

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8052
Core Size	8-Bit
Speed	12.58MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PSM, PWM, Temp Sensor, WDT
Number of I/O	34
Program Memory Size	62KB (62K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	4.75V ~ 5.25V
Data Converters	A/D 10x16b; D/A 1x12b, 2x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	52-QFP
Supplier Device Package	52-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/aduc848bsz62-5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Data Sheet

TRANSDUCER BURNOUT CURRENT SOURCES AIN+ Current -100 nA AIN+ is the selected positive input (AIN4 or	AIN6
SOURCES	AIN6
AIN+ Current -100 nA AIN+ is the selected positive input (AIN4 or	AIN6
Ally Gumment 100 and 1	
AIN- Current I I OU NA AIN- Is the selected negative input (AIN5 OI	r AIN7
Initial Tolerance at 25°C ±10 %	
Drift 0.03 %/°C	
EXCITATION CURRENT SOURCES	
Output Current 200 μ A Available from each current source	
Initial Tolerance at 25°C ± 10 %	
Drift 200 ppm/°C	
Initial Current Matching at 25°C ±1 % Matching between both current sources	
Drift Matching 20 ppm/°C	
Line Regulation (AV_DD)1 μ A/VAV_DD = 5 V ± 5%	
Load Regulation 0.1 µA/V	
Output Compliance ² AGND $AV_{DD} - 0.6$ V	
POWER SUPPLY MONITOR (PSM)	
AV _{DD} Trip Point Selection Range 2.63 4.63 V Four trip points selectable in this range	
AV _{DD} Trip Point Accuracy ± 3.0 % $T_{MAX} = 85^{\circ}C$	
± 4.0 % $T_{MAX} = 125^{\circ}C$	
DV _{DD} Trip Point Selection Range 2.63 4.63 V Four trip points selectable in this range	
DV _{DD} Trip Point Accuracy ± 3.0 % $I_{MAX} = 85^{\circ}C$	
± 4.0 % $I_{MAX} = 125$ °C	
XTAL 2)	
logic Inputs XTAL1 Only ²	
V_{INI} Input I ow Voltage 0.8 V $DV_{\text{DD}} = 5 \text{ V}$	
0.4 V $DV_{DD} = 3$ V	
V_{INH} , Input Low Voltage 3.5 V $DV_{\text{DD}} = 5 \text{ V}$	
2.5 V DV _{DD} = 3 V	
XTAL1 Input Capacitance 18 pF	
XTAL2 Output Capacitance 18 pF	
LOGIC INPUTS	
All Inputs Except SCLOCK, RESET, and XTAL1 ²	
V_{INL} , Input Low Voltage 0.8 V $DV_{DD} = 5 V$	
0.4 V $DV_{DD} = 3 V$	
V _{INH} , Input Low Voltage 2.0 V	
SCLOCK and RESET Only	
(Schmidt Triggered Inputs) ²	
V_{T+} 1.3 3.0 V $DV_{DD} = 5 V$	
$0.95 \qquad 2.5 V \qquad DV_{DD} = 3 V$	
V_{T-} 0.8 1.4 V $DV_{DD} = 5V$	
$V_{\rm c} = V_{\rm c} = 5 V_{\rm c} = 5 V_{\rm c}$	
$V_{1+}^{+} = V_{1-}^{-}$ 0.5 0.65 V DVDD = 5 V 01 5 V	
Port 0 P1 0 to P1 7 \overline{FA} +10 μA $V_{m} = 0 V_{0} r V_{0}$	
$\frac{10}{\mu \Lambda} = 0 \sqrt{0} \sqrt{0}$	
10 10 10 10 10 10 10 10	
Port 2 Port 3 +10 μ A $V_{IN} = DV_{DD}, DV_{DD} = 5 V$	
$-180 - 660 - 10 - 2V DV_{co} - 5V$	
$-20 -75 IIA V_{IN} = 0.45 V DV_{DD} = 5 V$	
Input Capacitance 10 pF All digital inputs	

Data Sheet

Pin	Pin No.			
52-MQFP	56-LFCSP	Mnemonic	Type ¹	Description
20, 34, 48	22, 36, 51	DV _{DD}	S	Digital Supply Voltage.
21, 35, 47	23, 37, 38, 50	DGND	S	Digital Ground.
26	28	SCLK (I ² C)	I/O	Serial Interface Clock for the I ² C Interface. As an input, this pin is a Schmitt- triggered input. A weak internal pull-up is present on this pin unless it is outputting logic low. This pin can also be controlled in software as a digital output pin.
27	29	SDATA	I/O	Serial Data Pin for the I ² C Interface. As an input, this pin has a weak internal pull-up present unless it is outputting logic low.
28 to 31, 36 to 39	30 to 33, 39 to 42	P2.0 to P2.7	I/O	Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low source current because of the internal pull-up resistors. Port 2 emits the middle and high-order address bytes during accesses to the 24-bit external data memory space.
				Port 2 pins also have the various secondary functions described in this table.
28	30	P2.0/SCLOCK (SPI)		Serial Interface Clock for the SPI Interface. As an input this pin is a Schmitt- triggered input. A weak internal pull-up is present on this pin unless it is outputting logic low.
29	31	P2.1/MOSI		Serial Master Output/Slave Input Data for the SPI Interface. A strong internal pull-up is present on this pin when the SPI interface outputs a logic high. A strong internal pull-down is present on this pin when the SPI interface outputs a logic low.
30	32	P2.2/MISO		Master Input/Slave Output for the SPI Interface. A weak pull-up is present on this input pin.
31	33	P2.3/SS/T2		Slave Select Input for the SPI Interface. A weak pull-up is present on this pin. For both package options, this pin can also be used to provide a clock input to Timer 2. When enabled, Counter 2 is incremented in response to a negative transition on the T2 input pin.
36	39	P2.4/T2EX		Control Input to Timer 2. When enabled, a negative transition on the T2EX input pin causes a Timer 2 capture or reload event.
37	40	P2.5/PWM0		If the PWM is enabled, the PWM0 output appears at this pin.
38	41	P2.6/PWM1		If the PWM is enabled, the PWM1 output appears at this pin.
39	42	P2.7/PWMCLK		If the PWM is enabled, an external PWM clock can be provided at this pin.
32	34	XTAL1	I	Input to the Crystal Oscillator Inverter.
33	35	XTAL2	0	Output from the Crystal Oscillator Inverter. See the Hardware Design Considerations section for a description.
40	43	ĒĀ		External Access Enable, Logic Input. When held high, this input enables the device to fetch code from internal program memory locations 0000H to F7FFH. No external program memory access is available on the ADuC845, ADuC847, or ADuC848. To determine the mode of code execution, the EA pin
				power cycle. EA can also be used as an external emulation I/O pin, and therefore the voltage level at this pin must not be changed during normal operation because this might cause an emulation interrupt that halts code
				execution.
41	44	PSEN	0	Program Store Enable, Logic Output. This function is not used on the ADuC845, ADuC847, or ADuC848. This pin remains high during internal program execution. PSEN can also be used to enable serial download mode when pulled low
				through a resistor at the end of an external RESET assertion or as part of a device power cycle.
42	45	ALE	0	Address Latch Enable, Logic Output. This output is used to latch the low byte (and page byte for 24-bit data address space accesses) of the address to external memory during external data memory access cycles. It can be disabled by setting the PCON.4 bit in the PCON SFR.

04741-073

COMPLETE SFR MAP

EFH 0 FEH 0<	ISPI	wcol	SPF	SPIM	CPOL	СРН	A SPR1	SPR0		$\overline{}$	SPICON				DACL	DACH	DACCON		
E7H 0 F6H 0 F4H 0 F2H 0 F1H 0 F0H 0 BITS B RESERVED I2CADD1 NOT USED RESERVED RESERVED RESERVED F7H 00H MDO MDC MCO MDI 12CM 12CRS 12CTX 12CI BITS GN0H2	FFH 0	FEH 0	FDH 0	FCH (FBH 0	FAH	1 F9H 0	F8H 0	BIIS	Ζ	- F8H 05H	RESERVE	D	RESERVED	FBH 00H	FCH 00H	FDH 00H	RESERVED	RESERVED
E7H 0 F6H 0 F3H 0 F2H 0 F6H 0 F5H 0 F4H 0 F7H 0 F6H 00H F7H 00		1	1		1	1			DITO	$\overline{}$	В	DECEDVE	-	I2CADD1	NOTUSED		DECEDVED		SPIDAT
MDO EFH MCO EFH MCO EFH <t< td=""><td>F7H 0</td><td>F6H 0</td><td>F5H 0</td><td>F4H (</td><td>F3H 0</td><td>F2H</td><td>0 F1H 0</td><td>FOH 0</td><td>BIIS</td><td></td><td>FOH OOH</td><td>RESERVE</td><td>:D</td><td>F2H 7FH</td><td>NOTUSED</td><td>RESERVED</td><td>RESERVED</td><td>RESERVED</td><td>F7H 00H</td></t<>	F7H 0	F6H 0	F5H 0	F4H (F3H 0	F2H	0 F1H 0	FOH 0	BIIS		FOH OOH	RESERVE	:D	F2H 7FH	NOTUSED	RESERVED	RESERVED	RESERVED	F7H 00H
LEFH 0 EDH 0 EAH 0 EBH 0 EBH 0 EBH 0 ADUCESS ONLY	MDO	MDE	мсо	MDI	I2CM	I2CR	S I2CTX	I2CI	DITE	$\overline{}$	I2CCON	GN0L ²		GN0M ²	GN0H ²	GN1L ²	GN1H ²	RESERVED	RESERVED
E7H 0 E6H 0 E3H 0 E2H 0 E1H 0 E0H 0 BITS ACC OFOL OFOM OFOH OF1L ADUC345 ONL ADUC345 ONL <th< td=""><td>EFH 0</td><td>EEH 0</td><td>EDH 0</td><td>ECH (</td><td>EBH 0</td><td>EAH</td><td>0 E9H 0</td><td>E8H 0</td><td>ыз</td><td>\square</td><td>E8H 00H</td><td>E9H xx</td><td>άH</td><td>EAH xxH</td><td>EBH xxH</td><td>ADuC845 ONLY ECH xxH</td><td>ADuC845 ONLY EDH xxH</td><td>RESERVED</td><td>RESERVED</td></th<>	EFH 0	EEH 0	EDH 0	ECH (EBH 0	EAH	0 E9H 0	E8H 0	ыз	\square	E8H 00H	E9H xx	άH	EAH xxH	EBH xxH	ADuC845 ONLY ECH xxH	ADuC845 ONLY EDH xxH	RESERVED	RESERVED
E7H 0 E6H 0 E4H 0 E2H 0 E0H 0 E0H 0 E1H 0 E0H 0 E1H 0 E0H 0 E1H 0 E0H 0 E1H xxH E2H xxH E3H E3H <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>DITE</td> <td>$\overline{}$</td> <td>ACC</td> <td>OF0L</td> <td></td> <td>OF0M</td> <td>OF0H</td> <td>OF1L</td> <td>OF1H</td> <td>ADC0CON2</td> <td>PESERVED</td>					1				DITE	$\overline{}$	ACC	OF0L		OF0M	OF0H	OF1L	OF1H	ADC0CON2	PESERVED
RDY0 RDY1 CAL NOXREF ERR0 ERR1 DH DH <thdh< th=""> <thdh< th=""> <thdh< th=""></thdh<></thdh<></thdh<>	E7H 0	E6H 0	E5H 0	E4H (E3H 0	E2H	0 E1H 0	E0H 0	ыз		EOH OOH	E1H xx	сH	E2H xxH	E3H xxH	E4H XXH	E5H xxH	E6H 00H	RESERVED
DFH 0 DEH 0 DAH 0 DaH 0 DaH 0 DaH 0 DaH 0 DBH DBH </td <td>RDY0</td> <td>RDY1</td> <td>CAL</td> <td>NOXREF</td> <td>ERR0</td> <td>ERR</td> <td>1</td> <td></td> <td>DITE</td> <td>$\overline{\}$</td> <td>ADCSTAT</td> <td>ADCOL</td> <td>BLE</td> <td>ADC0M</td> <td>ADC0H</td> <td>ADC1M</td> <td>ADC1H</td> <td>ADC1L</td> <td>PSMCON</td>	RDY0	RDY1	CAL	NOXREF	ERR0	ERR	1		DITE	$\overline{\}$	ADCSTAT	ADCOL	BLE	ADC0M	ADC0H	ADC1M	ADC1H	ADC1L	PSMCON
CY AC F0 RS1 RS0 OV F1 P BITS PSW ADCMODE ADC1CON, ADC1CAS ONLY ADC1CON, ADC2645 ONLY SF ICON RESERVED PLLCON D7H 0 D5H 0 D2H 0 D1H 0 D0H 0 BITS D1H 08H D2H 07H D3H 00H D4H 45H D5H D0H D7H 53H TF2 EXF2 RCLK TCLK EXEN2 TR2 CNT2 CAP2 BITS CAH 00H D2H 07H D3H 00H D2H D7H D3H D0H D7H 53H TF2 EXF2 RCLK TCLK EXEN2 TR2 CNT2 CAP2 BITS CAH 00H CBH 0CH 0CH <td>DFH 0</td> <td>DEH 0</td> <td>DDH 0</td> <td>DCH (</td> <td>DBH 0</td> <td>DAH</td> <td>0 D9H 0</td> <td>D8H 0</td> <td>ыгэ</td> <td>\square</td> <td>D8H 00H</td> <td>ON ADuC8 D9H 00</td> <td>48 H</td> <td>DAH 00H</td> <td>DBH 00H</td> <td>DCH 00H</td> <td>DDH 00H</td> <td>DEH 00H</td> <td>DFH DEH</td>	DFH 0	DEH 0	DDH 0	DCH (DBH 0	DAH	0 D9H 0	D8H 0	ыгэ	\square	D8H 00H	ON ADuC8 D9H 00	48 H	DAH 00H	DBH 00H	DCH 00H	DDH 00H	DEH 00H	DFH DEH
D7H 0 D6H 0 D4H 0 D2H 0 D1H D1H D2H <thd< td=""><td>CY</td><td>AC</td><td>F0</td><td>RS1</td><td>RS0</td><td>ov</td><td>FI</td><td>Р</td><td>BITS</td><td>~</td><td>PSW</td><td>ADCMOD</td><td>DE</td><td>ADC0CON1</td><td>ADC1CON</td><td>SF</td><td>ICON</td><td>RESERVED</td><td>PLLCON</td></thd<>	CY	AC	F0	RS1	RS0	ov	FI	Р	BITS	~	PSW	ADCMOD	DE	ADC0CON1	ADC1CON	SF	ICON	RESERVED	PLLCON
TF2 EXF2 RCLK TCLK EXEND TR2 CNT2 CAP2 BITS T2CON RESERVED RCAP2L RCAP2H TL2 TH2 RESERVED RESERVED CFH 0 CH 0 CBH 0 CAH 0 CBH C	D7H 0	D6H 0	D5H 0	D4H (D3H 0	D2H	0 D1H 0	D0H 0	Bire		DOH 00H	D1H 08	вн	D2H 07H	D3H 00H	D4H 45H	D5H 00H		D7H 53H
CFH 0 CEH 0 CAH 0<	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CNT2	CAP2	BITS	~	T2CON	RESERVE	D	RCAP2L	RCAP2H	TL2	TH2	RESERVED	RESERVED
PRE3 C7H PRE3 C6H PRE1 C5H PRE0 C4H WDR C3H WDS C2H WDS C1H WDS C0H WDR C0H BITS WDCON C0H RESERVED C2H RESERVED RESERVED <th< td=""><td>CFH 0</td><td>CEH 0</td><td>CDH 0</td><td>CCH (</td><td>CBH 0</td><td>CAH</td><td>0 C9H 0</td><td>C8H 0</td><td></td><td></td><td>C8H 00H</td><td></td><td></td><td>CAH 00H</td><td>CBH 00H</td><td>ССН 00Н</td><td>CDH 00H</td><td></td><td></td></th<>	CFH 0	CEH 0	CDH 0	CCH (CBH 0	CAH	0 C9H 0	C8H 0			C8H 00H			CAH 00H	CBH 00H	ССН 00Н	CDH 00H		
C7H 0 C6H 0 C4H 1 C3H 0 C2H 0 C1H 0 C0H 0 C2H A0H C6H 00H C7H 00H BFH 0 BCH 0 C2H 0 C1H 0 C0H 0 C2H A0H C2H A0H C6H 00H C7H 00H BFH 0 BCH 0 BAH 0 B8H 0 B1TS IP ECON RESERVED RESERVED RESERVED BCH 00H BFH 00H <td>PRE3</td> <td>PRE2</td> <td>PRE1</td> <td>PRE0</td> <td>WDIR</td> <td>WDS</td> <td>S WDE</td> <td>WDWR</td> <td>BITS</td> <td>$\overline{\ }$</td> <td>WDCON</td> <td>RESERVE</td> <td>D</td> <td>CHIPID</td> <td>RESERVED</td> <td>RESERVED</td> <td>RESERVED</td> <td>EDARL</td> <td>EDARH</td>	PRE3	PRE2	PRE1	PRE0	WDIR	WDS	S WDE	WDWR	BITS	$\overline{\ }$	WDCON	RESERVE	D	CHIPID	RESERVED	RESERVED	RESERVED	EDARL	EDARH
PADC PT2 PS PT1 PX1 PT0 PX0 BITS IP ECON RESERVED RESERVED RESERVED EDATA1 EDATA2 EDATA3 EDATA3 EDATA4 BFH 0 BDH 0 BBH 0 B8H 0 BITS IP ECON RESERVED RESERVED RESERVED BCH 00H BCH 00H BFH 00H	C7H 0	C6H 0	C5H 0	C4H 1	C3H 0	C2H	0 C1H 0	COH 0	_	Ϊ	C0H 10H			C2H A0H				C6H 00H	C7H 00H
BFH 0 BEH 0 BAH 0 B8H 00H B9H 00H BBH 00H BEH		PADC	PT2	PS	PT1	PX1	PT0	PX0	BITS	$\overline{\}$	IP	ECON		RESERVED	RESERVED	EDATA1	EDATA2	EDATA3	EDATA4
RD WR T1 T0 INT1 INT0 TxD RxD BITS P3 PWM0L PWM1L PWM1H RESERVED RESE	BFH 0	BEH 0	BDH 0	BCH (BBH 0	BAH	0 B9H 0	B8H 0			B8H 00H	B9H 00	н			BCH 00H	BDH 00H	BEH 00H	BFH 00H
B7H 1 B6H 1 B5H 1 B4H 1 B3H 1 B2H 1 B1H 1 B0H 1 B0H 1 B0H FFH B1H 00H B2H 00H B3H 00H B4H 00H B2H 00H B7H 00H	RD	WR	T1	T0	INT1	INTO) TxD	RxD	BITS	$\overline{\}$	P3	PWMOL	-	PWM0H	PWM1L	PWM1H	RESERVED	RESERVED	SPH
	B7H 1	B6H 1	B5H 1	B4H 1	B3H 1	B2H	1 B1H 1	B0H 1			B0H FFH	B1H 00	н	B2H 00H	B3H 00H	B4H 00H			B7H 00H
EA EADC ET2 ES ET1 EX1 ET0 EX0 BITS IE IEIP2 RESERVED RES	EA	EADC	ET2	ES	ET1	EX1	ET0	EX0	BITS	\mathbf{i}	→ ^{IE}	IEIP2		RESERVED	RESERVED	RESERVED	RESERVED	PWMCON	CFG845/7/8
							U A9H U	AON U			A8H 00H	A9H A 0	н					AEH 00H	AFH 00H
A7H 1 A6H 1 A6H 1 A6H 1 A2H 1	A7LI 1		A E LI 1		A 211 4	121	1 411 1		BITS	\geq	- P2	TIMECO	N	HTHSEC ¹	SEC ¹	MIN ¹	HOUR	INTVAL	DPCON
A0H FFH A1H 00H A2H 00H A3H 00H A5H 00H A6H 00H A7H 00H				A40							A0H FFH	A1H 00	н	A2H 00H	A3H 00H	A4H 00H	A5H 00H	A6H 00H	A7H 00H
SM0 SM1 SM2 REN TB8 RB8 TI RI BITS SCON SBUF I2CDAT I2CADD RESERVED I3FD I3CON EWAIT	SM0	SM1	SM2	REN 9CH (RB8	3 TI	RI 98H 0	BITS	\geq		SBUF		I2CDAT	I2CADD	RESERVED	IJFD	ISCON	EWAII
							0 001 0			-	98H 00H	99H 00	н	9AH 00H	9BH 55H		9DH 00H	9EH 00H	9FH 00H
1 97H 1 96H 1 95H 1 94H 1 93H 1 92H 1 91H 1 90H	97H 1	96H 1	95H 1	94H 1	93H 1	92H	1 91H 1	T2 90H 1	BITS	\geq	► ^{P1}	RESERVE	D	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED	RESERVED
											90H FFH	THEF		TIO	TIA	THO	THE		
	TF1	TR1	TF0	BCH C	IE1) 8BH 0	IT1 8AH	0 89H 0	IT0 88H 0	BITS	\geq								RESERVED	RESERVED
		,								-	88H 00H	89H 00	н				80H 00H		DCON
	87H 1	86H 1	85H 1	84H 1	83H 1	82H	1 81H 1	80H 1	BITS	\geq		81H 07	, Ц				RESERVED	RESERVED	

¹ THESE SFRs MAINTAIN THEIR PRE-RESET VALUES AFTER A RESET IF TIMECON.0 = 1. ² CALIBRATION COEFFICIENTS ARE PRECONFIGURED ON POWER-UP TO FACTORY CALIBRATED VALUES.

SFR MAP KEY:

SFR NOTE: SFRs WHOSE ADDRESSES END IN 0H OR 8H ARE BIT ADDRESSABLE.

Figure 7. Complete SFR Map for the ADuC845, ADuC847, and ADuC848

Data Sheet

Mnemonic	Description	Bytes	Cycles ¹
RICA	Botate A left through carry	1	1
BB A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
Data Transfer		•	
MOV A Br	Move register to A	1	1
MOV A @Bi	Move indirect memory to A	1	2
MOV Rn A	Move A to register	1	1
MOV @Bi A	Move A to indirect memory	1	2
MOV & dir	Move direct byte to A	2	2
MOV A #data	Move immediate to A	2	2
MOV Rn #data	Move register to immediate	2	2
MOV dir A	Move A to direct byte	2	2
MOV Bn. dir	Move register to direct byte	2	2
MOV dir Pn	Move direct to register	2	2
MOV @Pi #data	Move immediate to indirect memory	2	2
	Move indirect to direct memory	2	2
	Move direct to indirect memory	2	2
	Move direct to maneet memory	2	2
MOV dir, dir	Move direct byte to direct byte	3	3
	Move immediate to direct byte	2	2
	Move immediate to data pointer	3	3
	Move code byte relative DPTR to A	1	4
	Move code byte relative PC to A	1	4
	Move external (A8) data to A	1	4
	Move external (A16) data to A	1	4
	Move A to external data (A8)	1	4
MOVX ² @DPTR,A	Move A to external data (A16)		4
PUSH dir	Push direct byte onto stack	2	2
POP dir	Pop direct byte from stack	2	2
	Exchange A and register		
XCH A,@RI	Exchange A and indirect memory	1	2
XCHD A,@Ri	Exchange A and indirect memory hibble	1	2
XCH A,dir	Exchange A and direct byte	2	2
Boolean			
CLRC	Clear carry	1	1
CLR bit	Clear direct bit	2	2
SEIBC	Set carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement carry	1	1
CPL bit	Complement direct bit	2	2
ANL C,bit	AND direct bit and carry	2	2
ANL C,/bit	AND direct bit inverse to carry	2	2
ORL C,bit	OR direct bit and carry	2	2
ORL C,/bit	OR direct bit inverse to carry	2	2
MOV C,bit	Move direct bit to carry	2	2
MOV bit,C	Move carry to direct bit	2	2
Branching			
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
RET	Return from subroutine	1	4
RETI	Return from interrupt	1	4
ACALL addr11	Absolute jump to subroutine	2	3
AJMP addr11	Absolute jump unconditional	2	3

Mnemonic	Description	Bytes	Cycles ¹
SJMP rel	Short jump (relative address)	2	3
JC rel	Jump on carry = 1	2	3
JNC rel	Jump on carry = 0	2	3
JZ rel	Jump on accumulator = 0	2	3
JNZ rel	Jump on accumulator ! = 0	2	3
DJNZ Rn,rel	Decrement register, JNZ relative	2	3
LJMP	Long jump unconditional	3	4
LCALL ³ addr16	Long jump to subroutine	3	4
JB bit,rel	Jump on direct bit = 1	3	4
JNB bit,rel	Jump on direct bit = 0	3	4
JBC bit,rel	Jump on direct bit = 1 and clear	3	4
CJNE A,dir,rel	Compare A, direct JNE relative	3	4
CJNE A,#data,rel	Compare A, immediate JNE relative	3	4
CJNE Rn,#data,rel	Compare register, immediate JNE relative	3	4
CJNE @Ri,#data,rel	Compare indirect, immediate JNE relative	3	4
DJNZ dir,rel	Decrement direct byte, JNZ relative	3	4
Miscellaneous			
NOP	No operation	1	1

¹ One cycle is one clock.

² MOVX instructions are four cycles when they have 0 wait state. Cycles of MOVX instructions are 4 + *n* cycles when they have *n* wait states as programmed via EWAIT. ³ LCALL instructions are three cycles when the LCALL instruction comes from an interrupt.

MEMORY ORGANIZATION

The ADuC845, ADuC847, and ADuC848 contain four memory blocks:

- 62 kbytes/32 kbytes/8 kbytes of on-chip Flash/EE program memory
- 4 kbytes of on-chip Flash/EE data memory
- 256 bytes of general-purpose RAM
- 2 kbytes of internal XRAM

Flash/EE Program Memory

The devices provide up to 62 kbytes of Flash/EE program memory to run user code. All further references to Flash/EE program memory assume the 62-kbyte option.

When EA is pulled high externally during a power cycle or a hardware reset, the devices default to code execution from their internal 62 kbytes of Flash/EE program memory. The devices do not support the rollover from internal code space to external code space. No external code space is available on the devices. Permanently embedded firmware allows code to be serially downloaded to the 62 kbytes of internal code space via the UART serial port while the device is in-circuit. No external hardware is required.

During run time, 56 kbytes of the 62-kbyte program memory can be reprogrammed. This means that the code space can be upgraded in the field by using a user-defined protocol running on the devices, or it can be used as a data memory. For details, see the Nonvolatile Flash/EE Memory Overview section.

Flash/EE Data Memory

The user has 4 kbytes of Flash/EE data memory available that can be accessed indirectly by using a group of registers mapped into the special function register (SFR) space. For details, see the Nonvolatile Flash/EE Memory Overview section.

General-Purpose RAM

The general-purpose RAM is divided into two separate memories, the upper and the lower 128 bytes of RAM. The lower 128 bytes of RAM can be accessed through direct or indirect addressing. The upper 128 bytes of RAM can be accessed only through indirect addressing because it shares the same address space as the SFR space, which must be accessed through direct addressing.

The lower 128 bytes of internal data memory are mapped as shown in Figure 8. The lowest 32 bytes are grouped into four banks of eight registers addressed as R0 to R7. The next 16 bytes (128 bits), locations 20H to 2FH above the register banks, form a block of directly addressable bit locations at Bit Addresses 00H to 7FH. The stack can be located anywhere in the internal memory address space, and the stack depth can be expanded up to 2048 bytes.

Reset initializes the stack pointer to location 07H. Any call or push pre-increments the SP before loading the stack. Therefore, loading the stack starts from location 08H, which is also the first register (R0) of Register Bank 1. Thus, if one is going to use more than one register bank, the stack pointer should be initialized to an area of RAM not used for data storage.

(REJ60 bit, ADCMODE.6). This fixed filter can be enabled or disabled by setting or clearing the REJ60 bit in the ADCMODE register (ADCMODE.6). This 60 Hz drop-in notch filter can be enabled for any SF word that yields an ADC throughput that is less than 20 Hz with chop enabled (SF \geq 68 decimal).

ADC CHOPPING

The ADCs on the ADuC845/ADuC847/ADuC848 implement a chopping scheme whereby the ADC repeatedly reverses its inputs. The decimated digital output words from the Sinc³ filter, therefore, have a positive and negative offset term included. As a result, a final summing stage is included in each ADC so that each output word from the filter is summed and averaged with the previous filter output to produce a new valid output result to be written to the ADC data SFRs. The ADC throughput or update rate is listed in Table 29. The chopping scheme incorporated into the devices results in excellent dc offset and offset drift specifications, and is extremely beneficial in applications where drift, noise rejection, and optimum EMI performance are important. ADC chop can be disabled via the chop bit in the ADCMODE SFR (ADCMODE.3). Setting this bit to 1 (logic high) disables chop mode.

CALIBRATION

The ADuC845/ADuC847/ADuC848 incorporate four calibration modes that can be programmed via the mode bits in the ADCMODE SFR detailed in Table 24. Every device is calibrated before it leaves the factory. The resulting offset and gain calibration coefficients for both the primary and auxiliary (ADuC845 only) ADCs are stored on-chip in manufacturingspecific Flash/EE memory locations. At power-on or after a reset, these factory calibration registers are automatically downloaded to the ADC calibration registers in the SFR space of the device. To facilitate user calibration, each of the primary and auxiliary (ADuC845 only) ADCs have dedicated calibration control SFRs, which are described in the ADC SFR Interface section. Once a user initiates a calibration procedure, the factory calibration values that were initially downloaded during the power-on sequence to the ADC calibration SFRs are overwritten. The ADC to be calibrated must be enabled via the ADC enable bits in the ADCMODE register.

Even though an internal offset calibration mode is described in this section, note that the ADCs can be chopped. This chopping scheme inherently minimizes offset errors and means that an offset calibration should never be required. Also, because factory 5 V/25°C gain calibration coefficients are automatically present at power-on, an internal full-scale calibration is required only if the device is operated at 3 V or at temperatures significantly different from 25°C.

If the device is operated in chop disabled mode, a calibration may need to be done with every gain range change that occurs via the PGA. The ADuC845/ADuC847/ADuC848 each offer internal or system calibration facilities. For full calibration to occur on the selected ADC, the calibration logic must record the modulator output for two input conditions: zero-scale and full-scale points. These points are derived by performing a conversion on the different input voltages (zero-scale and full-scale) provided to the input of the modulator during calibration. The result of the zero-scale calibration conversion is stored in the offset calibration registers for the appropriate ADC. The result of the full-scale calibration conversion is stored in the gain calibration registers for the appropriate ADC. With these readings, the calibration logic can calculate the offset and the gain slope for the input-to-output transfer function of the converter.

During an internal zero-scale or full-scale calibration, the respective zero-scale input or full-scale input is automatically connected to the ADC inputs internally. A system calibration, however, expects the system zero-scale and system full-scale voltages to be applied externally to the ADC pins by the user before the calibration mode is initiated. In this way, external errors are taken into account and minimized. Note that all ADuC845/ADuC847/ADuC848 ADC calibrations are carried out at the user-selected SF word update rate. To optimize calibration accuracy, it is recommended that the slowest possible update rate be used.

Internally in the devices, the coefficients are normalized before being used to scale the words coming out of the digital filter. The offset calibration coefficient is subtracted from the result prior to the multiplication by the gain coefficient.

From an operational point of view, a calibration should be treated just like an ordinary ADC conversion. A zero-scale calibration (if required) should always be carried out before a full-scale calibration. System software should monitor the relevant ADC RDY0/1 bit in the ADCSTAT SFR to determine the end of calibration by using a polling sequence or an interrupt driven routine. If required, the NOEXREF0/1 bits can be monitored to detect unconnected or low voltage errors in the reference during conversion. In the event of the reference becoming disconnected, causing a NOXREF flag during a calibration, the calibration is immediately halted and no write to the calibration SFRs takes place.

Internal Calibration Example

With chop enabled, a zero-scale or offset calibration should never be required, although a full-scale or gain calibration may be required. However, if a full internal calibration is required, the procedure should be to select a PGA gain of 1 (± 2.56 V) and perform a zero-scale calibration (MD2...0 = 100B in the ADCMODE register). Next, select and perform full-scale calibration by setting MD2...0 = 101B in the ADCMODE SFR. Now select the desired PGA range and perform a zero-scale calibration again (MD2...0 = 100B in ADCMODE) at the new PGA range. The reason for the double zero-scale calibration is

ADCSTAT (ADC STATUS REGISTER)

This SFR reflects the status of both ADCs including data ready, calibration, and various (ADC-related) error and warning conditions including REFIN± reference detect and conversion overflow/underflow flags.

SFR Address:	D8H
Power-On Default:	00H
Bit Addressable:	Yes

Bit No.	Name	Description
7	RDY0	Ready Bit for the Primary ADC.
		Set by hardware on completion of conversion or calibration.
		Cleared directly by the user, or indirectly by a write to the mode bits, to start calibration. The primary ADC is inhibited from writing further results to its data or calibration registers until the RDY0 bit is cleared.
6	RDY1	Ready Bit for Auxiliary (ADuC845 only) ADC.
		Same definition as RDY0 referred to the auxiliary ADC. Valid on the ADuC845 only.
5	CAL	Calibration Status Bit.
		Set by hardware on completion of calibration.
		Cleared indirectly by a write to the mode bits to start another ADC conversion or calibration.
		Note that calibration with the temperature sensor selected (auxiliary ADC on the ADuC845 only) fails to complete.
4	NOXREF	No External Reference Bit (only active if primary or auxiliary (ADuC845 only) ADC is active).
		Set to indicate that one or both of the REFIN pins is floating or the applied voltage is below a specified threshold. When set, conversion results are clamped to all 1s. Only detects invalid REFIN±, does not check REFIN2±.
		Cleared to indicate valid V _{REF} .
3	ERRO	Primary ADC Error Bit.
		Set by hardware to indicate that the result written to the primary ADC data registers has been clamped to all 0s or all 1s. After a calibration, this bit also flags error conditions that caused the calibration registers not to be written.
		Cleared by a write to the mode bits to initiate a conversion or calibration.
2	ERR1	Auxiliary ADC Error Bit. Same definition as ERR0 referred to the auxiliary ADC. Valid on the ADuC845 only.
1		Not Implemented. Write Don't Care.
0		Not Implemented. Write Don't Care.

Table 23. ADCSTAT SFR Bit Designation

ADC0CON2 (PRIMARY ADC CHANNEL SELECT REGISTER)

ADC0CON2 is used to select a reference source and channel for the primary ADC.

SFR Address:	E6H
Power-On Default:	00H
Bit Addressable:	No

Table 26. ADC0CON2 SFR Bit Designations

Bit No.	Name	Desc	ription							
7,6	XREF1, XREF0	Prima	ary ADC	External	Referen	ce Select Bit.				
		Set b	y the use	er to enal	ble the p	primary ADC to use the external reference via REFIN \pm or REFIN2 \pm .				
		Clear	ed by th	e user to	enable	the primary ADC to use the internal band gap reference ($V_{REF} = 1.25 V$).				
		XREF	XREF1 XREF0							
		0	0 Internal 1.25 V Reference.							
		0	1 REFIN± Selected.							
		1	0	RE	FIN2± (A	AIN3/AIN4) Selected.				
		1	1	Re	served.					
5		Not li	mpleme	nted. Wri	te Don'i	: Care.				
4		Not li	mpleme	nted. Wri	te Don'i	: Care.				
3, 2, 1, 0	CH3, CH2, CH1, CH0	Prima	ary ADC	Channel	Select B	its. Written by the user to select the primary ADC channel as follows:				
		CH3	CH2	CH1	CH0	Selected Primary ADC Input Channel.				
		0	0	0	0	AIN1–AINCOM				
		0	0	0	1	AIN2–AINCOM				
		0	0	1	0	AIN3–AINCOM				
		0	0	1	1	AIN4–AINCOM				
		0	1	0	0	AIN5–AINCOM				
		0	1	0	1	AIN6–AINCOM				
		0	1	1	0	AIN7–AINCOM				
		0	1	1	1	AIN8–AINCOM				
		1	0	0	0	AIN9–AINCOM (LFCSP package only; not a valid selection on the MQFP package)				
		1	0	0	1	AIN10–AINCOM (LFCSP package only; not a valid selection on the MQFP package)				
		1	0	1	0	AIN1–AIN2				
		1	0	1	1	AIN3–AIN4				
		1	1	0	0	AIN5–AIN6				
		1	1	0	1	AIN7–AIN8				
		1	1	1	0	AIN9–AIN10 (LFCSP package only; not a valid selection on the MQFP				
						package)				
		1	1	1	1	AINCOM-AINCOM				

Note that because the reference-detect does not operate on the REFIN2± pair, the REFIN2± pins can go below 1 V.

DAC CIRCUIT INFORMATION

The ADuC845/ADuC847/ADuC848 incorporate a 12-bit, voltage output DAC on-chip. It has a rail-to-rail voltage output buffer capable of driving 10 k Ω /100 pF, and has two selectable ranges, 0 V to V_{REF} and 0 V to AV_{DD}. It can operate in 12-bit or 8-bit mode. The DAC has a control register, DACCON, and two data registers, DACH/L. The DAC output can be programmed to appear at Pin 14 (DAC) or Pin 13 (AINCOM).

In 12-bit mode, the DAC voltage output is updated as soon as the DACL data SFR is written; therefore, the DAC data registers should be updated as DACH first, followed by DACL. The 12bit DAC data should be written into DACH/L right-justified such that DACL contains the lower 8 bits, and the lower nibble of DACH contains the upper 4 bits.

DACCON Control	Register
SFR Address:	FDH
Power-On Default:	00H
Bit Addressable:	No

Bit No.	Name	Description
7		Not Implemented. Write Don't Care.
6		Not Implemented. Write Don't Care.
5		Not Implemented. Write Don't Care.
4	DACPIN	DAC Output Pin Select.
		Set to 1 by the user to direct the DAC output to Pin 13 (AINCOM).
		Cleared to 0 by the user to direct the DAC output to Pin 14 (DAC).
3	DAC8	DAC 8-Bit Mode Bit.
		Set to 1 by the user to enable 8-bit DAC operation. In this mode, the 8 bits in DACL SFR are routed to the 8 MSBs of the DAC, and the 4 LSBs of the DAC are set to 0.
		Cleared to 0 by the user to enable 12-bit DAC operation. In this mode, the 8 LSBs of the result are routed to DACL, and the upper 4 MSB bits are routed to the lower 4 bits of DACH.
2	DACRN	DAC Output Range Bit.
		Set to 1 by the user to configure the DAC range of $0 V$ to AV_{DD} .
		Cleared to 0 by the user to configure the DAC range of 0 V to 2.5 V (V _{REF}).
1	DACCLR	DAC Clear Bit.
		Set to 1 by the user to enable normal DAC operation.
		Cleared to 0 by the user to reset the DAC data registers DACL/H to 0.
0	DACEN	DAC Enable Bit.
		Set to 1 by the user to enable normal DAC operation.
		Cleared to 0 by the user to power down the DAC.

Table 33. DACCON–DAC Configuration Commands

DACH/DACL Data Registers

These DAC data registers are written to by the user to update the DAC output.

SFR Address:	DACL (DAC data low byte)—FBH
	DACH (DAC data high byte)—FCH
Power-On Default:	00H (both registers)
Bit Addressable:	No (both registers)

ON-CHIP PLL (PLLCON)

The ADuC845/ADuC847/ADuC848 are intended for use with a 32.768 kHz watch crystal. A PLL locks onto a multiple (384) of this to provide a stable 12.582912 MHz clock for the system. The core can operate at this frequency or at binary submultiples of it to allow power saving when maximum core performance is not required. The default core clock is the PLL clock divided by 8 or 1.572864 MHz. The ADC clocks are also derived from the PLL clock, with the modulator rate being the same as the crystal oscillator frequency. The control register for the PLL is called PLLCON and is described as follows.

The 5 V parts can be set to a maximum core frequency of 12.58 MHz (CD2...0 = 000) while at 3 V, the maximum core clock rate is 6.29 MHz (CD2...0 = 001). The CD bits should not be set to 000b on the 3 V parts.

The 3 V parts are limited to a core clock speed of 6.29 MHz (CD = 1).

PLLCON PLL Control Register

SFR Address:	D7H
Power-On Default:	53H
Bit Addressable:	No

Table 39. PLLCON PLL Control Register

Bit No.	Name	Descr	iption		
7	OSC_PD	Oscillator Power-Down Bit.			
		If low, the 32 kHz crystal oscillator continues running in power-down mode.			
		If high, the 32.768 kHz oscillator is powered down.			
		When this bit is low, the seconds counter continues to count in power-down mode and can interrupt the CPU to exit power-down. The oscillator is always enabled in normal mode.			
6	LOCK	PLL Lo	ock Bit. This i	s a read-only k	pit.
		Set au down,	tomatically a this bit can	at power-on to be polled to v	o indicate that the PLL loop is correctly tracking the crystal clock. After power- vait for the PLL to lock.
		Cleared automatically at power-on to indicate that the PLL is not correctly tracking the crystal clock. This might be due to the absence of a crystal clock or an external crystal at power-on. In this mode, the PLL output can be 12.58 MHz \pm 20%. After the device wakes up from power-down, user code can poll this bit to wait for the PLL to lock. If LOCK = 0, the PLL is not locked.			
5		Not In	plemented.	Write Don't C	are.
4	LTEA	EA Sta	tus. Read-or	nly bit. Readin	g this bit returns the state of the external $\overline{\text{EA}}$ pin latched at reset or power-on.
3	FINT	Fast Interrupt Response Bit.			
		Set by the user to enable the response to any interrupt to be executed at the fastest core clock frequency.			
		Cleared by the user to disable the fast interrupt response feature.			
		This function must not be used on 3 V parts.			
2, 1, 0	CD2, CD1, CD0	CPU (Core Clock) Divider Bits. This number determines the frequency at which the core operates.			
		CD2	CD1	CD0	Core Clock Frequency (MHz)
		0	0	0	12.582912. Not a valid selection on 3 V parts.
		0	0	1	6.291456 (Maximum core clock rate allowed on the 3 V parts)
		0	1	0	3.145728
		0	1	1	1.572864 (Default core frequency)
		1	0	0	0.786432
		1	0	1	0.393216
		1	1	0	0.196608
		1	1	1	0.098304
		On 3 V parts (ADuC84xBCPxx-3 or ADuC84xBSxx-3), the CD settings can be only CD = 1; CD = 0 is not a valid selection. If CD = 0 is selected on a 3 V part by writing to PLLCON, the instruction is ignored, and the previous CD value is retained.			
		The Fa	ist Interrupt valid setting.	bit (FINT) mus	st not be used on 3 V parts since it automatically sets the CD bits to 0, which is

SPICON—SPI Control Register

SFR Address:	F8H
Power-On Default:	05H
Bit Addressable:	Yes

Table 41. SPICON SFR Bit Designations

Bit No.	Name	Description		
7	ISPI	SPI Interrupt Bit.		
		Set by the MicroConverter at the end of each SPI transfer.		
		Cleared directly by user code or indirectly by reading the SPIDAT SFR.		
6	WCOL	Write Collisio	n Error Bit.	
		Set by the Mi	croConverter i	f SPIDAT is written to while an SPI transfer is in progress.
		Cleared by us	er code.	
5	SPE	SPI Interface	Enable Bit.	
		Set by user c	ode to enable S	5PI functionality.
		Cleared by us	er code to ena	ble standard Port 2 functionality.
4	SPIM	SPI Master/SI	ave Mode Sele	ct Bit.
		Set by user c	ode to enable i	master mode operation (SCLOCK is an output).
		Cleared by user code to enable slave mode operation (SCLOCK is an input).		
3	CPOL ¹	Clock Polarity Bit.		
		Set by user code to enable SCLOCK idle high.		
		Cleared by user code to enable SCLOCK idle low.		
2	CPHA ¹	Clock Phase Select Bit.		
		Set by user code if the leading SCLOCK edge is to transmit data.		
		Cleared by user code if the trailing SCLOCK edge is to transmit data.		
1, 0	SPR1, SPR0	SPI Bit-Rate Bits.		
		SPR1	SPR0	Selected Bit Rate
		0	0	f _{core} /2
		0	1	f _{core} /4
		1	0	f _{core} /8
		1	1	f _{core} /16

¹ The CPOL and CPHA bits should both contain the same values for master and slave devices.

Note that both SPI and I²C use the same ISR (Vector Address 3BH); therefore, when using SPI and I²C simultaneously, it is necessary to check the interfaces following an interrupt to determine which one caused the interrupt.

SPIDAT: SPI Data Register

SFR Address:7FHPower-On Default:00HBit Addressable:No

DUAL DATA POINTERS

Table 42. DPCON SFR Bit Designations

The devices incorporate two data pointers. The second data pointer is a shadow data pointer and is selected via the data pointer control SFR (DPCON). DPCON features automatic hardware post-increment and post-decrement as well as an automatic data pointer toggle.

DPCON—Data Pointer Control SFR

SFR Address:	A7H
Power-On Default:	00H
Bit Addressable:	No

Bit No.	Name	Description				
7		Not Implemer	ited. Write Don't Care.			
6	DPT	Data Pointer Automatic Toggle Enable.				
		Cleared by the user to disable autoswapping of the DPTR.				
		Set in user sof	tware to enable automatic toggling of the DPTR after each MOVX or MOVC instruction.			
5, 4	DP1m1, DP1m0	Shadow Data more compac	Pointer Mode. These bits enable extra modes of the shadow data pointer operation, allowing t and more efficient code size and execution.			
		DP1m1 DP1	m0 Behavior of the Shadow Data Pointer			
		0 0	8052 behavior.			
		0 1	DPTR is post-incremented after a MOVX or a MOVC instruction.			
		1 0	DPTR is post-decremented after a MOVX or MOVC instruction.			
		1 1	1 DPTR LSB is toggled after a MOVX or MOVC instruction. (This instruction can be useful for moving 8-bit blocks to/from 16-bit devices.)			
3, 2	DP0m1, DP0m0	Main Data Pointer Mode. These bits enable extra modes of the main data pointer operation, allowing more compact and more efficient code size and execution.				
		DP0m1 DP0	m0 Behavior of the Main Data Pointer			
		0 0	8052 behavior.			
		0 1	DPTR is post-incremented after a MOVX or a MOVC instruction.			
		1 0	DPTR is post-decremented after a MOVX or MOVC instruction.			
		1 1	DPTR LSB is toggled after a MOVX or MOVC instruction. (This instruction is useful for moving 8-bit blocks to/from 16-bit devices.)			
1		Not Implemer	ited. Write Don't Care.			
0	DPSEL	Data Pointer S	elect.			
		Cleared by the user to select the main data pointer. This means that the contents of this 24-bit register are placed into the DPL, DPH, and DPP SFRs.				
		Set by the user to select the shadow data pointer. This means that the contents of a separate 24-bit register appear in the DPL, DPH, and DPP SFRs.				
Note the	following:		MOV DPTR,#0 ;Main DPTR = 0			
	0					

;Select shadow DPTR MOV DPCON, #55H The Dual Data Pointer section is the only place in which • ;DPTR1 increment mode main and shadow data pointers are distinguished. ;DPTR0 increment mode Whenever the DPTR is mentioned elsewhere in this data ;DPTR auto toggling ON sheet, active DPTR is implied. MOV DPTR, #0D000H ; DPTR = D000H MOVELOOP: CLR A Only the MOVC/MOVX @DPTR instructions MOVC A, @A+DPTR ;Get data automatically post-increment and post-decrement the ;Post Inc DPTR DPTR. Other MOVC/MOVX instructions, such as MOVC ;Swap to Main DPTR(Data) PC or MOVC @Ri, do not cause the DPTR to automatically MOVX @DPTR,A ;Put ACC in XRAM post-increment and post-decrement. ;Increment main DPTR ;Swap Shadow DPTR(Code) To illustrate the operation of DPCON, the following code copies MOV A, DPL 256 bytes of code memory at Address D000H into XRAM, JNZ MOVELOOP starting from Address 0000H.

POWER SUPPLY MONITOR

The power supply monitor, once enabled, monitors the DV_{DD} and AV_{DD} supplies on the devices. It indicates when any of the supply pins drop below one of four user-selectable voltage trip points from 2.63 V to 4.63 V. For correct operation of the power supply monitor function, AV_{DD} must be equal to or greater than 2.63 V. Monitor function is controlled via the PSMCON SFR. If enabled via the IEIP2 SFR, the monitor interrupts the core by using the PSMI bit in the PSMCON SFR. This bit is not cleared until the failing power supply returns above the trip point for at least 250 ms.

The monitor function allows the user to save working registers to avoid possible data loss due to the low supply condition, and also ensures that normal code execution does not resume until a safe supply level is well established. The supply monitor is also protected against spurious glitches triggering the interrupt circuit.

The 5 V part has an internal POR trip level of 4.63 V, which means that there are no usable DV_{DD} PSM trip levels on the 5 V part. The 3 V part has a POR trip level of 2.63 V following a reset and initialization sequence, allowing all relevant PSM trip points to be used.

PSMCON—Power Supply Monitor Control Register

SFR Address:	DFH
Power-On Default:	DEH
Bit Addressable:	No

1 auto 45.	I SMCON SI'K					
Bit No.	Name	Description				
7	CMPD	DV _{DD} Comparator Bit.				
		This read-only bit directly reflects the state of the DV _{DD} comparator.				
		Read 1 indicates that the DV _{DD} supply is above its selected trip point.				
		Read 0 indicates that the DV_{DD} supply is below its selected trip point.				
6	CMPA	AV _{DD} Comparator Bit.				
		This read-only bit directly reflects the state of the AV $_{DD}$ comparator.				
		Read 1 indicates that the AV _{DD} supply is above its selected trip point.				
		Read 0 indicates that the AV _{DD} supply is below its selected trip point.				
5	PSMI	Power Supply Monitor Interrupt Bit.				
		Set high by the MicroConverter if either CMPA or CMPD is low, indicating low analog or digital supply. The PSMI bit can be used to interrupt the processor. Once CMPD and/or CMPA returns (and remains) high, a 250 ms counter is started. When this counter times out, the PSMI interrupt is cleared. PSMI can also be written by the user However if either comparator output is low, it is not possible for the user to clear PSMI				
4, 3	TPD1, TPD0	DV _{DD} Trip Point Selection Bits.				
		A 5 V part has no valid PSM trip points. If the DV _{DD} supply falls below the 4.63 V point, the device resets (POR). For a 3 V part, all relevant PSM trip points are valid. The 3 V POR trip point is 2.63 V (fixed).				
		These bits select the DV_{DD} trip point voltage as follows:				
		TPD1 TPD0 Selected DV _{DD} Trip Point (V)				
		0 0 4.63				
		0 1 3.08				
		1 0 2.93				
		1 1 2.63				
2, 1	TPA1, TPA0	AV _{DD} Trip Point Selection Bits. These bits select the AV _{DD} trip point voltage as follows:				
		TPA1 TPA0 Selected AV _{DD} Trip Point (V)				
		0 0 4.63				
		0 1 3.08				
		1 0 2.93				
		1 1 2.63				
0	PSMEN	Power Supply Monitor Enable Bit.				
		Set to 1 by the user to enable the power supply monitor circuit.				
		Cleared to 0 by the user to disable the power supply monitor circuit.				

Table 43. PSMCON SFR Bit Designations

TIME INTERVAL COUNTER (TIC)

A TIC is provided on-chip for counting longer intervals than the standard 8051-compatible timers can count. The TIC is capable of timeout intervals ranging from 1/128 second to 255 hours. Also, this counter is clocked by the external 32.768 kHz crystal rather than by the core clock, and it can remain active in power-down mode and time long power-down intervals. This has obvious applications for remote battery-powered sensors where regular widely spaced readings are required. Note that instructions to the TIC SFRs are also clocked at 32.768 kHz, so sufficient time must be allowed in user code for these instructions to execute.

Six SFRs are associated with the time interval counter, TIMECON being its control register. Depending on the configuration of the IT0 and IT1 bits in TIMECON, the selected time counter register overflow clocks the interval counter. When this counter is equal to the time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an interrupt, if enabled. If the device is in power-down mode, again with TIC interrupt enabled, the TII bit wakes up the device and resumes code execution by vectoring directly to the TIC interrupt service vector address at 0053H. The TIC-related SFRs are described in Table 45. Note also that the time based SFRs can be written initially with the current time; the TIC can then be controlled and accessed by user software. In effect, this facilitates the implementation of a real-time clock. A basic block diagram of the TIC is shown in Figure 47. Because the TIC is clocked directly from a 32 kHz external crystal on the devices, instructions that access the TIC registers are also clocked at 32 kHz (not at the core frequency). The user must ensure that sufficient time is given for these instructions to execute.

Figure 47. TIC Simplified Block Diagram

T2CON-Timer/Counter 2 Control Register

SFR Address:	C8H
Power-On Default:	00H
Bit Addressable:	Yes

Table 52. T2CON SFR Bit Designations

Bit No.	Name	Description
7	TF2	Timer 2 Overflow Flag.
		Set by hardware on a Timer 2 overflow. TF2 cannot be set when either RCLK = 1 or TCLK = 1.
		Cleared by user software.
6	EXF2	Timer 2 External Flag.
		Set by hardware when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1.
		Cleared by user software.
5	RCLK	Receive Clock Enable Bit.
		Set by the user to enable the serial port to use Timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3.
		Cleared by the user to enable Timer 1 overflow to be used for the receive clock.
4	TCLK	Transmit Clock Enable Bit.
		Set by the user to enable the serial port to use Timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3.
		Cleared by the user to enable Timer 1 overflow to be used for the transmit clock.
3	EXEN2	Timer 2 External Enable Flag.
		Set by the user to enable a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port.
		Cleared by the user for Timer 2 to ignore events at T2EX.
2	TR2	Timer 2 Start/Stop Control Bit.
		Set by the user to start Timer 2.
		Cleared by the user to stop Timer 2.
1	CNT2	Timer 2 Timer or Counter Function Select Bit.
		Set by the user to select the counter function (input from external T2 pin).
		Cleared by the user to select the timer function (input from on-chip core clock).
0	CAP2	Timer 2 Capture/Reload Select Bit.
		Set by the user to enable captures on negative transitions at T2EX if $EXEN2 = 1$.
		Cleared by the user to enable autoreloads with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either $RCLK = 1$ or $TCLK = 1$, this bit is ignored and the timer is forced to autoreload on Timer 2 overflow.

Timer/Counter 2 Data Registers

Timer/Counter 2 also has two pairs of 8-bit data registers associated with it. These are used as both timer data registers and as timer capture/reload registers.

TH2 and TL2—Timer 2 data high byte and low byte.SFR Address:CDH and CCH respectively.Power-On Default:00H and 00H, respectively.RCAP2H and RCAP2L—Timer 2 capture/reload byte and low
byte.byte.SFR Address:CBH and CAH, respectively.

Power-On Default: 00H and 00H, respectively.

Data Sheet

Table 57. Common Baud Rates	Using Timer 3 with a	12.58 MHz PLL Clock
-----------------------------	----------------------	---------------------

Ideal Baud	CD	DIV	T3CON	T3FD	% Error
230400	0	1	81H	2DH	0.18
115200	0	2	82H	2DH	0.18
115200	1	1	81H	2DH	0.18
57600	0	3	83H	2DH	0.18
57600	1	2	82H	2DH	0.18
57600	2	1	81H	2DH	0.18
38400	0	4	84H	12H	0.12
38400	1	3	83H	12H	0.12
38400	2	2	82H	12H	0.12
38400	3	1	81H	12H	0.12
19200	0	5	85H	12H	0.12
19200	1	4	84H	12H	0.12
19200	2	3	83H	12H	0.12
19200	3	2	82H	12H	0.12
19200	4	1	81H	12H	0.12
9600	0	6	86H	12H	0.12
9600	1	5	85H	12H	0.12
9600	2	4	84H	12H	0.12
9600	3	3	83H	12H	0.12
9600	4	2	82H	12H	0.12
9600	5	1	81H	12H	0.12

Single-Pin Emulation Mode

Built into the ADuC845/ADuC847/ADuC848 is a dedicated controller for single-pin in-circuit emulation (ICE). In this mode, emulation access is gained by connection to a single pin, the EA pin. Normally on the 8051 standard, this pin is hardwired either high or low to select execution from internal or external program memory space. Note that external program memory or execution from external program memory is not allowed on the devices. To enable single-pin emulation mode, users need to pull the \overline{EA} pin high through a 1 k Ω resistor as shown in Figure 70. The emulator then connects to the 2-pin header also shown in Figure 70. To be compatible with the standard connector that comes with the single-pin emulator available from Accutron Limited (www.accutron.com), use a 2-pin 0.1-inch pitch Friction Lock header from Molex (www.molex.com) such as part number 22-27-2021. Be sure to observe the polarity of this header. As shown in Figure 70, when the Friction Lock tab is at the right, the ground pin should be the lower of the two pins when viewed from the top.

Typical System Configuration

A typical ADuC845/ADuC847/ADuC848 configuration is shown in Figure 70. Figure 70 also includes connections for a typical analog measurement application of the devices, namely an interface to a resistive temperature device (RTD). The arrangement shown is commonly referred to as a 4-wire RTD configuration. Here, the on-chip excitation current sources are enabled to excite the sensor. The excitation current flows directly through the RTD generating a voltage across the RTD proportional to its resistance. This differential voltage is routed directly to one set of the positive and negative inputs of the ADC (AIN1, AIN2, respectively in this case). The same current that excited the RTD also flows through a series resistance, R_{REF} , generating a ratiometric voltage reference, V_{REF} . The ratiometric voltage reference ensures that variations in the excitation current do not affect the measurement system since the input voltage from the RTD and reference voltage across R_{REF} vary ratiometrically with the excitation current. Resistor R_{REF} must, however, have a low temperature coefficient to avoid errors in the reference voltage overtemperature. R_{REF} must also be large enough to generate at least a 1 V voltage reference.

The preceding example shows just a single differential ADC connection using a single reference input pair. The ADuC845/ ADuC847/ADuC848 have the capability of connecting to five differential inputs directly or ten single-ended inputs (LFCSP package only) as well as having a second reference input. This arrangement means that different sensors with different reference ranges can be connected to the device with the need for external multiplexing circuitry. This arrangement is shown in Figure 71. The bridge sensor shown can be a load cell or a pressure sensor. The RTD is shown using a reference voltage derived from the R_{REF} resistor via the REFIN± inputs, and the bridge sensor is shown using a divided down AV_{DD} reference via the REFIN2± inputs.

Table 72. UART TIMING (SHIFT REGISTER MODE) Parameter

		12.58 MHz Core_Clk			Variable Core_Clk			
		Min	Тур	Max	Min	Тур	Мах	Unit
TXLXL	Serial Port Clock Cycle Time		954			12t _{core}		ns
TQVXH	Output Data Setup to Clock	662						ns
TDVXH	Input Data Setup to Clock	292						ns
TXHDX	Input Data Hold After Clock	0						ns
TXHQX	Output Data Hold After Clock	22						ns

Figure 80. UART Timing in Shift Register Mode

OUTLINE DIMENSIONS

NOTES

I²C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).

©2004–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04741-0-5/16(D)

www.analog.com

Rev. D | Page 109 of 109