload Select Bit.
		Set by the user to enable captures on negative transitions at T2EX if $EXEN2 = 1$.
		Cleared by the user to enable autoreloads with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either $RCLK = 1$ or $TCLK = 1$, this bit is ignored and the timer is forced to autoreload on Timer 2 overflow.

Timer/Counter 2 Data Registers

Timer/Counter 2 also has two pairs of 8-bit data registers associated with it. These are used as both timer data registers and as timer capture/reload registers.

TH2 and TL2—Timer 2 data high byte and low byte.SFR Address:CDH and CCH respectively.Power-On Default:00H and 00H, respectively.RCAP2H and RCAP2L—Timer 2 capture/reload byte and low
byte.byte.SFR Address:CBH and CAH, respectively.

Power-On Default: 00H and 00H, respectively.

IEIP2—Secondary Interrupt Enable Register

SFR Address:	A9H
Power-On Default:	A0H
Bit Addressable:	No

Table 60. IEIP2 Bit Designations

Bit No.	Name	Description
7		Not Implemented. Write Don't Care.
6	PTI	Time Interval Counter Interrupt Priority Setting $(1 = High, 0 = Low)$.
5	PPSM	Power Supply Monitor Interrupt Priority Setting (1 = High, 0 = Low).
4	PSI	SPI/I ² C Interrupt Priority Setting (1 = High, 0 = Low).
3		This bit must contain 0.
2	ETI	Set by the user to enable the time interval counter interrupt.
		Cleared by the user to disable the time interval counter interrupt.
1	EPSMI	Set by the user to enable the power supply monitor interrupt.
		Cleared by the user to disable the power supply monitor interrupt.
0	ESI	Set by the user to enable the SPI/I ² C serial port interrupt.
		Cleared by the user to disable the SPI/I ² C serial port interrupt.

INTERRUPT PRIORITY

The interrupt enable registers are written by the user to enable individual interrupt sources; the interrupt priority registers allow the user to select one of two priority levels for each interrupt. A high priority interrupt can interrupt the service routine of a low priority interrupt, and if two interrupts of different priorities occur at the same time, the higher level interrupt is serviced first. An interrupt cannot be interrupted by another interrupt of the same priority level. If two interrupts of the same priority level occur simultaneously, the polling sequence, as shown in Table 61, is observed.

Source	Priority	Description
PSMI	1 (Highest)	Power Supply Monitor Interrupt
WDS	2	Watchdog Timer Interrupt
IEO	2	External Interrupt 0
RDY0/RDY1	3	ADC Interrupt
TF0	4	Timer/Counter 0 Interrupt
IE1	5	External Interrupt 1
TF1	6	Timer/Counter 1 Interrupt
ISPI/I2CI	7	SPI/I ² C Interrupt
RI/TI	8	UART Serial Port Interrupt
TF2/EXF2	9	Timer/Counter 2 Interrupt
ТІІ	11 (Lowest)	Timer Interval Counter Interrupt

Table 61. Priority within Interrupt Level

INTERRUPT VECTORS

When an interrupt occurs, the program counter is pushed onto the stack, and the corresponding interrupt vector address is loaded into the program counter. The interrupt vector addresses are shown in Table 62.

Table 62. Interrupt Vector Addresses

Source	Vector Address
IEO	0003H
TF0	000BH
IE1	0013H
TF1	001BH
RI + TI	0023H
TF2 + EXF2	002BH
RDY0/RDY1 (ADuC845 only)	0033H
ISPI/I2CI	003BH
PSMI	0043H
TII	0053H
WDS	005BH

HARDWARE DESIGN CONSIDERATIONS

This section outlines some of the key hardware design considerations that must be addressed when integrating the ADuC845/ADuC847/ADuC848 into any hardware system.

EXTERNAL MEMORY INTERFACE

In addition to their internal program and data memories, the devices can access up to 16 Mbytes of external data memory (SRAM). No external program memory access is available.

To begin executing code, tie the $\overline{\text{EA}}$ (external access) pin high. When $\overline{\text{EA}}$ is high (pulled up to V_{DD}—see Figure 70), user program execution starts at Address 0 in the internal 62-kbyte Flash/EE code space. When executing from internal code space, accesses to the program space above F7FFH (62 kbytes) are read as NOP instructions.

Note that a second very important function of the \overline{EA} pin is described in the Single-Pin Emulation Mode section under the Other Hardware Considerations section.

Figure 62 shows a hardware configuration for accessing up to 64 kbytes of external data memory. This interface is standard to any 8051-compatible MCU.

Figure 62. External Data Memory Interface (64-kbyte Address Space)

If access to more than 64 kbytes of RAM is desired, a feature unique to the MicroConverter allows addressing up to 16 Mbytes of external RAM simply by adding another latch as shown in Figure 63.

Figure 63. External Data Memory Interface (16-Mbtye Address Space)

In either implementation, Port 0 (P0) serves as a multiplexed address/data bus. It emits the low byte of the data pointer (DPL) as an address, which is latched by ALE prior to data being placed on the bus by the devices (write operation) or the external data memory (read operation). Port 2 (P2) provides the data pointer page byte (DPP) to be latched by ALE, followed by the data pointer high byte (DPH). If no latch is connected to P2, DPP is ignored by the SRAM, and the 8051 standard of 64-kbyte external data memory access is maintained.

The following example shows the code used to write data to external data memory.

MOV DPP, #10h ;Set addr to 100000h MOV DPH, #00h MOV DPL, #00h MOV A, #'B' ;Write Char 'B' (42h) MOVX @DPTR,A ;Move to DPP:DPH:DPL addr

POWER SUPPLIES

The operational power supply voltage range of the device is 2.7 V to 5.25 V. Although the guaranteed data sheet specifications are given only for power supplies within 2.7 V to 3.6 V and 4.75 V to 5.25 V (\pm 5% of the nominal 5 V level), the chip functions equally well at any power supply level between 2.7 V and 5.25 V.

Separate analog and digital power supply pins (AV_{DD} and DV_{DD}, respectively) allow AV_{DD} to be kept relatively free of the noisy digital signals often present on a system DV_{DD} line. In this mode, the device can also operate with split supplies, that is, using different voltage supply levels for each supply. For example, the system can be designed to operate with a DV_{DD} voltage level of 3 V and the AV_{DD} level can be at 5 V, or vice versa, if required. A typical split-supply configuration is shown in Figure 64.

As an alternative to providing two separate power supplies, AV_{DD} can be kept quiet by placing a small series resistor and/or ferrite bead between it and DV_{DD} , and then decoupling AV_{DD} separately to ground. An example of this configuration is shown in Figure 65. In this configuration, other analog circuitry (such

• Cycling Power

All registers are set to their default state and program execution starts at the reset vector approximately 128 ms later.

• Time Interval Counter (TIC) Interrupt

If the OSC_PD bit in the PLLCON SFR is clear, the 32 kHz oscillator remains powered up even in power-down mode. If the time interval counter (wake-up/RTC timer) is enabled, a TIC interrupt wakes the device from power-down mode. The CPU services the TIC interrupt. The RETI at the end of the TIC ISR returns the core to the next instruction after that one the enabled power-down.

• SPI Interrupt

If the SERIPD bit in the PCON SFR is set, an SPI interrupt, if enabled, wakes up the device from power-down mode. The CPU services the SPI interrupt. The RETI at the end of the ISR returns the core to the next instruction after the one that enabled power-down.

• INTO Interrupt

If the INTOPD bit in the PCON SFR is set, an external interrupt 0, if enabled, wakes up the device from powerdown. The CPU services the interrupt. The RETI at the end of the ISR returns the core to the next instruction after the one that enabled power-down.

Wake-Up from Power-Down Latency

Even with the 32 kHz crystal enabled during power-down, the PLL takes some time to lock after a wake-up from power-down. Typically, the PLL takes about 1 ms to lock. During this time, code executes, but not at the specified frequency. Some operations, for example, UART communications, require an accurate clock to achieve the specified 50 Hz/60 Hz rejection from the ADCs. Therefore, it is advisable to wait until the PLL has locked before proceeding with normal code execution. The following code can be used to wait for the PLL to lock:

WAITFORLOCK:	MOV	A, PLLC	CON
	JNB	ACC.6,	WAITFORLOCK

If the crystal is powered down during power-down, an additional delay is associated with the startup of the crystal oscillator before the PLL can lock. Typically taking about 150 ms, 32 kHz crystals are inherently slow to oscillate. During this time before lock, code executes, but the exact frequency of the clock cannot be guaranteed. For any timing-sensitive operations, it is recommended to wait for lock by using the lock bit in PLLCON as previously shown.

An alternative way of saving power in power-down mode is to slow down the core clock by using the CD bits in the PLLCON register.

GROUNDING AND BOARD LAYOUT RECOMMENDATIONS

As with all high resolution data converters, special attention must be paid to grounding and PC board layout of ADuC845/ ADuC847/ADuC848-based designs to achieve optimum performance from the ADCs and DAC.

Although the devices have separate pins for analog and digital ground (AGND and DGND), the user must not tie these to separate ground planes unless the two ground planes are connected together very close to the device as shown in the simplified example in Figure 68 (a). In systems where digital and analog ground planes are connected together somewhere else (at the system's power supply, for example), they cannot be connected again near the device since a ground loop would result. In these cases, tie the AGND and DGND pins of the device to the analog ground plane, as shown in Figure 68 (b). In systems with only one ground plane, ensure that the digital and analog components are physically separated onto separate halves of the board such that digital return currents do not flow near analog circuitry and vice versa. The parts can then be placed between the digital and analog sections, as shown in Figure 68 (c).

In all of these scenarios, and in more complicated real-life applications, keep in mind the flow of current from the supplies and back to ground. Make sure that the return paths for all currents are as close as possible to the paths the currents took to reach their destinations. For example, do not power components on the analog side of Figure 68 (b) with DV_{DD} since that would force return currents from DV_{DD} to flow through AGND. Also, try to avoid digital currents flowing under analog circuitry, which may happen if the user placed a noisy digital chip on the left half of the board in Figure 68 (c). Whenever possible, avoid large discontinuities in the ground plane(s) (such as are formed by a long trace on the same layer), since they force return signals to travel a longer path. Make all connections directly to the ground plane, with little or no trace separating the pin from its via to ground.

Table 68. SPI MASTER MODE TIMING (CPHA = 1) Parameter

		Min	Тур	Max	Unit
t _{sL}	SCLOCK Low Pulse Width ¹		635		ns
t _{sн}	SCLOCK High Pulse Width ¹		635		ns
t _{DAV}	Data Output Valid After SCLOCK Edge			50	ns
t DSU	Data Input Setup Time Before SCLOCK Edge	100			ns
t DHD	Data Input Hold Time After SCLOCK Edge	100			ns
t _{DF}	Data Output Fall Time		10	25	ns
t _{DR}	Data Output Rise Time		10	25	ns
t _{sr}	SCLOCK Rise Time		10	25	ns
t _{SF}	SCLOCK Fall Time		10	25	ns

¹Characterized under the following conditions: a. Core clock divider bits CD2, CD1, and CD0 in PLLCON SFR set to 0, 1, and 1, respectively, that is, core clock frequency = 1.57 MHz. b. SPI bit-rate selection bits SPR1 and SPR0 in SPICON SFR set to 0 and 0, respectively.

Figure 76. SPI Master Mode Timing (CHPA = 1)

Table 69. SPI MASTER MODE TIMING (CPHA = 0) Parameter

		Min	Typ	Max	Unit
tsi	SCLOCK Low Pulse Width ¹		635	max	ns
t _{sH}	SCLOCK High Pulse Width ¹		635		ns
t _{DAV}	Data Output Valid After SCLOCK Edge			50	ns
t dosu	Data Output Setup Before SCLOCK Edge			150	ns
t dsu	Data Input Setup Time Before SCLOCK Edge	100			ns
t DHD	Data Input Hold Time After SCLOCK Edge	100			ns
t _{DF}	Data Output Fall Time		10	25	ns
t _{DR}	Data Output Rise Time		10	25	ns
t _{sr}	SCLOCK Rise Time		10	25	ns
t _{sF}	SCLOCK Fall Time		10	25	ns

¹ Characterized under the following conditions: a. Core clock divider bits CD2, CD1, and CD0 in PLLCON SFR set to 0, 1, and 1, respectively, that is, core clock frequency = 1.57 MHz. b. SPI bit-rate selection bits SPR1 and SPR0 in SPICON SFR set to 0 and 0, respectively.

Figure 77. SPI Master Mode Timing (CHPA = 0)

Table 72. UART TIMING (SHIFT REGISTER MODE) Parameter

		12.58 MHz Core_Clk			Variable Core_Clk			
		Min	Тур	Max	Min	Тур	Мах	Unit
TXLXL	Serial Port Clock Cycle Time		954			12t _{core}		ns
TQVXH	Output Data Setup to Clock	662						ns
TDVXH	Input Data Setup to Clock	292						ns
TXHDX	Input Data Hold After Clock	0						ns
TXHQX	Output Data Hold After Clock	22						ns

Figure 80. UART Timing in Shift Register Mode

NOTES